-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_grounding_train.py
468 lines (390 loc) · 23.1 KB
/
run_grounding_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
'''
* Copyright (c) 2021, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
import os
import utils
import argparse
import random
import time
import datetime
import json
import torch
import numpy as np
import ruamel_yaml as yaml
from pathlib import Path
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from scheduler import create_scheduler
from optim import create_optimizer
from models.model_grounding import PEVL_Grounding
from models.vit import interpolate_pos_embed
from models.tokenization_bert import BertTokenizer
from dataset import create_sampler, create_loader
from dataset.grounding_dataset import Grounding_train_dataset, Grounding_eval_dataset
unus = ['[unused{}]'.format(x) for x in range(200,800)]
pos_token = ['@@']
pos_token.extend([f'[pos_{x}]' for x in range(512)])
pos_token.append('##')
tokenizer_ = BertTokenizer.from_pretrained('./configs/vocab.txt')
postoken_dict = {}
for x,y in zip(unus, pos_token):
un_index = tokenizer_.vocab[x]
tokenizer_.vocab[y] = un_index
postoken_dict[y] = un_index
_ = tokenizer_.vocab.pop(x)
tokenizer_.basic_tokenizer.never_split.add(y)
postoken_dict.pop('##')
postoken_dict.pop('@@')
postoken_index = torch.randn(30522).bool()
postoken_index[:] = False
for x in postoken_dict.values():
postoken_index[x]=True
def computeIoU(box1, box2):
# each box is of [x1, y1, w, h]
inter_x1 = max(box1[0], box2[0])
inter_y1 = max(box1[1], box2[1])
inter_x2 = min(box1[0] + box1[2] - 1, box2[0] + box2[2] - 1)
inter_y2 = min(box1[1] + box1[3] - 1, box2[1] + box2[3] - 1)
if inter_x1 < inter_x2 and inter_y1 < inter_y2:
inter = (inter_x2 - inter_x1 + 1) * (inter_y2 - inter_y1 + 1)
else:
inter = 0
union = box1[2] * box1[3] + box2[2] * box2[3] - inter
try:
return float(inter) / union
except ZeroDivisionError:
return 0
def pretrain(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, postoken_index):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=500, fmt='{value:.6f}'))
metric_logger.add_meter('loss_soft', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
if args.distributed:
data_loader.sampler.set_epoch(epoch)
for i, (image, text) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
optimizer.zero_grad()
image = image.to(device,non_blocking=True)
text_input = tokenizer(text, padding='longest', truncation=True, max_length=200, return_tensors="pt").to(device)
if epoch>0:
alpha = config['alpha']
else:
alpha = config['alpha']*min(1,i/len(data_loader))
loss_soft, loss_ita, loss_itm = model(image, text_input, alpha = alpha)
loss = loss_soft + loss_ita+loss_itm
loss.backward()
optimizer.step()
metric_logger.update(loss_soft=loss_soft.item())
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
scheduler.step(i//step_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def finetune(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, postoken_index, args):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
if args.distributed:
data_loader.sampler.set_epoch(epoch)
for i, (image, text) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
optimizer.zero_grad()
image = image.to(device,non_blocking=True)
text_input = tokenizer(text, padding='longest', truncation=True, max_length=300, return_tensors="pt").to(device)
if epoch>0:
alpha = config['alpha']
else:
alpha = config['alpha']*min(1,i/len(data_loader))
loss = model(image, text_input, alpha = alpha, mode='finetune')
loss.backward()
optimizer.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
scheduler.step(i//step_size)
if i!=0 and i%args.eval_step==0:
checkpoint(args.output_dir, epoch, i, model, tokenizer, config, device)
dist.barrier()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def grounding_test(model, data_loader, tokenizer, device, config, dataname=None):
#test
model.eval()
test_results = []
results = []
with torch.no_grad():
for i, (image, text, bbox, imgs_wh) in enumerate(data_loader):
image = image.to(device,non_blocking=True)
text_input = tokenizer(text, padding='longest', truncation=True, max_length=300, return_tensors="pt").to(device)
image_embeds = model.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
input_ids = text_input.input_ids.clone()
labels = input_ids.clone()
probability_matrix = torch.full(labels.shape, model.mlm_probability)
input_ids, labels, masked_indices = model.postoken_mask(input_ids, targets=labels, probability_matrix = probability_matrix)
mlm_output = model.text_encoder(input_ids,
attention_mask = text_input.attention_mask,
encoder_hidden_states = image_embeds,
encoder_attention_mask = image_atts,
return_dict = True,)
masked_indices = masked_indices.cpu()
pos_logits = mlm_output.logits.detach().cpu()[masked_indices][:,postoken_index].view(-1,4,512)
res = []
for x,y,m in zip(pos_logits, bbox, imgs_wh):
assert x.shape[0]==4
img_h = m[1]
img_w = m[0]
res = []
for n in x:
res.append(float(n.argmax()/512))
res = [res[0]*img_w, res[1]*img_h, res[2]*img_w, res[3]*img_h]
res = torch.tensor([res[0], res[1], res[2]-res[0]+1, res[3]-res[1]+1])
iou = computeIoU(res, y)
if iou >= 0.5:
results.append(iou)
test_results.append(iou)
print(len(test_results))
print('grounding accuracy: ', len(results)/len(test_results))
def checkpoint(output_dir, epoch, step, model, tokenizer, config, device):
if utils.is_main_process():
val_model = model.module
print('\n\n++++++++++++++++++++++++++++++++++++++++++++++++')
print('REFCOCO VAL:')
grounding_test(val_model, refcoco_val_data_loader, tokenizer, device, config)
print('REFCOCO TESTA:')
grounding_test(val_model, refcoco_testa_data_loader, tokenizer, device, config)
print('REFCOCO TESTB')
grounding_test(val_model, refcoco_testb_data_loader, tokenizer, device, config)
print('++++++++++++++++++++++++++++++++++++++++++++++++\n\n')
save_obj = {
'model': val_model.state_dict(),
}
torch.save(save_obj, os.path.join(output_dir, 'checkpoint_{}_{}.pth'.format(epoch, step)))
refcoco_val_dataset = [Grounding_eval_dataset(['./grounding/refcoco_val.json'], 512) ]
refcoco_val_data_loader = create_loader(refcoco_val_dataset,[None],batch_size=[96], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
refcoco_testa_dataset = [Grounding_eval_dataset(['./grounding/refcoco_testA.json'], 512) ]
refcoco_testa_data_loader = create_loader(refcoco_testa_dataset,[None],batch_size=[96], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
refcoco_testb_dataset = [Grounding_eval_dataset(['./grounding/refcoco_testB.json'], 512) ]
refcoco_testb_data_loader = create_loader(refcoco_testb_dataset,[None],batch_size=[96], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating dataset")
if args.pretrain:
datasets = [Grounding_train_dataset(config['train_file'], img_res=config['image_res']) ]
elif args.test_dataset == 'refcoco':
print('.....................REFCOCO TRAIN DATASET.....................')
datasets = [Grounding_train_dataset(config['refcoco_train_file'], img_res=config['image_res'])]
elif args.test_dataset == 'refcocog':
print('.....................REFCOCOG TRAIN DATASET.....................')
datasets = [Grounding_train_dataset(config['refcocog_train_file'], img_res=config['image_res'])]
elif args.test_dataset == 'refcocop':
print('.....................REFCOCO+ TRAIN DATASET.....................')
datasets = [Grounding_train_dataset(config['refcocop_train_file'], img_res=config['image_res'])]
elif args.test_dataset == 'flickr':
print('.....................FLICKR TRAIN DATASET.....................')
datasets = [Grounding_train_dataset(config['flickr_train_file'], img_res=config['image_res'])]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
else:
samplers = [None]
data_loader = create_loader(datasets,samplers,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
##our tokenizer
unus = ['[unused{}]'.format(x) for x in range(200,800)]
pos_token = ['@@']
pos_token.extend([f'[pos_{x}]' for x in range(512)])
pos_token.append('##')
postoken_dict = {}
tokenizer = BertTokenizer.from_pretrained('./configs/vocab.txt')
for x,y in zip(unus, pos_token):
un_index = tokenizer.vocab[x]
tokenizer.vocab[y] = un_index
postoken_dict[y] = un_index
_ = tokenizer.vocab.pop(x)
tokenizer.basic_tokenizer.never_split.add(y)
postoken_dict.pop('@@')
postoken_dict.pop('##')
postoken_index = torch.randn(30522).bool()
postoken_index[:] = False
for x in postoken_dict.values():
postoken_index[x]=True
#### Model ####
print("Creating model")
model = PEVL_Grounding(config=config, tokenizer=tokenizer, postoken_dict = postoken_dict,init_deit=False)
model = model.to(device)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch']+1
else:
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],model.visual_encoder_m)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s'%args.checkpoint)
model_without_ddp = model
if args.distributed:
if args.pretrain:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu],find_unused_parameters=True)
model_without_ddp = model.module
if args.train:
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, max_epoch):
if epoch>0:
lr_scheduler.step(epoch+warmup_steps)
if args.pretrain:
train_stats = pretrain(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config, postoken_index)
else:
train_stats = finetune(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config, postoken_index, args)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'grounding_checkpoint_%02d.pth'%epoch))
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
if torch.distributed.get_rank() == 0:
val_model = model.module
if args.test_dataset == 'refcoco':
print('.....................REFCOCO VAL BEGIN VAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcoco_val'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
print('.....................REFCOCO TESTA BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcoco_testA'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
print('.....................REFCOCO TESTB BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcoco_testB'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
elif args.test_dataset == 'refcocog':
print('.....................REFCOCOG VAL BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcocog_val'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
elif args.test_dataset == 'refcocop':
print('.....................REFCOCO+ VAL BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcocop_val'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
elif args.test_dataset == 'flickr':
print('.....................FLICKR EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['flickr_val'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config,)
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
else:
if torch.distributed.get_rank() == 0:
val_model = model.module
if args.test_dataset == 'refcoco':
print('.....................REFCOCO TESTA BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcoco_testA'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
print('.....................REFCOCO TESTB BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcoco_testB'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
elif args.test_dataset == 'refcocog':
print('.....................REFCOCOG VAL BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcocog_val'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
print('.....................REFCOCOG TEST BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcocog_test'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
elif args.test_dataset == 'refcocop':
print('.....................REFCOCO+ TESTA BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcocop_testA'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
print('.....................REFCOCO+ TESTB BEGIN EVAL.....................')
val_dataset = [Grounding_eval_dataset(config['refcocop_testB'], config['image_res']) ]
val_data_loader = create_loader(val_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
grounding_test(val_model, val_data_loader, tokenizer, device, config)
elif args.test_dataset == 'flickr':
test_dataset = [Grounding_eval_dataset(config['flickr_test'], config['image_res']) ]
test_data_loader = create_loader(test_dataset,[None],batch_size=[config['test_batch_size']], num_workers=[1], is_trains=[False], collate_fns=[None])[0]
print('.....................FLICKR TEST EVAL.........................')
grounding_test(val_model, test_data_loader, tokenizer, device, config,)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Pretrain.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--resume', default=False, type=bool)
parser.add_argument('--output_dir', default='Pretrain/')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--aug', default=0, type=int)
parser.add_argument('--test_dataset', default='', type=str)
parser.add_argument('--softlabel_ratio', default=0.15, type=float)
parser.add_argument('--test_before', default=0, type=int)
parser.add_argument('--test_all', default=0, type=int)
parser.add_argument('--pretrain', default=0, type=int)
parser.add_argument('--train', default=1, type=int)
parser.add_argument('--eval_step', default=500, type=int)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)