-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_vcr_train.py
299 lines (247 loc) · 13.6 KB
/
run_vcr_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
import os
import random
import time
import datetime
import json
import utils
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from pathlib import Path
import ruamel_yaml as yaml
from models.vit import interpolate_pos_embed
from models.tokenization_bert import BertTokenizer
from dataset import create_sampler, create_loader
from scheduler import create_scheduler
from optim import create_optimizer
from eval.eval import vcr_validate
from models.model_vcr import PEVL_VCR
from dataset.vcr_dataset import VCR_test_dataset, VCR_train_dataset
def train(model, vcr_data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, mode, args, vcr_val_q2a_loader, vcr_val_qa2r_loader):
# train
model.train()
if mode == 'pretrain':
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_mlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_soft', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
if args.distributed:
vcr_data_loader.sampler.set_epoch(epoch)
for i, (image, text, itm_labels) in enumerate(metric_logger.log_every(vcr_data_loader, print_freq, header)):
model.train()
optimizer.zero_grad()
images = image.to(device,non_blocking=True)
itm_labels = itm_labels.view(-1)
text = tokenizer(text, padding='longest', truncation=True, max_length=512, return_tensors="pt").to(device)
if epoch>0:
alpha = config['alpha']
else:
alpha = config['alpha']*min(1,i/len(vcr_data_loader))
loss_mlm, loss_soft, loss_ita, loss_itm = model(images, text, alpha, itm_labels, mode='pretrain')
loss = loss_mlm + loss_ita + loss_itm + loss_soft
loss.backward()
optimizer.step()
metric_logger.update(loss_mlm=loss_mlm.item())
metric_logger.update(loss_soft=loss_soft.item())
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
scheduler.step(i//step_size)
# if
if (i+epoch)==0:
checkpoint(args.output_dir, epoch, i, model, tokenizer, config, device, vcr_val_q2a_loader, vcr_val_qa2r_loader)
model.train()
elif i%args.eval_step==0:
checkpoint(args.output_dir, epoch, i, model, tokenizer, config, device, vcr_val_q2a_loader, vcr_val_qa2r_loader)
model.train()
dist.barrier()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
elif mode == 'finetuning':
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
if args.distributed:
vcr_data_loader.sampler.set_epoch(epoch)
for i, (image, text, itm_labels) in enumerate(metric_logger.log_every(vcr_data_loader, print_freq, header)):
optimizer.zero_grad()
images = image.to(device,non_blocking=True)
itm_labels = itm_labels.view(-1)
text = tokenizer(text, padding='longest', truncation=True, max_length=512, return_tensors="pt").to(device)
if epoch>0:
alpha = config['alpha']
else:
alpha = config['alpha']*min(1,i/len(vcr_data_loader))
loss_ita, loss_itm = model(images, text, alpha, itm_labels, mode='finetuning')
loss = loss_ita + loss_itm
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if i!=0 and i%args.gradient_accumulation_steps ==0:
optimizer.step()
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
scheduler.step(i//step_size)
if i !=0 and i%args.eval_step==0:
checkpoint(args.output_dir, epoch, i, model, tokenizer, config, device, vcr_val_q2a_loader, vcr_val_qa2r_loader)
model.train()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def checkpoint(output_dir, epoch, step, model, tokenizer, config, device, vcr_val_q2a_loader, vcr_val_qa2r_loader):
model.eval()
with torch.no_grad():
if utils.is_main_process():
#vcr q2a validation
vcr_validate(model.module, vcr_val_q2a_loader, tokenizer, device, 'Q2A')
#vcr qr2a validation
vcr_validate(model.module, vcr_val_qa2r_loader, tokenizer, device, 'QA2R')
save_obj = {
'model': model.module.state_dict(),
}
torch.save(save_obj, os.path.join(output_dir, 'checkpoint_{}_{}.pth'.format(epoch, step)))
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating dataset")
vcr_train_datasets = [VCR_train_dataset(config['train_vcr_file'], img_res=config['image_res'], image_path=config['image_path'])]
vcr_val_q2a_dataset = [VCR_test_dataset(config['train_val_vcr_q2a_file'], img_res=config['image_res'], dataload_mode=args.dataload_mode, image_path=config['image_path'])]
vcr_val_qa2r_dataset = [VCR_test_dataset(config['train_val_vcr_qa2r_file'], img_res=config['image_res'], dataload_mode=args.dataload_mode, image_path=config['image_path'])]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers_train = create_sampler(vcr_train_datasets, [True], num_tasks, global_rank)
else:
samplers = [None]
vcr_data_loader = create_loader(vcr_train_datasets,samplers_train,batch_size=[config['batch_size']], num_workers=[4], is_trains=[True], collate_fns=[None])[0]
vcr_val_q2a_loader = create_loader(vcr_val_q2a_dataset, [None], batch_size=[config['test_batch_size']], num_workers=[4], is_trains=[False], collate_fns=[None])[0]
vcr_val_qa2r_loader = create_loader(vcr_val_qa2r_dataset, [None], batch_size=[config['test_batch_size']], num_workers=[4], is_trains=[False], collate_fns=[None])[0]
dist.barrier()
##our tokenizer
unus = ['[unused{}]'.format(x) for x in range(200,800)]
pos_token = ['@@']
pos_token.extend([f'[pos_{x}]' for x in range(512)])
pos_token.append('##')
postoken_dict = {}
tokenizer = BertTokenizer.from_pretrained('./configs/vocab.txt')
for x,y in zip(unus, pos_token):
un_index = tokenizer.vocab[x]
tokenizer.vocab[y] = un_index
postoken_dict[y] = un_index
_ = tokenizer.vocab.pop(x)
tokenizer.basic_tokenizer.never_split.add(y)
postoken_dict.pop('@@')
postoken_dict.pop('##')
postoken_index = torch.randn(30522).bool()
postoken_index[:] = False
for x in postoken_dict.values():
postoken_index[x]=True
#### Model ####
print("Creating model")
model = PEVL_VCR(config=config, tokenizer=tokenizer, postoken_dict = postoken_dict, init_deit=False)
model = model.to(device)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch']+1
else:
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],model.visual_encoder_m)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s'%args.checkpoint)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_parameters)
model_without_ddp = model.module
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, max_epoch):
if epoch>0:
lr_scheduler.step(epoch+warmup_steps)
train_stats = train(model, vcr_data_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config, args.training_mode, args, vcr_val_q2a_loader, vcr_val_qa2r_loader)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth'%epoch))
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
if torch.distributed.get_rank() == 0:
#vcr q2a validation
model.eval()
vcr_validate(model.module, vcr_val_q2a_loader, tokenizer, device, 'Q2A')
#vcr qr2a validation
# vcr_validate(model.module, vcr_val_qa2r_loader, tokenizer, device, 'QA2R')
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Pretrain.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--resume', default=False, type=bool)
parser.add_argument('--output_dir', default='Pretrain/')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--training_mode', default='pretrain')
parser.add_argument('--dataload_mode', default='pevl')
parser.add_argument('--find_unused_parameters', default=False, type=bool, help='When using distributed training, the value of the flag find_unused_parameters passed to DistributedDataParallel')
parser.add_argument('--eval_step', default=1, type=int, help='Number of update steps between two evaluations')
parser.add_argument('--gradient_accumulation_steps', default=1, type=int, help='Number of updates steps to accumulate the gradients for, before performing a backward/update pass')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)