-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPDDQN_R.py
184 lines (157 loc) · 6.5 KB
/
PDDQN_R.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import random
import numpy as np
from collections import deque
from keras.layers import Dense
from keras.optimizers import Adam
from keras import backend as K
from keras.layers import Input
from keras.models import Model
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Conv1D
from keras.layers import Conv2D
from keras.layers import Reshape
from keras.layers import Flatten
BIT_RATE = [500.0,850.0,1200.0,1850.0]
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=200000)
self.gamma = 0.95 # discount rate
self.epsilon = 0.0 # exploration rate
self.epsilon_min = 0.0
self.epsilon_decay = 0.0
self.learning_rate = 0.0001
self.model = self._build_model()
self.target_model = self._build_model()
self.update_target_model()
def _huber_loss(self, y_true, y_pred, clip_delta=1.0):
error = y_true - y_pred
cond = K.abs(error) <= clip_delta
squared_loss = 0.5 * K.square(error)
quadratic_loss = 0.5 * K.square(clip_delta) + clip_delta * (K.abs(error) - clip_delta)
return K.mean(tf.where(cond, squared_loss, quadratic_loss))
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
# model.add(Dense(128,input_dim=self.state_size, activation='relu'))
model.add(Reshape((50,5),input_shape=(self.state_size,)))
model.add(Conv1D(5,kernel_size=4, activation='relu'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(self.action_size, activation='relu'))
model.compile(loss=self._huber_loss,
optimizer=Adam(lr=self.learning_rate))
return model
def update_target_model(self):
# copy weights from model to target_model
self.target_model.set_weights(self.model.get_weights())
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0]) # returns action
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = self.model.predict(state)
if done:
target[0][action] = reward
else:
a = self.model.predict(next_state)[0]
t = self.target_model.predict(next_state)[0]
# target[0][action] = reward + self.gamma * np.amax(t)
target[0][action] = reward + self.gamma * t[np.argmax(a)]
self.model.fit(state, target, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon -= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
class RBA:
def __init__(self):
self.buffer_size = 0
self.p_rb = 1
def get_quality(self, segment):
# record your params
bit_rate = 0
bandwidth = self.predict_throughput(segment['throughputHistory'],0.8) * 0.5
tempBitrate = bandwidth * self.p_rb
for i in range(len(BIT_RATE)):
if tempBitrate >= BIT_RATE[i]:
bit_rate = i
return bit_rate
def predict_throughput(self,throughputHistory,alpha):
if alpha < 0 or alpha > 1:
print("Invalid input!")
alpha = 2/(len(throughputHistory)+1)
predict = [0] * len(throughputHistory)
predict.append(throughputHistory[0])
for i in range(1,len(throughputHistory)):
factor = 1 - pow(alpha, i)
predict[i] = (alpha * predict[i-1] + (1 - alpha) * throughputHistory[i])/factor
return predict[-1]
def get_first_quality(self,segment):
return self.get_quality(segment)
class Algorithm:
def __init__(self):
# fill your init vars
self.state_size = 250
self.action_size = 64
self.history_len = 50
self.BITRATE = [0, 1, 2, 3]
self.TARGET_BUFFER = [0, 1, 2, 3]
self.LATENCY_LIMIT = [1, 2, 3, 4]
self.ACTION_SAPCE = []
self.agent = DQNAgent(self.state_size, self.action_size)
# Intial
def Initial(self,model_name):
# name = "save/16.h5"
name = str(model_name+"100.h5")
self.agent.load(name)
for i in self.BITRATE:
for j in self.TARGET_BUFFER:
for k in self.LATENCY_LIMIT:
action_apace = []
action_apace.append(i)
action_apace.append(j)
action_apace.append(k)
self.ACTION_SAPCE.append(action_apace)
#Define your al
def run(self, time, S_time_interval, S_send_data_size, S_chunk_len, S_rebuf, S_buffer_size, S_play_time_len,
S_end_delay, S_decision_flag, S_buffer_flag, S_cdn_flag, S_skip_time, end_of_video, cdn_newest_id,
download_id, cdn_has_frame, IntialVars, start_avgbw):
target_buffer = 1
latency_limit = 4
throughputHistory = []
if start_avgbw != -1:
rba = RBA()
throughputHistory.append(start_avgbw)
segment = {}
segment['throughputHistory'] = throughputHistory
return rba.get_first_quality(segment), target_buffer, latency_limit
state = []
length = len(S_time_interval)
history_len = self.history_len
for i in S_buffer_size[length-history_len:]:
state.append(i*0.1)
for i in S_send_data_size[length-history_len:]:
state.append(i*0.00001)
for i in S_time_interval[length-history_len:]:
state.append(i*10)
for i in S_end_delay[length-history_len:]:
state.append(i*0.1)
for i in S_rebuf[length-history_len:]:
state.append(i)
state = np.reshape(state, [1, self.state_size])
# print(state)
action = self.agent.act(state)
bit_rate = self.ACTION_SAPCE[action][0]
target_buffer = self.ACTION_SAPCE[action][1]
latency_limit = self.ACTION_SAPCE[action][2]
return bit_rate, target_buffer,latency_limit