-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
40 lines (34 loc) · 1.28 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import os
from scipy import signal
NORMALIZED_LENGTH = 40
DATA_FOLDER = "/sequences"
PREPROCESSED_FOLDER = "/preprocessed_sequences"
for filename in os.listdir(os.getcwd()+ DATA_FOLDER):
current_file = open(DATA_FOLDER[1 :] + '/' + filename, 'r')
if "inputdata" in filename:
X = []
lines = current_file.readlines()
for line in lines:
X.append([])
currentLine = line.split()
for num in currentLine:
X[-1].append(float(num))
X = np.array(X)
X = np.transpose(X)
newX = []
for row in X:
newX.append(signal.resample(row, NORMALIZED_LENGTH))
newX = np.transpose(np.array(newX))
with open(PREPROCESSED_FOLDER[1 :] + '/' + filename, 'w') as file:
for row in newX:
file.write(str(row[0]))
for element in row[1 :]:
file.write(' ' + str(element))
file.write('\n')
if "targetdata" in filename:
line = current_file.readline().split()
with open(PREPROCESSED_FOLDER[1:] + '/' + filename, 'w') as file:
file.write(str(line[0]))
for i in range(1, 10):
file.write(' ' + str(line[i]))