forked from shariqfarooq123/AdaBins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
140 lines (103 loc) · 4.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import base64
import math
import re
from io import BytesIO
import matplotlib.cm
import numpy as np
import torch
import torch.nn
from PIL import Image
class RunningAverage:
def __init__(self):
self.avg = 0
self.count = 0
def append(self, value):
self.avg = (value + self.count * self.avg) / (self.count + 1)
self.count += 1
def get_value(self):
return self.avg
def denormalize(x, device='cpu'):
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
return x * std + mean
class RunningAverageDict:
def __init__(self):
self._dict = None
def update(self, new_dict):
if self._dict is None:
self._dict = dict()
for key, value in new_dict.items():
self._dict[key] = RunningAverage()
for key, value in new_dict.items():
self._dict[key].append(value)
def get_value(self):
return {key: value.get_value() for key, value in self._dict.items()}
def colorize(value, vmin=10, vmax=1000, cmap='magma_r'):
value = value.cpu().numpy()[0, :, :]
invalid_mask = value == -1
# normalize
vmin = value.min() if vmin is None else vmin
vmax = value.max() if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.
# squeeze last dim if it exists
# value = value.squeeze(axis=0)
cmapper = matplotlib.cm.get_cmap(cmap)
value = cmapper(value, bytes=True) # (nxmx4)
value[invalid_mask] = 255
img = value[:, :, :3]
# return img.transpose((2, 0, 1))
return img
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
err = np.log(pred) - np.log(gt)
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean()
return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log,
silog=silog, sq_rel=sq_rel)
##################################### Demo Utilities ############################################
def b64_to_pil(b64string):
image_data = re.sub('^data:image/.+;base64,', '', b64string)
# image = Image.open(cStringIO.StringIO(image_data))
return Image.open(BytesIO(base64.b64decode(image_data)))
# Compute edge magnitudes
from scipy import ndimage
def edges(d):
dx = ndimage.sobel(d, 0) # horizontal derivative
dy = ndimage.sobel(d, 1) # vertical derivative
return np.abs(dx) + np.abs(dy)
class PointCloudHelper():
def __init__(self, width=640, height=480):
self.xx, self.yy = self.worldCoords(width, height)
def worldCoords(self, width=640, height=480):
hfov_degrees, vfov_degrees = 57, 43
hFov = math.radians(hfov_degrees)
vFov = math.radians(vfov_degrees)
cx, cy = width / 2, height / 2
fx = width / (2 * math.tan(hFov / 2))
fy = height / (2 * math.tan(vFov / 2))
xx, yy = np.tile(range(width), height), np.repeat(range(height), width)
xx = (xx - cx) / fx
yy = (yy - cy) / fy
return xx, yy
def depth_to_points(self, depth):
depth[edges(depth) > 0.3] = np.nan # Hide depth edges
length = depth.shape[0] * depth.shape[1]
# depth[edges(depth) > 0.3] = 1e6 # Hide depth edges
z = depth.reshape(length)
return np.dstack((self.xx * z, self.yy * z, z)).reshape((length, 3))
#####################################################################################################