-
Notifications
You must be signed in to change notification settings - Fork 2
/
video_helper.py
302 lines (283 loc) · 14.6 KB
/
video_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np #for webcam
import cv2 #for webcam
from imutils.video import WebcamVideoStream
from imutils.video import FPS
import sys # for tracking balls
import argparse # for tracking balls
from collections import deque # for tracking balls
import time #for sending midi
import math
from random import randint
import random
from settings import *
import settings
from calibration_helper import *
import trajectory_helper
from trajectory_helper import *
record_video = True
show_overlay = False
video_name = 'test.avi'
increase_fps = False
rotating_sound_num,all_mask = 0,[]
mouse_down = False
current_color_selecter_color = [0,0,0]
colors_to_track = [[100,100,100],[12,13,14],[150,170,190]]
most_recently_set_color_to_track = 0
def frames_are_similar(image1, image2):
return image1.shape == image2.shape and not(np.bitwise_xor(image1,image2).any())
def setup_record_camera():
fourcc = cv2.VideoWriter_fourcc(*'XVID')
return cv2.VideoWriter(video_name,fourcc, 20.0, (settings.frame_width,settings.frame_height))
def do_arguments_stuff():
ap = argparse.ArgumentParser()
ap.add_argument('-v', '--video',
help='path to the (optional) video file')
ap.add_argument('-b', '--buffer', type=int, default=64,
help='max buffer size')
args = vars(ap.parse_args())
pts = deque(maxlen=args['buffer'])
return args
def setup_camera():
load_track_ranges_from_txt_file()
vs = None
if increase_fps:
vs = WebcamVideoStream(src=0).start()
args = do_arguments_stuff()#i dont know what this is, maybe it is garbage?
if record_video:
out = setup_record_camera()
else:
out = None
return vs, args, out
def analyze_video(start,loop_count,vs,camera,args,frame_count):
if time.time()-start > 0:
average_fps = frame_count/(time.time()-start)
else:
average_fps = 10
if increase_fps:
frame = vs.read()
grabbed = None
else:
grabbed, frame = camera.read()
settings.frame_height, settings.frame_width, channels = frame.shape
loop_count = loop_count + 1
break_for_no_video = False
if args.get('video') and not grabbed:
break_for_no_video = True
return average_fps, grabbed, frame, loop_count, break_for_no_video
def get_contour_center(contour):
cx,cy,moments = [],[],[]
M = cv2.moments(contour)
if M['m00'] > 0:
x,y,w,height = cv2.boundingRect(contour)
return x,y
def trim_old_histories():
for index in range(settings.max_balls):
if len(all_cx[index]) > 100:
settings.all_cx[index]=settings.all_cx[index][-80:]
settings.all_cy[index]=settings.all_cy[index][-80:]
settings.all_vx[index]=settings.all_vx[index][-80:]
settings.all_vy[index]=settings.all_vy[index][-80:]
settings.all_ay[index]=settings.all_ay[index][-80:]
#settings.all_time_vx[index]=settings.all_time_vx[index][-30:]
#settings.all_time_vy[index]=settings.all_time_vy[index][-30:]
def update_contour_histories(frame, previous_frame,two_frames_ago, contour_count_window,selected_ball_num):
global average_contour_area_from_last_frame
current_framehsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower_range = [0]*3
upper_range = [0]*3
mask = [frame]*settings.max_balls
number_of_contours_seen = 0
erode_kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1,1))
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(4,4))
for i in range(settings.max_balls):
largest_area = 0
largest_contour_index=0
sum_of_all_contour_areas = 0
total_number_of_contours = 0
lower_range = np.array([float(low_track_range_hue[i]), float(70), float(low_track_range_value[i])])
upper_range = np.array([float(high_track_range_hue[i]), float(255), float(high_track_range_value[i])])
mask[i] = cv2.inRange(current_framehsv, lower_range, upper_range)
mask[i]=cv2.erode(mask[i], erode_kernel, iterations=1)
mask[i]=cv2.dilate(mask[i], dilate_kernel, iterations=4)
if settings.show_color_calibration:
show_color_calibration_if_necessary(mask[selected_ball_num],selected_ball_num,low_track_range_hue,high_track_range_hue,low_track_range_value,high_track_range_value)
continue
else:
contours, hierarchy = cv2.findContours(mask[i],cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
if len(contours) > 0:
for j in range(len(contours)):
contour_area = cv2.contourArea(contours[j])
sum_of_all_contour_areas += contour_area
total_number_of_contours += 1
if contour_area>largest_area and contour_area > average_contour_area_from_last_frame*0.6:
largest_area=contour_area
largest_contour_index=j
if largest_area>0:
x, y = get_contour_center(contours[largest_contour_index])
settings.all_cx[i].append(640-x)
settings.all_cy[i].append(y)
number_of_contours_seen = number_of_contours_seen+1
else:
settings.all_cx[i].append('X')
settings.all_cy[i].append('X')
if total_number_of_contours > 0:
average_contour_area_from_last_frame = sum_of_all_contour_areas/total_number_of_contours
combined_mask = cv2.add(mask[1],mask[0])
combined_mask = cv2.add(combined_mask,mask[2])
trim_old_histories()
return number_of_contours_seen, combined_mask, combined_mask, contour_count_window
def create_positional_grid_of_notes(mask_copy,matched_indices_count,notes_in_scale_count):
if settings.grid_type_to_show == 'positional':
use_path_type_coloring = True
use_hybrid_coloring = False
mask_copy=cv2.cvtColor(mask_copy,cv2.COLOR_GRAY2BGR)
#rectangle_width = int(settings.frame_width/max(1,notes_in_scale_count))
rectangle_width = int(settings.frame_width/max(1,len(settings.notes_to_use)))
rectangles_with_peaks = []
rectangles_with_peaks_path_types = []
color_to_use = (0,0,0)
#print(str(matched_indices_count))
for i in range(0,matched_indices_count):
if path_phase[i] == 'peak' or path_phase[i] == 'lift':
if all_cx[i][-1] != 'X':
rectangles_with_peaks.append(math.floor(int(all_cx[i][-1])/int(rectangle_width)))
rectangles_with_peaks_path_types.append(path_type[i])
for i in range(0,notes_in_scale_count):
left_corner = settings.frame_width-i*rectangle_width
right_corner = settings.frame_width-(i+1)*rectangle_width
if i in rectangles_with_peaks:
if use_path_type_coloring:
this_path_type = rectangles_with_peaks_path_types[rectangles_with_peaks.index(i)]
fill_blue,fill_green,fill_red = 0,0,0
if 'cross' in this_path_type:
fill_red = 0
if 'column' in this_path_type:
fill_blue,fill_green,fill_red = 255,255,255
if 'right' in this_path_type:
fill_blue = 255
if 'left' in this_path_type:
fill_green = 255
if 'mid' in this_path_type:
fill_red = 255
color_to_use = (fill_blue,fill_green,fill_red)
if use_hybrid_coloring:
current_families_identity = family_identities[settings.midi_note_hybrid_current_family]
current_family_root = settings.family_notes[current_families_identity][0]
note_num = current_family_root % 12
hue = int(note_num*21.25)
current_slot_number = slot_system[settings.midi_note_hybrid_current_slot]
saturation = int(255-(current_slot_number*10))
hsv_color = np.uint8([[[hue,255,255]]])
conversion_result = cv2.cvtColor(hsv_color,cv2.COLOR_HSV2BGR)[0][0]
color_to_use = (int(conversion_result[0]),int(conversion_result[1]),int(conversion_result[2]))
cv2.rectangle(mask_copy,(left_corner,0),(right_corner,settings.frame_height),color_to_use,thickness=cv2.FILLED)
else:
cv2.rectangle(mask_copy,(left_corner,0),(right_corner,settings.frame_height),(255,255,255),2)
elif settings.grid_type_to_show == 'honeycomb':
mask_copy = create_honeycomb_of_notes(mask_copy,matched_indices_count,notes_in_scale_count)
return mask_copy
def create_location_rectangles(mask_copy):
for inst_num in location_inst_nums:
if fade_location_obj[inst_num]['active'] == 1:
left = settings.frame_width-int(fade_location_obj[inst_num]['location border sides']['left'])
top = int(fade_location_obj[inst_num]['location border sides']['top'])
right = settings.frame_width-int(fade_location_obj[inst_num]['location border sides']['right'])
bottom = int(fade_location_obj[inst_num]['location border sides']['bottom'])
cv2.rectangle(mask_copy,(left,top),(right,bottom),(255,255,255),2)
for inst_num in location_inst_nums:
if spot_location_obj[inst_num]['active'] == 1:
left = settings.frame_width-int(spot_location_obj[inst_num]['location border sides']['left'])
top = int(spot_location_obj[inst_num]['location border sides']['top'])
right = settings.frame_width-int(spot_location_obj[inst_num]['location border sides']['right'])
bottom = int(spot_location_obj[inst_num]['location border sides']['bottom'])
cv2.rectangle(mask_copy,(left,top),(right,bottom),(255,255,255),2)
return mask_copy
def create_honeycomb_of_notes(mask_copy,matched_indices_count,notes_in_scale_count):
honeycomb_diameter = int(settings.frame_width/settings.number_of_honeycomb_rows)
honeycomb_radius = int(honeycomb_diameter/2)
number_of_honeycomb_columns = int(settings.frame_height/honeycomb_diameter+1)
total_number_of_honeycombs = number_of_honeycomb_rows * number_of_honeycomb_columns
for r in range(settings.number_of_honeycomb_rows):
for c in range(number_of_honeycomb_columns):
if c%2==0:
cv2.circle(mask_copy,(r*honeycomb_diameter,c*honeycomb_diameter), honeycomb_radius, (255,255,255), 2)
else:
cv2.circle(mask_copy,(r*honeycomb_diameter+honeycomb_radius,c*honeycomb_diameter), honeycomb_radius, (255,255,255), 2)
return mask_copy
def show_box_counter(mask_copy):
cv2.rectangle(mask_copy,(220,200),(420,400),(255,255,255),2)
cv2.putText(mask_copy, 'In box: '+str(trajectory_helper.box_count),(10,440), cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),1)
return mask_copy
def show_path_point_counters(mask_copy):
path_point_positions = ['throw','catch','peak']
for index,path_point_position in enumerate(path_point_positions):
if path_point_info[path_point_position]['counter active'].get() == 1:
cv2.putText(mask_copy, path_point_position+': '+str(path_point_info[path_point_position]['counter']),(10+(index+1)*120,440), cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),1)
return mask_copy
def indicate_active_apart_instances(mask_copy):
for inst_num in apart_inst_nums:
if apart_obj[inst_num]['active'] == 1:
cv2.putText(mask_copy, 'AP'+str(inst_num),(10+(inst_num*65),400), cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),1)
return mask_copy
def indicate_active_movement_instances(mask_copy):
for inst_num in movement_inst_nums:
if movement_obj[inst_num]['active'] == 1:
cv2.putText(mask_copy, 'MO'+str(inst_num),(10+(inst_num*65),420), cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),1)
return mask_copy
def on_mouse_click(event, x, y, flags, frame):
global mouse_down, mouse_x, mouse_y, color_selecter_pos
mouse_x = x
mouse_y = y
#if event == cv2.EVENT_RBUTTONDOWN:
if event == cv2.EVENT_LBUTTONDOWN:
if settings.show_color_calibration:
color_selecter_pos[0],color_selecter_pos[1] = min(settings.frame_width,x),min(settings.frame_height,y)
mouse_down = True
elif event == cv2.EVENT_LBUTTONUP:
mouse_down = False
color_selecter_pos[2],color_selecter_pos[3] = x,y
def show_color_selecter(frame):
frame_copy = frame
if settings.show_color_calibration:
if mouse_down:
cv2.rectangle(frame_copy,(color_selecter_pos[0],color_selecter_pos[1]),(mouse_x,mouse_y),(255,255,255),2)
else:
cv2.rectangle(frame_copy,(color_selecter_pos[0],color_selecter_pos[1]),(color_selecter_pos[2],color_selecter_pos[3]),(255,255,255),2)
return frame_copy
def show_and_record_video(frame,out,start,average_fps,mask,all_mask,original_mask,matched_indices_count,notes_in_scale_count):
#show_scale_grid = True
if record_video:
record_frame(frame, out, start, average_fps)
if settings.show_color_calibration:
frame_copy = show_color_selecter(frame)
cv2.putText(frame_copy, '(-Z/+X)exposure: '+str(camera_exposure_number),(50,50), cv2.FONT_HERSHEY_SIMPLEX,0.7,(255,255,255),1)
cv2.imshow('individual color calibration', frame_copy)
cv2.setMouseCallback('individual color calibration', on_mouse_click, frame_copy)
if settings.show_main_camera:
mask_copy = mask
if settings.show_scale_grid:# and midi_note_based_on_position_is_in_use:
mask_copy = create_positional_grid_of_notes(mask_copy,matched_indices_count,notes_in_scale_count)
mask_copy = create_location_rectangles(mask_copy)
mask_copy = cv2.flip(mask_copy,1)
mask_copy = indicate_active_apart_instances(mask_copy)
mask_copy = indicate_active_movement_instances(mask_copy)
if tool_inputs['box']['active'].get() == 1:
mask_copy = show_box_counter(mask_copy) #this doesnt work, i want it to be a box counter really
mask_copy = show_path_point_counters(mask_copy)
cv2.imshow('main_camera',mask_copy)
#else:
#cv2.imshow('color_calibration',mask)
if show_overlay:
all_mask.append(original_mask)
return all_mask
def record_frame(frame, out, start, average_fps):
out.write(frame)
'''if average_fps>20:
fpsdif = average_fps/20 #20 is the average_fps of our avi
if randint(0, 100)<fpsdif*10: #this random is used to keep our video from having too many frames and playing slow
out.write(frame)
else:
for i in range(math.floor(20/average_fps)):
out.write(frame)
if randint(0, 100)<((20/average_fps)-math.floor(20/average_fps)*100):
out.write(frame)'''