forked from paarthneekhara/neural-vqa-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
127 lines (107 loc) · 4.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import tensorflow as tf
import vis_lstm_model
import data_loader
import argparse
import numpy as np
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--num_lstm_layers', type=int, default=2,
help='num_lstm_layers')
parser.add_argument('--fc7_feature_length', type=int, default=4096,
help='fc7_feature_length')
parser.add_argument('--rnn_size', type=int, default=512,
help='rnn_size')
parser.add_argument('--embedding_size', type=int, default=512,
help='embedding_size'),
parser.add_argument('--word_emb_dropout', type=float, default=0.5,
help='word_emb_dropout')
parser.add_argument('--image_dropout', type=float, default=0.5,
help='image_dropout')
parser.add_argument('--data_dir', type=str, default='Data',
help='Data directory')
parser.add_argument('--batch_size', type=int, default=200,
help='Batch Size')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='Batch Size')
parser.add_argument('--epochs', type=int, default=200,
help='Expochs')
parser.add_argument('--debug', type=bool, default=False,
help='Debug')
parser.add_argument('--resume_model', type=str, default=None,
help='Trained Model Path')
parser.add_argument('--version', type=int, default=2,
help='VQA data version')
args = parser.parse_args()
print "Reading QA DATA"
qa_data = data_loader.load_questions_answers(args.version, args.data_dir)
print "Reading fc7 features"
fc7_features, image_id_list = data_loader.load_fc7_features(args.data_dir, 'train')
print "FC7 features", fc7_features.shape
print "image_id_list", image_id_list.shape
image_id_map = {}
for i in xrange(len(image_id_list)):
image_id_map[ image_id_list[i] ] = i
ans_map = { qa_data['answer_vocab'][ans] : ans for ans in qa_data['answer_vocab']}
model_options = {
'num_lstm_layers' : args.num_lstm_layers,
'rnn_size' : args.rnn_size,
'embedding_size' : args.embedding_size,
'word_emb_dropout' : args.word_emb_dropout,
'image_dropout' : args.image_dropout,
'fc7_feature_length' : args.fc7_feature_length,
'lstm_steps' : qa_data['max_question_length'] + 1,
'q_vocab_size' : len(qa_data['question_vocab']),
'ans_vocab_size' : len(qa_data['answer_vocab'])
}
model = vis_lstm_model.Vis_lstm_model(model_options)
input_tensors, t_loss, t_accuracy, t_p = model.build_model()
train_op = tf.train.AdamOptimizer(args.learning_rate).minimize(t_loss)
sess = tf.InteractiveSession()
tf.initialize_all_variables().run()
saver = tf.train.Saver()
if args.resume_model:
saver.restore(sess, args.resume_model)
for i in xrange(args.epochs):
batch_no = 0
while (batch_no*args.batch_size) < len(qa_data['training']):
sentence, answer, fc7 = get_training_batch(batch_no, args.batch_size, fc7_features, image_id_map, qa_data, 'train')
_, loss_value, accuracy, pred = sess.run([train_op, t_loss, t_accuracy, t_p],
feed_dict={
input_tensors['fc7']:fc7,
input_tensors['sentence']:sentence,
input_tensors['answer']:answer
}
)
batch_no += 1
if args.debug:
for idx, p in enumerate(pred):
print ans_map[p], ans_map[ np.argmax(answer[idx])]
print "Loss", loss_value, batch_no, i
print "Accuracy", accuracy
print "---------------"
else:
print "Loss", loss_value, batch_no, i
print "Training Accuracy", accuracy
save_path = saver.save(sess, "Data/Models/model{}.ckpt".format(i))
def get_training_batch(batch_no, batch_size, fc7_features, image_id_map, qa_data, split):
qa = None
if split == 'train':
qa = qa_data['training']
else:
qa = qa_data['validation']
si = (batch_no * batch_size)%len(qa)
ei = min(len(qa), si + batch_size)
n = ei - si
sentence = np.ndarray( (n, qa_data['max_question_length']), dtype = 'int32')
answer = np.zeros( (n, len(qa_data['answer_vocab'])))
fc7 = np.ndarray( (n,4096) )
count = 0
for i in range(si, ei):
sentence[count,:] = qa[i]['question'][:]
answer[count, qa[i]['answer']] = 1.0
fc7_index = image_id_map[ qa[i]['image_id'] ]
fc7[count,:] = fc7_features[fc7_index][:]
count += 1
return sentence, answer, fc7
if __name__ == '__main__':
main()