-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
136 lines (115 loc) · 5.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import print_function
from keras.models import Model
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.preprocessing.image import ImageDataGenerator
from keras.backend.tensorflow_backend import set_session
import tensorflow as tf
import keras
import cv2
import numpy as np
import os, errno
from glob import glob
import argparse
import random
import math
from model import get_unet_1class
from model import get_unet, get_fcn8
import callbacks
class TrainModel:
def __init__(self, flag):
self.flag = flag
def select_labels(self, gt):
human = np.where(gt==24,10,0) + np.where(gt==25,10,0)
car = np.where(gt==26,20,0) + np.where(gt==27,20,0) + np.where(gt==28,20,0)
road = np.where(gt==7,30,0) #+ np.where(gt==8,30,0)
gt_new = road + car + human
return gt_new
def make_regressor_label(self, gt):
human = np.where(gt==24,255,0) + np.where(gt==25,255,0)
car = np.where(gt==26,255,0) + np.where(gt==27,255,0) + np.where(gt==28,20,0)
road = np.where(gt==7,255,0) #+ np.where(gt==8,1,0)
label = np.concatenate((human, car, road), axis=-1)
return label
def train_generator_multiclass(self, image_generator, mask_generator):
while True:
image = next(image_generator)
mask = next(mask_generator)
label = self.make_regressor_label(mask).astype(np.float32)
yield (image, label)
def train_generator(self, image_generator, mask_generator):
while True:
yield(next(image_generator), next(mask_generator))
def lr_step_decay(self, epoch):
init_lr = self.flag.initial_learning_rate
lr_decay = self.flag.learning_rate_decay_factor
epoch_per_decay = self.flag.epoch_per_decay
lrate = init_lr * math.pow(lr_decay, math.floor((1+epoch)/epoch_per_decay))
# print lrate
return lrate
def train(self):
# img_size = self.flag.image_height
batch_size = self.flag.batch_size
epochs = self.flag.total_epoch
datagen_args = dict(featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=5, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.05, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.05, # randomly shift images vertically (fraction of total height)
# fill_mode='constant',
# cval=0.,
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images
image_datagen = ImageDataGenerator(**datagen_args)
mask_datagen = ImageDataGenerator(**datagen_args)
### generator
seed = random.randrange(1, 1000)
image_generator = image_datagen.flow_from_directory(
os.path.join(self.flag.data_path, 'train/IMAGE'),
class_mode=None, seed=seed, batch_size=batch_size,
target_size=(self.flag.image_height, self.flag.image_width),
color_mode='rgb')
mask_generator = mask_datagen.flow_from_directory(
os.path.join(self.flag.data_path, 'train/GT'),
class_mode=None, seed=seed, batch_size=batch_size,
target_size=(self.flag.image_height, self.flag.image_width),
color_mode='grayscale')
### gpu config
config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.9
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
### define model
model = get_unet(self.flag)
# model = get_unet_1class(self.flag)
if self.flag.pretrained_weight_path != None:
model.load_weights(self.flag.pretrained_weight_path)
### model save
if not os.path.exists(os.path.join(self.flag.ckpt_dir, self.flag.ckpt_name)):
mkdir_p(os.path.join(self.flag.ckpt_dir, self.flag.ckpt_name))
model_json = model.to_json()
with open(os.path.join(self.flag.ckpt_dir, self.flag.ckpt_name, 'model.json'), 'w') as json_file:
json_file.write(model_json)
### define callback function
vis = callbacks.trainCheck(self.flag)
model_checkpoint = ModelCheckpoint(
os.path.join(self.flag.ckpt_dir, self.flag.ckpt_name,'weights.{epoch:03d}.h5'),
period=self.flag.total_epoch//10)
learning_rate = LearningRateScheduler(self.lr_step_decay)
### train model
model.fit_generator(
#self.train_generator(image_generator, mask_generator),
self.train_generator_multiclass(image_generator, mask_generator),
steps_per_epoch= image_generator.n // batch_size,
epochs=epochs,
callbacks=[model_checkpoint, learning_rate, vis]
)
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: #Python > 2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else : raise