-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKenKenSolver.py
253 lines (233 loc) · 9.88 KB
/
KenKenSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from Box import Box
from Cell import Cell
from RowColumn import RowColumn
import math
import random
import time
# TODO Does this need to be able to accept multiple inputs one after another?
class KenKenSolver:
rowLength = int(raw_input())
rows = []
columns = []
boxes = {}
cells = []
backtrackIterations = 0
bestBacktrackingIterations = 0
# Create rows and columns
for x in range(rowLength):
row = RowColumn(x)
column = RowColumn(x)
rows.append(row)
columns.append(column)
def get_input(self):
# Get each line of letters
for x in range(self.rowLength):
letters = raw_input()
# Use each letter in the line to create a cell. Create the cell list.
for letter in letters:
self.boxes[letter] = "test"
cell = Cell(letter, 0, None, self.rowLength)
self.cells.append(cell)
# Get Letter to Result/Operation mappings. Create boxes.
for x in range(len(self.boxes)):
lineSections = raw_input().split(':')
character = lineSections[0]
numberAndOperation = lineSections[1]
operation = numberAndOperation[len(numberAndOperation) - 1]
number = numberAndOperation[:-1]
box = Box(number, operation)
self.boxes[character] = box
# Assign boxes to cells
for cell in self.cells:
box = self.boxes[cell.letter]
cell.box = box
box.cells.append(cell)
# Assign rows and columns to cells
for cellIndex in range(len(self.cells)):
self.cells[cellIndex].row = self.rows[cellIndex / self.rowLength]
self.cells[cellIndex].column = self.columns[cellIndex % self.rowLength]
def print_puzzle(self):
line = ""
for i in range(len(self.cells)):
if (i % math.sqrt(len(self.cells)) == 0) and (i != 0):
print(line)
line = ""
line += str(self.cells[i].number) + " "
print(line)
print("")
def clearPuzzle(self):
for cell in self.cells:
cell.removeValue(cell.number)
self.backtrackIterations = 0
# TODO Ensure handling of iteration count is correct
# For every cell, tries every number from 1 to the number of cells in a row.
# If none are valid for a cell,
# retreat to the previous cell and change its value to the next highest value that is valid for that cell.
# Then continue to the next cell, trying all values from there.
def backtrack(self, index):
self.backtrackIterations += 1
# Base case: reached the end
if index == len(self.cells):
self.print_puzzle()
print(self.backtrackIterations)
self.clearPuzzle()
return True
# From 1 to the number of cells in a row,
for i in range(self.rowLength):
i = i + 1
# If this value for this cell is valid,
if self.cells[index].assignValue(i):
# Assign it and try the next.
if self.backtrack(index + 1):
return True
else:
# Empty the cell
self.cells[index].removeValue(i)
return False
sortedCells = []
# Sort the cells in ascending order according to how many valid values that cell has.
# For example: if the row length is 6, and a box has 2 cells, and they must add up to 11,
# then each cell could only contain 6 or 5, because those are the only 2 values from 1 to 6 that add up to 11.
# Each of these cells would have 2 valid values, and would likely be near the beginning of this list.
# This list is stored in self.sortedCells
def sortCells(self):
for i in range(len(self.sortedCells)):
value = len(self.sortedCells[i].validValues)
if i < len(self.sortedCells) - 1:
nextValue = len(self.sortedCells[i+1].validValues)
# If the current cell has more options than the next cell,
if value > nextValue:
# Switch the cells.
temp = self.sortedCells[i+1]
self.sortedCells[i+1] = self.sortedCells[i]
self.sortedCells[i] = temp
self.sortCells() #todo probably inefficient
# Entry point for the best backtracking solution.
def bestBacktracking(self, index):
# Generate the valid options for each box. This function also generates each cell's validValues list.
for key in self.boxes:
self.boxes[key].getOptions()
start_time = time.time()
# Add cells to sortedCells.
for cell in self.cells:
self.sortedCells.append(cell)
# Sort the cells.
self.sortCells()
# Use sortedCells to conduct the best backtracking search.
self.bestBacktrackingSearch(self.sortedCells, index)
# print("--- %s seconds ---" % (time.time() - start_time))
# The recursive search that the best backtracking function uses.
def bestBacktrackingSearch(self, sortedCells, index):
self.bestBacktrackingIterations += 1
# Base case: the search has passed the last cell
if index == len(sortedCells):
# self.print_puzzle()
print(self.bestBacktrackingIterations)
return True
cell = sortedCells[index]
options = cell.validValues
# For every possible valid value for the cell,
for i in options:
# If that value is valid according to the current row and column situation,
if cell.assignValue(i):
# Assign it and search the next cell
if self.bestBacktrackingSearch(sortedCells, index + 1):
return True
else:
# Empty the cell
cell.removeValue(i)
return False
def localSearch(self):
# number of random restarts allowed: length of loop
bestSoFar = 36
# make set of states that have been seen
statesSet = set()
for i in range(1000):
degrees = 400
self.assignRandomValues()
#print('current puzzle')
#self.print_puzzle()
#print(' ')
# evaluate current state
currEn = self.getConstraintsViolated()
if currEn == 0:
self.print_puzzle()
return 'solution found'
# store old value and which cell in case of rejection
# change 1 cell value (neighbor node of slightly different state);
# check: is this different from old value?
improving = True
iterations = 0
numWorse = 0
while improving:
iterations += 1
if iterations % 4 == 0:
degrees = degrees * 0.8
#print('degrees')
#print(degrees)
#print(' ')
valDiff = False
cellToPull = random.randint(1, (len(self.columns) ** 2)-1)
currValCell = self.cells[cellToPull].number
while not valDiff:
self.cells[cellToPull].number = random.randint(1, len(self.columns))
if currValCell != self.cells[cellToPull].number:
valDiff = True
# evaluate new state
# print(iterations)
# get energy (constraints violated) of neighbor state
nextEn = self.getConstraintsViolated()
#print('next puzzle')
#self.print_puzzle()
#print('constraints violated: ')
#print(nextEn)
#print (' ')
# if neighbor state is better, accept. otherwise, accept based on probability
if nextEn < currEn:
#print('next is better')
currEn = nextEn
numWorse = 0
else:
numWorse += 1
if self.getProbabilityAccept(degrees, nextEn) > random.random:
currEn = nextEn
#print('next is worse, accept anyway with prob:')
#print (self.getProbabilityAccept(degrees, nextEn))
#print (' ')
else:
# restore puzzle to former state- neighbor not accepted
self.cells[1].number = currValCell
# if not improving after x iterations, random restart but store current best solution
if numWorse > 100:
if bestSoFar > currEn:
bestSoFar = currEn
#print ('not improving. random restart now')
improving = False
# if solution not found after x restarts, quit
print('no solution found')
print ('best so far:')
print(bestSoFar)
return False
def assignRandomValues(self):
valuesAvailable = [1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6]
for i in range(len(self.cells)):
self.cells[i].number = random.choice(valuesAvailable)
valuesAvailable.remove(self.cells[i].number)
# print('len of columns:')
# print(len(self.columns))
return
def decreaseTemp(self, temp):
temp = temp * 0.8
def getProbabilityAccept(self, temp, energy):
return 1 - (energy / temp)
def getConstraintsViolated(self):
invalid = 0
for cell in self.cells:
if not (cell.isValueValid(cell.number)):
invalid += 1
return invalid
def stateToString(self):
stateString = ''
for cell in self.cells:
stateString = stateString + str(cell.number)
return stateString