forked from CarperAI/trlx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_sentiments.py
61 lines (45 loc) · 1.56 KB
/
ppo_sentiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset
# with a sentiment reward function
import os
import pathlib
from typing import List
import torch
import yaml
from datasets import load_dataset
from transformers import pipeline
import trlx
from trlx.data.configs import TRLConfig
def get_positive_score(scores):
"Extract value associated with a positive sentiment from pipeline's output"
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"]
config_path = pathlib.Path(__file__).parent.joinpath("../configs/ppo_config.yml")
with config_path.open() as f:
default_config = yaml.safe_load(f)
def main(hparams={}):
config = TRLConfig.update(default_config, hparams)
if torch.cuda.is_available():
device = int(os.environ.get("LOCAL_RANK", 0))
else:
device = -1
sentiment_fn = pipeline(
"sentiment-analysis",
"lvwerra/distilbert-imdb",
top_k=2,
truncation=True,
batch_size=256,
device=device,
)
def reward_fn(samples: List[str], **kwargs) -> List[float]:
sentiments = list(map(get_positive_score, sentiment_fn(samples)))
return sentiments
# Take few words off of movies reviews as prompts
imdb = load_dataset("imdb", split="train+test")
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]]
trlx.train(
reward_fn=reward_fn,
prompts=prompts,
eval_prompts=["I don't know much about Hungarian underground"] * 64,
config=config,
)
if __name__ == "__main__":
main()