The steps below will guide you through using Model Analyzer in Docker mode to profile and analyze a simple ensemble model: ensemble_add_sub.
1. Create a new directory and enter it
mkdir <new_dir> && cd <new_dir>
2. Start a git repository
git init && git remote add -f origin https://github.com/triton-inference-server/model_analyzer.git
3. Enable sparse checkout, and download the examples directory, which contains the ensemble_add_sub, add and sub
git config core.sparseCheckout true && \
echo 'examples' >> .git/info/sparse-checkout && \
git pull origin main
3. Add a version directory to ensemble_add_sub
mkdir examples/quick-start/ensemble_add_sub/1
1. Pull the SDK container:
docker pull nvcr.io/nvidia/tritonserver:24.12-py3-sdk
2. Run the SDK container
docker run -it --gpus 1 \
--shm-size 1G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
--net=host nvcr.io/nvidia/tritonserver:24.12-py3-sdk
Important: The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly
The examples/quick-start directory is an example Triton Model Repository that contains the ensemble model ensemble_add_sub
, which calculates the sum and difference of two inputs using add
and sub
models.
Run the Model Analyzer profile
subcommand inside the container with:
model-analyzer profile \
--model-repository <path-to-examples-quick-start> \
--profile-models ensemble_add_sub \
--triton-launch-mode=docker --triton-docker-shm-size=1G \
--output-model-repository-path <path-to-output-model-repo>/<output_dir> \
--export-path profile_results
Important: You must specify an <output_dir>
subdirectory. You cannot have --output-model-repository-path
point directly to <path-to-output-model-repo>
Important: If you already ran this earlier in the container, you can use the --override-output-model-repository
option to overwrite the earlier results.
Important: All models must be in the same repository
The Model analyzer uses Quick Search algorithm for profiling the Ensemble model. After the quick search is completed, Model Analyzer will then sweep concurrencies for the top three configurations and then create a summary report and CSV outputs.
Here is an example result summary, run on a Tesla V100 GPU:
You will note that the top model configuration has a higher throughput than the other configurations.
The measured data and summary report will be placed inside the
./profile_results
directory. The directory will be structured as follows.
$HOME
|-- model_analyzer
|-- profile_results
|-- plots
| |-- detailed
| | |-- ensemble_add_sub_config_5
| | | `-- latency_breakdown.png
| | |-- ensemble_add_sub_config_6
| | | `-- latency_breakdown.png
| | `-- ensemble_add_sub_config_7
| | `-- latency_breakdown.png
| `-- simple
| |-- ensemble_add_sub
| | |-- gpu_mem_v_latency.png
| | `-- throughput_v_latency.png
| |-- ensemble_add_sub_config_5
| | |-- cpu_mem_v_latency.png
| | |-- gpu_mem_v_latency.png
| | |-- gpu_power_v_latency.png
| | `-- gpu_util_v_latency.png
| |-- ensemble_add_sub_config_6
| | |-- cpu_mem_v_latency.png
| | |-- gpu_mem_v_latency.png
| | |-- gpu_power_v_latency.png
| | `-- gpu_util_v_latency.png
| `-- ensemble_add_sub_config_7
| |-- cpu_mem_v_latency.png
| |-- gpu_mem_v_latency.png
| |-- gpu_power_v_latency.png
| `-- gpu_util_v_latency.png
|-- reports
| |-- detailed
| | |-- ensemble_add_sub_config_5
| | | `-- detailed_report.pdf
| | |-- ensemble_add_sub_config_6
| | | `-- detailed_report.pdf
| | `-- ensemble_add_sub_config_7
| | `-- detailed_report.pdf
| `-- summaries
| `-- ensemble_add_sub
| `-- result_summary.pdf
`-- results
|-- metrics-model-gpu.csv
|-- metrics-model-inference.csv
`-- metrics-server-only.csv
Note: Above configurations, ensemble_add_sub_config_5, ensemble_add_sub_config_6, and ensemble_add_sub_config_7 are generated as the top configurations when running profiling on a single Tesla V100 GPU. However, running on multiple GPUs or different model GPUs may result in different top configurations.