-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path295.find-median-from-data-stream.py
70 lines (62 loc) · 1.89 KB
/
295.find-median-from-data-stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#
# @lc app=leetcode id=295 lang=python3
#
# [295] Find Median from Data Stream
#
# @lc code=start
# TAGS: Design, hard, heap,
# REVIEWME:
# 224 ms, 43.41%. Time: O(n), Space: O(n)
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.num = []
# O(N)
def addNum(self, num: int) -> None:
bisect.insort(self.num, num)
# O(1)
def findMedian(self) -> float:
mid = (len(self.num) - 1) // 2
if len(self.num) % 2:
return self.num[mid]
else:
return sum(self.num[mid:mid + 2]) /2
# 196 ms, 85.59%. Time: O(log n), Space: O(n)
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.max_heap = []
heapq.heapify(self.max_heap)
self.min_heap = []
heapq.heapify(self.min_heap)
self.cnt = 0
# O(log n)
def addNum(self, num: int) -> None:
self.cnt += 1
# Always add to max_heap first
if not self.max_heap or num <= -self.max_heap[0]:
heapq.heappush(self.max_heap, -num)
else:
heapq.heappush(self.min_heap, num)
# Self Balancing heaps
if len(self.max_heap) > len(self.min_heap) + 1:
val = -heapq.heappop(self.max_heap)
heapq.heappush(self.min_heap, val)
elif len(self.min_heap) > len(self.max_heap):
val = heapq.heappop(self.min_heap)
heapq.heappush(self.max_heap, -val)
# O(1)
def findMedian(self) -> float:
v1 = -self.max_heap[0]
# Edge case: min_heap is empty
v2 = self.min_heap[0] if not self.cnt % 2 else v1
return (v1 + v2) / 2
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
# @lc code=end