-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathBKNetStyle2.py
178 lines (137 loc) · 6.81 KB
/
BKNetStyle2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import tensorflow as tf
import numpy as np
from const import *
def _conv(name, x, filter_size, in_filters, out_filters, strides):
with tf.variable_scope(name):
n = filter_size * filter_size * out_filters
filter = tf.get_variable('DW', [filter_size, filter_size, in_filters, out_filters], tf.float32,
tf.random_normal_initializer(stddev=WEIGHT_INIT))
return tf.nn.conv2d(x, filter, [1, strides, strides, 1], 'SAME')
def _relu(x, leakiness=0.0):
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _FC(name, x, out_dim, keep_rate, activation='relu'):
assert (activation == 'relu') or (activation == 'softmax') or (activation == 'linear')
with tf.variable_scope(name):
dim = x.get_shape().as_list()
dim = np.prod(dim[1:])
x = tf.reshape(x, [-1, dim])
W = tf.get_variable('DW', [x.get_shape()[1], out_dim],
initializer=tf.random_normal_initializer(stddev=WEIGHT_INIT))
b = tf.get_variable('bias', [out_dim], initializer=tf.constant_initializer())
x = tf.nn.xw_plus_b(x, W, b)
if activation == 'relu':
x = _relu(x)
else:
if activation == 'softmax':
x = tf.nn.softmax(x)
if activation != 'relu':
return x
else:
return tf.nn.dropout(x, keep_rate)
def _max_pool(x, filter, stride):
return tf.nn.max_pool(x, [1, filter, filter, 1], [1, stride, stride, 1], 'SAME')
def batch_norm(x, n_out, phase_train=True, scope='bn'):
"""
Batch normalization on convolutional maps.
Args:
x: Tensor, 4D BHWD input maps
n_out: integer, depth of input maps
phase_train: boolean tf.Varialbe, true indicates training phase
scope: string, variable scope
Return:
normed: batch-normalized maps
"""
with tf.variable_scope(scope):
beta = tf.Variable(tf.constant(0.0, shape=[n_out]),
name='beta', trainable=True)
gamma = tf.Variable(tf.constant(1.0, shape=[n_out]),
name='gamma', trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.5)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def VGG_ConvBlock(name, x, in_filters, out_filters, repeat, strides, phase_train):
with tf.variable_scope(name):
for layer in range(repeat):
scope_name = name + '_' + str(layer)
x = _conv(scope_name, x, 3, in_filters, out_filters, strides)
if USE_BN:
x = batch_norm(x, out_filters, phase_train)
x = _relu(x)
in_filters = out_filters
x = _max_pool(x, 2, 2)
return x
def Input():
x = tf.placeholder(tf.float32, [None, IMG_SIZE, IMG_SIZE, 1])
y_ = tf.placeholder(tf.float32, [None, 101])
mask = tf.placeholder(tf.float32, [BATCH_SIZE])
return x, y_, mask
def BKNetModel(x):
phase_train = tf.placeholder(tf.bool)
keep_prob = tf.placeholder(tf.float32)
x = VGG_ConvBlock('Block1', x, 1, 32, 2, 1, phase_train)
# print(x.get_shape())
x = VGG_ConvBlock('Block2', x, 32, 64, 2, 1, phase_train)
# print(x.get_shape())
x = VGG_ConvBlock('Block3', x, 64, 128, 2, 1, phase_train)
# print(x.get_shape())
x = VGG_ConvBlock('Block4', x, 128, 256, 3, 1, phase_train)
# print(x.get_shape())
# Smile branch
smile_fc1 = _FC('smile_fc1', x, 256, keep_prob)
smile_fc2 = _FC('smile_fc2', smile_fc1, 256, keep_prob)
y_smile_conv = _FC('smile_softmax', smile_fc2, 2, keep_prob, 'softmax')
# Gender branch
gender_fc1 = _FC('gender_fc1', x, 256, keep_prob)
gender_fc2 = _FC('gender_fc2', gender_fc1, 256, keep_prob)
y_gender_conv = _FC('gender_softmax', gender_fc2, 2, keep_prob, 'softmax')
# Age branch
age_fc1 = _FC('age_fc1', x, 256, keep_prob)
age_fc2 = _FC('age_fc2', age_fc1, 256, keep_prob)
y_age_conv = _FC('age_softmax', age_fc2, 101, keep_prob, 'softmax')
return y_smile_conv, y_gender_conv, y_age_conv, phase_train, keep_prob
def selective_loss(y_smile_conv, y_gender_conv, y_age_conv, y_, mask):
vector_zero = tf.constant(0., tf.float32, [BATCH_SIZE])
vector_one = tf.constant(1., tf.float32, [BATCH_SIZE])
vector_two = tf.constant(2., tf.float32, [BATCH_SIZE])
smile_mask = tf.cast(tf.equal(mask, vector_zero), tf.float32)
gender_mask = tf.cast(tf.equal(mask, vector_one), tf.float32)
age_mask = tf.cast(tf.equal(mask, vector_two), tf.float32)
tf.add_to_collection('smile_mask', smile_mask)
tf.add_to_collection('gender_mask', gender_mask)
tf.add_to_collection('age_mask', age_mask)
y_smile = tf.slice(y_, [0, 0], [BATCH_SIZE, 2])
y_gender = tf.slice(y_, [0, 0], [BATCH_SIZE, 2])
y_age = tf.slice(y_, [0, 0], [BATCH_SIZE, 101])
tf.add_to_collection('y_smile', y_smile)
tf.add_to_collection('y_gender', y_gender)
tf.add_to_collection('y_age', y_age)
smile_cross_entropy = tf.reduce_sum(
tf.reduce_sum(-y_smile * tf.log(y_smile_conv), axis=1) * smile_mask) / tf.clip_by_value(
tf.reduce_sum(smile_mask), 1, 1e9)
gender_cross_entropy = tf.reduce_sum(
tf.reduce_sum(-y_gender * tf.log(y_gender_conv), axis=1) * gender_mask) / tf.clip_by_value(
tf.reduce_sum(gender_mask), 1, 1e9)
age_cross_entropy = tf.reduce_sum(
tf.reduce_sum(-y_age * tf.log(y_age_conv), axis=1) * age_mask) / tf.clip_by_value(
tf.reduce_sum(age_mask), 1, 1e9)
l2_loss = []
for var in tf.trainable_variables():
if var.op.name.find(r'DW') > 0:
l2_loss.append(tf.nn.l2_loss(var))
l2_loss = WEIGHT_DECAY * tf.add_n(l2_loss)
total_loss = smile_cross_entropy + gender_cross_entropy + age_cross_entropy + l2_loss
return smile_cross_entropy, gender_cross_entropy, age_cross_entropy, l2_loss, total_loss
def train_op(loss, global_step):
learning_rate = tf.train.exponential_decay(INIT_LR, global_step, DECAY_STEP, DECAY_LR_RATE, staircase=True)
train_step = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9, use_nesterov=True).minimize(loss,
global_step=global_step)
tf.add_to_collection('learning_rate', learning_rate)
return train_step