-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdataload.py
714 lines (619 loc) · 30 KB
/
dataload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import os
import re
from abc import ABC, abstractmethod
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizer
from datasets import load_dataset, concatenate_datasets, Dataset
from copy import deepcopy
from tqdm import tqdm
import pdb
from preprocessing import Preprocessor_for_RNN, Preprocessor_for_Transformer, Custom_Preprocessor
from download import download_asset
#os.environ["HF_DATASETS_OFFLINE"] = '1'
# 'dataset' classes need to take the following hyperparameters:
# Required:
# dataset_name, in_dir, out_data_dir, data_dir,
# max_seq_len, batch_size, private, local, mod_type,
# mode (might not need, just use subclasses)
# Optional:
# vec_dir, vocab_size, embed_size (RNN-based),
# transformer_type (transformer-based), epsilon (private),
# privatized_validation (downstream mode)
class DPRewriteDataset(object):
def __init__(self, dataset_name, data_dir, checkpoint_dir, max_seq_len,
batch_size, mode='pretrain', train_ratio=0.9,
embed_type='glove', embed_size=300, embed_dir_processed=None,
embed_dir_unprocessed=None, vocab_size=None,
model_type='transformer', private=False,
prepend_labels=False, transformer_type='bert-base-uncased',
length_threshold=None, custom_preprocessor=False,
data_split_cutoff=None,
local=False, last_checkpoint_path=False,
custom_train_path=None, custom_valid_path=None,
custom_test_path=None, downstream_test_data=None):
self.dataset_name = dataset_name
# main directory where data is stored (all modes; e.g. imdb, yelp)
self.data_dir = data_dir
self.checkpoint_dir = checkpoint_dir
self.last_checkpoint_path = last_checkpoint_path
# vocabulary and embeddings directory (renamed from 'in_dir')
# used after processing vectors from below 'vec_model_dir'
self.embed_dir_processed = embed_dir_processed
# downloaded pre-trained embedding model directory
self.embed_dir_unprocessed = embed_dir_unprocessed
self.mode = mode
self.max_seq_len = max_seq_len
self.batch_size = batch_size
self.model_type = model_type
self.embed_type = embed_type
self.transformer_type = transformer_type
self.prepend_labels = prepend_labels
self.length_threshold = length_threshold
self.train_ratio = train_ratio
self.data_split_cutoff = data_split_cutoff
self.train_data = None
self.valid_data = None
self.test_data = None
self.sample_size = None
self.train_iterator = None
self.valid_iterator = None
self.test_iterator = None
self.custom_train_path = custom_train_path
self.custom_valid_path = custom_valid_path
self.custom_test_path = custom_test_path
self.downstream_test_data = downstream_test_data
if model_type == 'transformer' and not custom_preprocessor:
self.preprocessor = Preprocessor_for_Transformer(
checkpoint_dir=checkpoint_dir,
transformer_type=transformer_type,
max_seq_len=max_seq_len, batch_size=batch_size,
prepend_labels=prepend_labels, mode=mode)
elif model_type == 'rnn' and not custom_preprocessor:
if embed_dir_processed is None:
raise Exception("Please specify 'embed_dir_processed' for RNN-based models.")
self.preprocessor = Preprocessor_for_RNN(
embed_dir_processed, embed_dir_unprocessed,
vocab_size=vocab_size, embed_type=embed_type,
embed_size=embed_size, checkpoint_dir=checkpoint_dir,
max_seq_len=max_seq_len, batch_size=batch_size,
prepend_labels=prepend_labels, mode=mode)
else:
print("Using custom preprocessor...")
self.preprocessor = Custom_Preprocessor()
self.private = private
self.local = local
if local or mode == 'rewrite':
self.shuffle = False
else:
self.shuffle = True
def load_and_process(self):
self.load()
self.process()
self.prepare_dataloader()
def load(self, subset=None):
'''
Description
-----------
Prepares a 'Dataset' object, with features consisting of 'text' and
'label'.
Parameters
----------
subset : ``int``, Don't load the full dataset, only up to a certain
index.
'''
if self.dataset_name == 'imdb':
print("Preparing IMDb dataset...")
self._load_hf('imdb')
elif self.dataset_name == 'atis':
print("Preparing ATIS dataset...")
self._load_from_path(valid=True, test=True)
elif self.dataset_name == 'snips_2016':
print("Preparing SNIPS dataset (2016 version)...")
self._load_hf('snips_built_in_intents')
elif self.dataset_name == 'snips_2017':
print("Preparing SNIPS dataset (2017 version)...")
self._load_from_path(valid=True, test=True)
elif self.dataset_name == 'drugscom_reviews_rating':
print("Preparing Drugs.com reviews dataset (ratings as labels)...")
self._load_from_path(
valid=False, test=True,
prepare_script=prepare_drugscom_dataset,
asset_dir=self.data_dir, predict_rating=True)
elif self.dataset_name == 'drugscom_reviews_condition':
print("Preparing Drugs.com reviews dataset "
"(conditions as labels)...")
self._load_from_path(
valid=False, test=True,
prepare_script=prepare_drugscom_dataset,
asset_dir=self.data_dir, predict_rating=False)
elif self.dataset_name == 'reddit_mental_health':
print("Preparing Reddit mental health dataset...")
self._load_from_path(
valid=False, test=False,
prepare_script=prepare_reddit_mental_health_dataset,
asset_dir=self.data_dir)
elif self.dataset_name == 'amazon_reviews_books':
print("Preparing Amazon reviews dataset ('Books_v1_00' subset)...")
target_column_dict = {"star_rating": "label",
"review_body": "text"}
subset = 'Books_v1_00'
self._load_hf('amazon_us_reviews', subset=subset,
target_column_dict=target_column_dict)
elif self.dataset_name == 'amazon_reviews_subset':
print("Preparing Amazon reviews dataset (framework subset)...")
self._load_from_path(
valid=False, test=True,
prepare_script=prepare_amazon_subset,
asset_dir=self.data_dir)
elif self.dataset_name == 'openwebtext':
print("Preparing Openwebtext dataset...")
self._load_hf('openwebtext')
elif self.dataset_name == 'wikipedia':
print("Preparing Wikipedia dataset...")
self._load_hf('wikipedia', subset='20200501.en')
else:
print("Preparing custom dataset...")
self._load_custom()
def process(self):
'''
Description
-----------
Applies `_process_split()` method to each data split.
'''
self.train_data = self._process_split(self.train_data,
train_split=True)
if self.valid_data is not None:
self.valid_data = self._process_split(self.valid_data)
if self.test_data is not None:
self.test_data = self._process_split(self.test_data)
def prepare_dataloader(self):
self.train_iterator = DataLoader(
self.train_data, batch_size=self.batch_size, shuffle=self.shuffle)
self.sample_size = len(self.train_data)
print('Num training:', self.sample_size)
if self.valid_data is not None:
self.valid_iterator = DataLoader(
self.valid_data, batch_size=self.batch_size,
shuffle=self.shuffle)
print('Num validation:', len(self.valid_data))
if self.test_data is not None:
self.test_iterator = DataLoader(
self.test_data, batch_size=self.batch_size,
shuffle=self.shuffle)
print('Num test:', len(self.test_data))
def _load_hf(self, name, subset=None, target_column_dict=None,
large=False):
'''
Description
-----------
Loads a dataset from huggingface
Parameters
----------
name : ``str``, Specific name of a dataset as it is called in HF
datasets
E.g. 'wikipedia'
subset : ``str``, Subset of a dataset as it is called in HF datasets
E.g. '20200501.en'
split_name : ``str``, name of a particular data split as it is called
in HF datasets
E.g. 'train'
target_column_dict : ``dict``, If a HF dataset does not have only
'text' and 'label' columns, a dictionary can be
provided that specifies which column names should
be considered as 'text' and 'label'.
E.g. {'star_rating': 'label',
'review_body': 'text'}
(Amazon reviews dataset)
large : ``bool``, Whether the dataset to be loaded is large or not
(in this case it's split up into multiple 'shards').
'''
# Preparing the cache dir
cache_dir = os.path.join(self.data_dir, self.dataset_name)
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
if subset is not None:
data = load_dataset(name, subset, cache_dir=cache_dir)
else:
data = load_dataset(name, cache_dir=cache_dir)
# If specific column names specified as 'text' and 'label'
# (all others are discarded)
if target_column_dict is not None:
for col_orig, col_target in target_column_dict.items():
data = data.rename_column(col_orig, col_target)
# Assuming column names are the same for different splits
# (based on train split columns)
data = data.remove_columns(
[col for col in data.column_names['train']
if col not in ['text', 'label']])
# Adding placeholder labels in case dataset does not have its own
for split in data.keys():
if 'label' not in data[split].column_names:
data[split] = data[split].add_column("label", np.zeros(len(data[split])))
# Applying the data split cut-off if specified
if self.data_split_cutoff is not None:
data['train'] = data['train'].select(
list(range(self.data_split_cutoff)))
# Preparing the validation split
if 'validation' not in data and self.mode != 'rewrite':
data_split = data['train'].train_test_split(test_size=(1-self.train_ratio))
self.train_data = data_split['train']
self.valid_data = data_split['test']
elif 'validation' in data:
self.train_data = data['train']
self.valid_data = data['validation']
else:
self.train_data = data['train']
# Preparing the test split, if available
if 'test' in data and self.mode != 'pretrain':
self.test_data = data['test']
def _load_from_path(self, valid=True, test=True, prepare_script=None,
**kwargs):
try:
train_csv_path = os.path.join(self.data_dir, self.dataset_name,
f'{self.dataset_name}_train.csv')
train_data = load_dataset("csv", data_files=train_csv_path,
column_names=["label", "text"])
except FileNotFoundError:
print(f"Could not find processed dataset, preparing dataset from "
f"path: {self.data_dir} (download and save raw files here).")
download_asset(self.dataset_name, asset_dir=self.data_dir)
if prepare_script is not None:
print(f"Processing downloaded raw files for "
f"{self.dataset_name} dataset...")
prepare_script(kwargs['asset_dir'])
else:
raise Exception(f"No script provided for preparing dataset "
f"files from raw data (dataset: "
f"{self.dataset_name}).")
train_csv_path = os.path.join(
self.data_dir, self.dataset_name,
f'{self.dataset_name}_train.csv')
train_data = load_dataset("csv", data_files=train_csv_path,
column_names=["label", "text"])
# Applying the data split cut-off if specified
if self.data_split_cutoff is not None:
train_data['train'] = train_data['train'].select(
list(range(self.data_split_cutoff)))
if valid:
valid_csv_path = os.path.join(
self.data_dir, self.dataset_name,
f'{self.dataset_name}_valid.csv')
valid_data = load_dataset("csv", data_files=valid_csv_path,
column_names=["label", "text"])
self.train_data = train_data['train']
self.valid_data = valid_data['train']
elif not valid and self.mode != 'rewrite':
data_split = train_data['train'].train_test_split(
test_size=(1-self.train_ratio))
self.train_data = data_split['train']
self.valid_data = data_split['test']
else:
self.train_data = train_data['train']
if test and self.mode != 'pretrain':
test_csv_path = os.path.join(
self.data_dir, self.dataset_name,
f'{self.dataset_name}_test.csv')
test_data = load_dataset("csv", data_files=test_csv_path,
column_names=["label", "text"])
self.test_data = test_data['train']
def _load_custom(self):
if self.custom_train_path is not None:
self.train_data = self._load_custom_split(self.custom_train_path)
else:
raise Exception(
f"{self.dataset_name} not in currently prepared datasets, "
f"but 'custom_train_path' is None. Please either specify a "
f"dataset name among existing datasets, or add a custom "
f"dataset path.")
# Applying the data split cut-off if specified
if self.data_split_cutoff is not None:
self.train_data = self.train_data.select(
list(range(self.data_split_cutoff)))
if self.custom_valid_path is not None and \
self.custom_valid_path.lower() != 'none':
self.valid_data = self._load_custom_split(self.custom_valid_path)
else:
# If no validation path specified, make a split from the
# training set
data_split = self.train_data.train_test_split(
test_size=(1-self.train_ratio))
self.train_data = data_split['train']
self.valid_data = data_split['test']
if self.custom_test_path is not None and \
self.custom_test_path.lower() != 'none':
self.test_data = self._load_custom_split(self.custom_test_path)
if self.mode == 'downstream' and \
self.downstream_test_data is not None and \
self.downstream_test_data.lower() != 'none':
print(f"Loading original test set for dataset {self.downstream_test_data}...")
self.test_data = self._load_downstream_test_set(self.downstream_test_data)
def _load_custom_split(self, path):
data = load_dataset('csv', data_files=path,
column_names=["label", "text"])
data = data['train']
if np.all(np.array(data['text']) == None):
# If there is only one column in the CSV file, then the
# second column in the dataset will only have None, hence
# need to remove it and rename the first column
data = data.remove_columns("text")
data = data.rename_column("label", "text")
data = data.add_column("label", np.zeros(len(data)))
if self.prepend_labels:
raise Exception(
"Requested option to prepend labels to each dataset "
"tensor, but provided CSV file has no labels.")
return data
def _process_split(self, data, train_split=False):
'''
Description
-----------
Carries out preprocessing on the loaded dataset (additional sharding
process for larger datasets).
Resulting preprocessed dataset:
len(data): length of dataset split
data[i][0]: torch tensor of max_seq_len
data[i][1]: length of tensor
data[i][2]: label string
Parameters
----------
data : ``Dataset``, Loaded dataset object.
'''
# Optionally removing parts of the dataset, where the token count is
# lower than a given threshold (based on whitespace split)
if self.length_threshold is not None and \
str(self.length_threshold).lower() != 'none':
data = data.filter(
lambda example: len(
example['text'].split()) <= self.length_threshold if example['text'] is not None else False)
threshold = 2000000
if len(data) > threshold:
# Preprocessing for large datasets
num_shards = 4
new_shards = []
print(f"Dataset very large, splitting preprocessing into "
f"{num_shards} shards.")
for idx in range(num_shards):
if idx > 0:
first_shard = False
else:
first_shard = True
new_shard = self.preprocessor.process_data(
data.shard(num_shards=num_shards, index=idx),
first_shard=first_shard, train_split=train_split)
new_shards += new_shard
data = new_shards
else:
data = self.preprocessor.process_data(
data, train_split=train_split, first_shard=True)
return data
def _load_downstream_test_set(self, name):
cache_dir = os.path.join(self.data_dir, name)
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
# So far only IMDb has a test set out of these
hf_datasets = ['imdb', 'snips_2016', 'amazon_reviews_books']
if name in hf_datasets:
if name != 'imdb':
raise Exception(f"{name} does not have a test set.")
data = load_dataset(name, split='test', cache_dir=cache_dir)
else:
test_csv_path = os.path.join(
self.data_dir, name,
f'{name}_test.csv')
test_data = load_dataset("csv", data_files=test_csv_path,
column_names=["label", "text"])
data = test_data['train']
return data
def prepare_drugscom_dataset(asset_dir=None, predict_rating=True):
rat_str = 'rating' if predict_rating else 'condition'
train_data_path = os.path.join(asset_dir, 'raw',
f'drugscom_reviews_{rat_str}',
'drugsComTrain_raw.tsv')
test_data_path = os.path.join(asset_dir, 'raw',
f'drugscom_reviews_{rat_str}',
'drugsComTest_raw.tsv')
paths = [train_data_path, test_data_path]
for path in paths:
split = 'train' if 'Train' in path else 'test'
df = pd.read_csv(path, sep='\t')
df = df.drop(columns=['Unnamed: 0', 'drugName', 'date', 'usefulCount'])
if predict_rating:
df = df.drop(columns=['condition'])
df = df[df.columns[::-1]]
# Converting ratings to 2 classes, as in Shiju and He 2021
df['rating'].loc[df['rating'] < 8] = 0
df['rating'].loc[df['rating'] >= 8] = 1
# Removing start and end double-quotes
df['review'] = df['review'].str.slice(start=1, stop=-1)
name = 'rating'
else:
df = df.drop(columns=['rating'])
name = 'condition'
mid_path = os.path.join(asset_dir, f'drugscom_reviews_{rat_str}')
if not os.path.exists(mid_path):
os.makedirs(mid_path)
out_path = os.path.join(mid_path,
f'drugscom_reviews_{name}_{split}.csv')
df.to_csv(out_path, header=False, index=False)
def prepare_reddit_mental_health_dataset(asset_dir=None):
data_path = os.path.join(asset_dir, 'raw', 'reddit_mental_health')
files = os.listdir(data_path)
full_df = []
for f in tqdm(files):
file_path = os.path.join(data_path, f)
df = pd.read_csv(file_path)
df = df.drop(df.columns.difference(['subreddit', 'post']), axis=1)
full_df.append(df)
full_df = pd.concat(full_df, ignore_index=True)
full_df = full_df.drop_duplicates(keep='first', ignore_index=True)
mid_path = os.path.join(asset_dir, 'reddit_mental_health')
if not os.path.exists(mid_path):
os.makedirs(mid_path)
out_path = os.path.join(mid_path, 'reddit_mental_health_train.csv')
full_df.to_csv(out_path, header=False, index=False)
def prepare_amazon_subset(asset_dir=None):
'''
Prepares the framework's Amazon reviews subset from train and test indices
that come with the framework (prepared from
`prepare_amazon_subset_initial`).
'''
target_column_dict = {"star_rating": "label",
"review_body": "text"}
subsets = ['Digital_Video_Games_v1_00', 'Electronics_v1_00',
'Lawn_and_Garden_v1_00', 'Major_Appliances_v1_00',
'Mobile_Apps_v1_00', 'Office_Products_v1_00', 'Wireless_v1_00']
loaded_subsets_train = []
loaded_subsets_test = []
train_indices_path = os.path.join(
asset_dir, 'amazon_reviews_subset',
'amazon_reviews_subset_train_indices.csv')
test_indices_path = os.path.join(asset_dir, 'amazon_reviews_subset',
'amazon_reviews_subset_test_indices.csv')
train_indices = pd.read_csv(train_indices_path, index_col=None)
test_indices = pd.read_csv(test_indices_path, index_col=None)
for subset in tqdm(subsets):
# Step 1: Load dataset subsets from HF
cache_dir = os.path.join(asset_dir, 'amazon_reviews_books')
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
data = load_dataset('amazon_us_reviews', subset, cache_dir=cache_dir)
for col_orig, col_target in target_column_dict.items():
data = data.rename_column(col_orig, col_target)
data = data.remove_columns(
[col for col in data.column_names['train']
if col not in ['text', 'label']])
data = data['train']
# Step 2: Binarize labels (4 and 5: 1)
data = data.map(
lambda example: {'label': 1 if example['label'] in [4, 5] else 0})
# Step 3: Select data from loaded indexes
train_indices_subset =\
train_indices[train_indices["subset"] == subset]["original_idx"].tolist()
test_indices_subset =\
test_indices[test_indices["subset"] == subset]["original_idx"].tolist()
train_data = data.select(indices=train_indices_subset)
test_data = data.select(indices=test_indices_subset)
loaded_subsets_train.append(train_data)
loaded_subsets_test.append(test_data)
train_data = concatenate_datasets(loaded_subsets_train)
test_data = concatenate_datasets(loaded_subsets_test)
# Save to CSV
out_dir = os.path.join(asset_dir, 'amazon_reviews_subset')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
train_path = os.path.join(out_dir, 'amazon_reviews_subset_train.csv')
test_path = os.path.join(out_dir, 'amazon_reviews_subset_test.csv')
train_data.to_csv(train_path, index=False)
test_data.to_csv(test_path, index=False)
def prepare_amazon_subset_initial(asset_dir=None, binary_5_only=False,
balance_labels=True, length_threshold=20,
reduce_n_mod=3):
'''
Description
-----------
Prepares the framework's Amazon reviews subset for the first
time (getting the train-test indices).
Parameters
----------
asset_dir : `str`, General directory where to find and store all datasets.
binary_5_only : `bool`, If True, prepare binary classification where
[5] --> 1, [1,2,3,4] --> 0.
If False, prepare binary classification where
[4,5] --> 1, [1,2,3] --> 0
balance_labels : `bool`, If True, make positive and negative label count
equal (reducing the larger class).
length_threshold : `int`, Maximum document length based on number of
tokens, where the document is split by whitespace.
reduce_n_mod : `int`, Whether to reduce the size of the dataset further,
by 1/nth of its size. E.g. If `reduce_n_mod == 3`, then
the dataset is reduced by 1/3rd its size.
'''
target_column_dict = {"star_rating": "label",
"review_body": "text"}
subsets = ['Digital_Video_Games_v1_00', 'Electronics_v1_00',
'Lawn_and_Garden_v1_00', 'Major_Appliances_v1_00',
'Mobile_Apps_v1_00', 'Office_Products_v1_00', 'Wireless_v1_00']
loaded_subsets_train = []
loaded_subsets_test = []
for subset in tqdm(subsets):
# Step 1: Load dataset subsets from HF
cache_dir = os.path.join(asset_dir, 'amazon_reviews_books')
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
data = load_dataset('amazon_us_reviews', subset, cache_dir=cache_dir)
for col_orig, col_target in target_column_dict.items():
data = data.rename_column(col_orig, col_target)
data = data.remove_columns(
[col for col in data.column_names['train']
if col not in ['text', 'label']])
data = data['train']
# Adding original indexes and subset info for reproducibility
data = data.map(lambda example, idx: {'original_idx': idx, 'subset': subset}, with_indices=True)
# Step 2: Filter documents with number of tokens above LT
# and remove empty strings
if length_threshold is not None:
data = data.filter(lambda example: len(
example['text'].split()) <= length_threshold)
# Step 3: Binarize labels
if binary_5_only:
data = data.map(lambda example: {'label': 1 if example['label'] == 5 else 0})
name_appendix = 'binary5'
else:
data = data.map(lambda example: {'label': 1 if example['label'] in [4, 5] else 0})
name_appendix = 'binary45'
if balance_labels:
ones = data.filter(lambda example: example['label'] == 1)
zeros = data.filter(lambda example: example['label'] == 0)
np.random.seed(seed=0)
# From an array arange(len(ones)), select len(zeros) values
chosen_indices = np.random.choice(len(ones), len(zeros))
ones_kept = ones.select(chosen_indices)
data = concatenate_datasets([ones_kept, zeros])
if reduce_n_mod is not None:
data = data.filter(lambda example, idx: idx % reduce_n_mod != 0,
with_indices=True)
# Step 4: Split train-test splits (stratified for the different classes)
train_ratio = 0.9
classes, y_indices = np.unique(data.with_format("numpy")['label'],
return_inverse=True)
n_classes = classes.shape[0]
class_counts = np.bincount(y_indices)
class_indices = np.split(np.argsort(y_indices, kind="mergesort"),
np.cumsum(class_counts)[:-1])
train = []
test = []
for cl in range(n_classes):
num_train = int(class_counts[cl] * train_ratio)
train_indices = class_indices[cl][:num_train]
test_indices = class_indices[cl][num_train:]
train.extend(train_indices)
test.extend(test_indices)
train_data = data.select(indices=train)
test_data = data.select(indices=test)
loaded_subsets_train.append(train_data)
loaded_subsets_test.append(test_data)
train_data = concatenate_datasets(loaded_subsets_train)
test_data = concatenate_datasets(loaded_subsets_test)
train_data = train_data.filter(lambda example: example['text'] != '')
test_data = test_data.filter(lambda example: example['text'] != '')
train_indices = train_data.remove_columns(["label", "text"])
test_indices = test_data.remove_columns(["label", "text"])
train_data_out = train_data.remove_columns(["original_idx", "subset"])
test_data_out = test_data.remove_columns(["original_idx", "subset"])
# Save to CSV
out_dir = os.path.join(asset_dir, 'amazon_reviews_subset')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
train_path = os.path.join(out_dir, 'amazon_reviews_subset_train.csv')
test_path = os.path.join(out_dir, 'amazon_reviews_subset_test.csv')
train_indices_path = os.path.join(
out_dir, 'amazon_reviews_subset_train_indices.csv')
test_indices_path = os.path.join(
out_dir, 'amazon_reviews_subset_test_indices.csv')
train_data_out.to_csv(train_path, index=False)
test_data_out.to_csv(test_path, index=False)
train_indices.to_csv(train_indices_path, index=False)
test_indices.to_csv(test_indices_path, index=False)