-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHDXRank_train.py
177 lines (145 loc) · 6.73 KB
/
HDXRank_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
2025/1/8
Author: WANG Liyao
Paper: HDXRank: A Deep Learning Framework for Ranking Protein complex predictions with Hydrogen Deuterium Exchange Data
Note:
Modular training pipeline for GearNet model
"""
import os
import torch
import argparse
import logging
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from torch import nn
from torchdrug.data import DataLoader
from GearNet import GearNet
from HDXRank_utilis import XML_process
# Utility functions
def load_data(tasks):
"""
Load and preprocess data.
Args:
tasks (dict): Parsed XML file.
Returns:
tuple: apo_input, complex_input
"""
summary_HDX_file = os.path.join(tasks["GeneralParameters"]["RootDir"], f"{tasks['GeneralParameters']['TaskFile']}.xlsx")
hdx_df = pd.read_excel(summary_HDX_file, sheet_name='Sheet1')
hdx_df = hdx_df.dropna(subset=['structure_file']).drop_duplicates(subset=['structure_file'])
pepGraph_dir = tasks['GeneralParameters']['pepGraphDir']
apo_input, complex_input = [], []
logging.info('Loading data...')
for _, row in tqdm(hdx_df.iterrows(), total=len(hdx_df)):
pdb = row['structure_file'].strip().split('.')[0].upper()
pepGraph_file = os.path.join(pepGraph_dir, f'{pdb}.pt')
if os.path.isfile(pepGraph_file):
pepGraph_ensemble = torch.load(pepGraph_file)
if row['complex_state'] == 'single':
apo_input.extend(pepGraph_ensemble)
else:
complex_input.extend(pepGraph_ensemble)
logging.info(f"Length of apo data: {len(apo_input)}")
logging.info(f"Length of complex data: {len(complex_input)}")
return apo_input, complex_input
def prepare_model(input_dim, hidden_dims, num_relation, device):
"""
Prepare the model and optimizer.
Args:
input_dim (int): Input dimension.
hidden_dims (list): Hidden dimensions for the model.
num_relation (int): Number of relations.
device (torch.device): Device to use.
Returns:
tuple: model, optimizer, loss_fn
"""
model = GearNet(input_dim=input_dim, hidden_dims=hidden_dims, num_relation=num_relation,
batch_norm=True, concat_hidden=True, readout='sum', activation='relu', short_cut=True).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4)
loss_fn = nn.BCELoss()
return model, optimizer, loss_fn
def train_model(model, optimizer, loss_fn, train_loader, device, num_epochs):
"""
Train the model.
Args:
model: PyTorch model instance.
optimizer: Optimizer instance.
loss_fn: Loss function instance.
train_loader: DataLoader for training data.
device: Device for computation.
num_epochs: Number of epochs.
Returns:
tuple: rmse_train_list, rp_train
"""
rp_train, rmse_train_list = [], []
for epoch in range(num_epochs):
model.train()
list1_train, list2_train = [], []
epoch_train_losses = []
for graph_batch in train_loader:
graph_batch = graph_batch.to(device)
targets = graph_batch.y
node_feat = graph_batch.residue_feature.float()
outputs = model(graph_batch, node_feat)
train_loss = loss_fn(outputs, targets)
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
epoch_train_losses.append(train_loss.item())
targets = targets.detach().cpu().numpy()
outputs = outputs.detach().cpu().numpy()
list1_train.extend(targets)
list2_train.extend(outputs)
epoch_train_loss = np.mean(epoch_train_losses)
epoch_rp_train = np.corrcoef(list2_train, list1_train)[0, 1]
rp_train.append(epoch_rp_train)
y = np.array(list1_train).reshape(-1, 1)
x = np.array(list2_train).reshape(-1, 1)
epoch_train_rmse = np.sqrt(((y - x) ** 2).mean())
rmse_train_list.append(epoch_train_rmse)
logging.info(f'Epoch {epoch}: Loss {epoch_train_loss:.3f}, rho {epoch_rp_train:.3f}, RMSE {epoch_train_rmse:.3f}')
return rmse_train_list, rp_train
def save_checkpoint(model, optimizer, epoch, file_path):
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}
torch.save(checkpoint, file_path)
def main():
parser = argparse.ArgumentParser(description='Train new HDXRank model.')
parser.add_argument('-input', type=str, required=True, help='path to XML task file (require general parameters)')
parser.add_argument('-save', type=str, required=True, help='path to save the model')
parser.add_argument('-epoch', type=int, default=100, help='Number of epochs to train')
parser.add_argument('-cuda', type=int, default=0, help='CUDA device number')
parser.add_argument('-train_val_split', type=float, default=0.2, help='Proportion of data to use for validation')
parser.add_argument('-random_state', type=int, default=42, help='Random state for data splitting')
parser.add_argument('-batch_size', type=int, default=16, help='Batch size for training')
parser.add_argument('-repeat', type=int, default=1, help='repeat training process')
args = parser.parse_args()
device = torch.device(f'cuda:{args.cuda}' if torch.cuda.is_available() else 'cpu')
tasks = XML_process(args.input)
apo_input, complex_input = load_data(tasks)
for i in range(args.repeat):
train_apo, val_apo = train_test_split(apo_input, test_size=args.train_val_split, random_state=args.random_state)
train_complex, val_complex = train_test_split(complex_input, test_size=args.train_val_split, random_state=args.random_state)
train_set = train_apo + train_complex
val_set = val_apo + val_complex
train_loader = DataLoader(train_set+val_set, batch_size=args.batch_size, shuffle=True) # use all data to train the final model
#val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False)
logging.info(f'training set: {len(train_set+val_set)}')
#print('val set:', len(val_set))
model, optimizer, loss_fn = prepare_model(input_dim=56, hidden_dims=[512, 512, 512], num_relation=7, device=device)
rmse_train_list, rp_train = train_model(model, optimizer, loss_fn, train_loader, device, args.epoch)
model_name = f'HDXRank_GN56_epoch{args.epoch}_v{i}.pth'
save_checkpoint(model, optimizer, args.epoch, os.path.join(args.save, model_name))
if __name__ == "__main__":
# Logging setup
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler()]
)
main()