-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathConcepts.lyx
5091 lines (3361 loc) · 95.4 KB
/
Concepts.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX file created by tex2lyx 2.1
\lyxformat 474
\begin_document
\begin_header
\textclass IEEEtran
\begin_preamble
\usepackage{babel}
\end_preamble
\options compsoc,conference
\use_default_options false
\maintain_unincluded_children false
\language british
\language_package default
\inputencoding iso8859-15
\fontencoding T1
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 0
\use_package esint 1
\use_package mathdots 0
\use_package mathtools 0
\use_package mhchem 0
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
\lang british
Compositional design of asynchronous circuits
\begin_inset Newline newline
\end_inset
from behavioural concepts
\end_layout
\begin_layout Author
\lang british
Jonathan Beaumont, Andrey Mokhov, Danil Sokolov, Alex Yakovlev
\begin_inset Newline newline
\end_inset
\family typewriter
{j.r.beaumont, andrey.mokhov, danil.sokolov, alex.yakovlev}@ncl.ac.uk
\family default
\begin_inset Newline newline
\end_inset
\emph on
School of Electrical and Electronic Engineering, Newcastle University, UK
\emph default
\end_layout
\begin_layout Abstract
\lang british
Asynchronous circuits can be useful in many applications, however, they are yet to be widely used in industry. The main reason for this is a steep learning curve for concurrency models, such Signal Transition Graphs, that are developed by the academic community for specification and synthesis of asynchronous circuits. In this paper we introduce a compositional design flow for asynchronous circuits using
\shape italic
concepts
\shape default
-- a set of formalised descriptions for system requirements. Our aim is to simplify the process of capturing system requirements in the form of a formal specification, and promote the concepts as a means for design reuse. The proposed design flow is applied to the development of an asynchronous buck converter.
\end_layout
\begin_layout Standard
\lang british
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
\backslash
sloppy
\end_layout
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
\backslash
thispagestyle{empty}
\end_layout
\end_inset
\begin_inset VSpace -2mm
\end_inset
\end_layout
\begin_layout Section
\lang british
Introduction
\end_layout
\begin_layout Standard
\lang british
\begin_inset VSpace -2mm
\end_inset
\end_layout
\begin_layout Standard
\lang british
Asynchronous circuits are event-driven, i.e. they react to changes in a system at the rate they occur
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "sparso2001principles"
\end_inset
. This makes them particularly useful for on-chip power management, where the ability to quickly respond to dynamically changing loads across the chip is essential for reliable operation and efficiency
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "2008_audy_isscc_tutorial"
\end_inset
. A power management system relies on analogue circuitry for power regulation and conversion whose behaviour is characterised by many operating modes and complexity of their interplay. Capturing all these aspects of system behaviour in a consistent specification becomes the major design challenge
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "2014_sokolov_ftfc"
\end_inset
.
\end_layout
\begin_layout Standard
\lang british
Signal Transition Graphs
\begin_inset space ~
\end_inset
(STGs) are commonly used for the specification of asynchronous control circuits as they are compatible with multiple synthesis tools, such as
\noun on
Petrify
\noun default
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "Cortadella"
\end_inset
and
\noun on
Mpsat
\noun default
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "khomenko2004detecting"
\end_inset
. These tools take an STG specification of a complete controller and produce a speed-independent circuit implementation
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "Muller_1959_ts"
\end_inset
. Such a monolithic approach to designing asynchronous circuits has poor scalability: as the system grows in complexity its monolithic specification becomes challenging to comprehend and debug. The STG models of components cannot be reused when designing other specifications, and thus each new design must be built from the ground up. This further adds to the design time, hence making asynchronous circuits undesirable for use in industry.
\end_layout
\begin_layout Standard
\lang british
To address this issue, we propose a new method of asynchronous circuit design. The method splits a specification into several parts corresponding to operational modes of the circuit (
\emph on
scenarios
\emph default
). The features, constraints and requirements of each scenario
\emph on
\emph default
(
\emph on
concepts
\emph default
), are described in a formal notation, which we implemented as a domain specific language embedded in Haskell
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "1996_hudak_dsl"
\end_inset
. Concepts can be composed and one concept can be made up of multiple smaller concepts, thus supporting the design reuse at the level of system specification. Scenarios of reconfigurable systems
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "2014_mokhov_jlpea"
\end_inset
can also be parameterised by run-time parameters (e.g., available energy budget) or design-time ones (e.g., the number of processing cores in a Network-on-Chip network), therefore concepts should also support parameterisation.
\end_layout
\begin_layout Standard
\lang british
A set of concepts describing the operation of a scenario is then passed into a translation algorithm that automatically converts it into an equivalent STG, which satisfies all given concepts and can be model-checked using standard tools
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "2007_poliakov_workcraft"
\end_inset
. When all scenarios have been translated to STGs and verified, they can be combined to produce a complete specification. This step will also be automated, and will offer
\emph on
templates
\emph default
for common scenario ordering requirements, such as mode switching sequences and start-up scenarios.
\end_layout
\begin_layout Standard
\lang british
Designing a controller for an analogue circuit using this method can be beneficial. Any of the partial knowledge we have about any casual relationships between events in the environment can be naturally modelled as concepts. When composed with other concepts describing these relationships and concepts describing the control which reacts to the environment, a model will be produced which shows how the environment and the control system interacts.
\end_layout
\begin_layout Standard
\lang british
There are several existing methodologies which are similar to the one being proposed in this paper, however we found them limited in certain aspects as discussed below.
\end_layout
\begin_layout Standard
\lang british
\series bold
Snippets
\series default
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "raey"
\end_inset
, similar to concepts, are smaller state graph models which are used to compose full state graphs of larger systems. Snippets describe the operation of a part of a system in terms of input and output alphabets, and in which ways these snippets can fail. When composed with other snippets it can produce a working system state graph model. With our design methodology however we want to go deeper and decompose a component into concepts responsible for capturing signal behaviours for system features, such as handshakes, mutual exclusion, synchronisation, etc.
\end_layout
\begin_layout Standard
\lang british
\series bold
Structural design
\series default
features re-usability of modular components
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "modular-circuit-design"
\end_inset
. Here, a component design can be used multiple times across full device designs in conjunction with several other circuit modules. These modules can be changed in some way without affecting how they are used in the full device designs. The ideas of this method are similar to that of the design methodology we are proposing to reduce design time. However, this method is at a much higher level, using fully designed and tested components where as we propose to allow re-usability when modelling at circuit level, using composed concepts.
\end_layout
\begin_layout Standard
\lang british
\series bold
DI algebra
\series default
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "josephs1993overview"
\end_inset
is a method of describing systems as algebraic equations. Each equation represents an operation of the specification, similar to scenarios, and composing these can be simplified for the most compact version of the equation. These can then be composed to find an equation for the whole specification and again simplified for the most compact version. Our method is similar to DI algebra, however concepts are described textually, which is different to DI algebra and as such, simplification does not occur at concept level, but during the composition and combination steps, and the most compact form of the model is automatically produced. To the best of our knowledge there are no tools or methodologies supporting compositional design of asynchronous circuits using DI algebra and it is therefore not interoperable with the rest of our design flow, and this also makes it unsuitable for use in an industrial setting.
\end_layout
\begin_layout Standard
\lang british
\series bold
Resynthesis
\series default
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "Resynth2"
\end_inset
is a process of decomposing a full model and recomposing it of selective components to produce a smaller model. This can be used to reduce the number of signals to connect two separate models for example. This process is regularly used for optimisation of Balsa control circuits
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "plana2005attacking"
\end_inset
, however in Balsa the set of predefined components is fixed, so a designer cannot easily introduce new scenarios. Resynthesis also requires full models which can be decomposed. This requirement may be problematic for the proposed methodology as we take a ground-up approach to composition, starting with primitive concepts which composed into scenarios, which are subsequently combined into a complete model. Resynthesis can still be used at a later stage of the design process, once the complete model of a system
\begin_inset space ~
\end_inset
(or a subsystem) has been obtained using the proposed methodology.
\end_layout
\begin_layout Standard
\lang british
The idea is that our approach should reduce the complexity of designing asynchronous circuits, so the number of errors should be reduced, and easier to find and correct. This will in turn reduce the design time, and make asynchronous circuits more desirable and be used to make devices.
\end_layout
\begin_layout Standard
\lang british
The presented approach is automated in the open-source
\noun on
Workcraft
\noun default
framework
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "2007_poliakov_workcraft"
\end_inset
. This parses concepts, uses them to produce scenario STGs and performs parallel composition
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "PCOMP"
\end_inset
on these and creates full model STGs. Full models can then be synthesised using
\noun on
Workcraft
\noun default
. In this paper, we use real life industrial example of a buck converter
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "2014_sokolov_ftfc"
\end_inset
to show our design flow, and test this design approach.
\begin_inset VSpace -2mm
\end_inset
\end_layout
\begin_layout Section
\lang british
Concepts
\begin_inset CommandInset label
LatexCommand label
name "sec:Concepts"
\end_inset
\end_layout
\begin_layout Standard
\lang british
\begin_inset VSpace -2mm
\end_inset
\end_layout
\begin_layout Standard
\lang british
In this section we formally introduce
\emph on
concepts
\emph default
that we propose to employ for the specification of asynchronous circuits. Below we list (fairly standard) definitions and notational conventions that are used throughout the paper.
\end_layout
\begin_layout Standard
\lang british
We use
\begin_inset Formula $\mathbb{B}$
\end_inset
to denote the set of Boolean values
\begin_inset Formula $\{0,1\}$
\end_inset
. Given two Boolean functions
\begin_inset Formula $f:X\rightarrow\mathbb{B}$
\end_inset
and
\begin_inset Formula $g:X\rightarrow\mathbb{B}$
\end_inset
with the same domain
\begin_inset Formula $X$
\end_inset
, we lift Boolean operators (disjunction
\begin_inset space ~
\end_inset
\begin_inset Formula $\vee$
\end_inset
, conjunction
\begin_inset space ~
\end_inset
\begin_inset Formula $\wedge$
\end_inset
, implication
\begin_inset Formula $\Rightarrow$
\end_inset
, etc.) in the usual manner:
\begin_inset Formula $h=f\vee g$
\end_inset
means
\begin_inset Formula $h(x)=f(x)\vee g(x)$
\end_inset
for all
\begin_inset Formula $x\in X$
\end_inset
, etc. Furthermore,
\begin_inset space ~
\end_inset
\begin_inset Formula $\mathbf{0}$
\end_inset
and
\begin_inset space ~
\end_inset
\begin_inset Formula $\mathbf{1}$
\end_inset
stand for constant Boolean functions that discard their input and return values
\begin_inset Formula $0$
\end_inset
and
\begin_inset Formula $1$
\end_inset
, respectively.
\end_layout
\begin_layout Standard
\lang british
A
\emph on
monoid
\emph default
is a set
\begin_inset Formula $M$
\end_inset
and a binary operation
\begin_inset Formula $\diamond:M\times M\rightarrow M$
\end_inset
satisfying two axioms:
\end_layout
\begin_layout Itemize
\lang british
Identity:
\begin_inset Formula $e\diamond a=a\diamond e=a$
\end_inset
for any
\begin_inset Formula $a\in M$
\end_inset
, where
\begin_inset Formula $e\in M$
\end_inset
is the
\emph on
identity element
\emph default
of the monoid.
\end_layout
\begin_layout Itemize
\lang british
Associativity:
\begin_inset Formula $a\diamond(b\diamond c)=(a\diamond b)\diamond c$
\end_inset
for all
\begin_inset Formula $a,b,c\in M$
\end_inset
.
\end_layout
\begin_layout Standard
\lang british
Monoid is the simplest mathematical structure that captures the notions of
\emph on
emptiness
\emph default
and
\emph on
composition
\emph default
. The concepts introduced in this section form
\emph on
commutative monoids
\emph default
: they have identity elements corresponding to empty specifications, and can be composed to build complex concepts from simpler ones. The order of composition does not matter, i.e., the concepts commute:
\begin_inset Formula $a\diamond b=b\diamond a$
\end_inset
for all
\begin_inset Formula $a,b\in M$
\end_inset
.
\end_layout
\begin_layout Standard
\lang british
\begin_inset VSpace -3mm
\end_inset
\end_layout
\begin_layout Subsection
\lang british
Abstract concepts
\end_layout
\begin_layout Standard
\lang british
\begin_inset VSpace -3mm
\end_inset
\end_layout
\begin_layout Standard
\lang british
We first describe
\emph on
abstract concepts
\emph default
that we use as building blocks for developing
\emph on
domain specific concepts
\emph default
, such as those related to asynchronous circuits (Section
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Concepts-for-asynchronous"
\end_inset
).
\end_layout
\begin_layout Standard
\lang british
Abstract concepts are parameterised by finite sets of
\emph on
states
\emph default
\begin_inset Formula $S$
\end_inset
and
\emph on
events
\emph default
\begin_inset Formula $E$
\end_inset
. The
\emph on
initial state concept
\emph default
captures all possible (or
\emph on
permitted
\emph default
) initial states of the system. In the most general form it is a function
\begin_inset Formula \[
\mathsf{initial}:S\rightarrow\mathbb{B}
\]
\end_inset
that given a state
\begin_inset Formula $s\in S$
\end_inset
returns
\begin_inset Formula $1$
\end_inset
if
\begin_inset Formula $s$
\end_inset
is an initial state and
\begin_inset Formula $0$
\end_inset
otherwise. In practice this concept is often realised as a membership test of a set of initial states
\begin_inset space ~
\end_inset
\begin_inset Formula $I\subseteq S$
\end_inset
, i.e.
\begin_inset Formula $\mathsf{initial}(s)=s\in I$
\end_inset
. However, we prefer the functional form because it is more abstract and permits other, often more efficient realisations. Note that
\begin_inset space ~
\end_inset
\begin_inset Formula $\mathbf{0}$
\end_inset
and
\begin_inset space ~
\end_inset
\begin_inset Formula $\mathbf{1}$
\end_inset
have natural interpretations as initial concepts: they correspond to systems with no initial states, and systems where any state can be initial, respectively. Initial state concepts form a commutative monoid with the identity element
\begin_inset space ~
\end_inset
\begin_inset Formula $\mathbf{1}$
\end_inset
and the composition operation
\begin_inset space ~
\end_inset
\begin_inset Formula $\wedge$
\end_inset
. Intuitively, if a system comprises two subsystems then its initial state should satisfy constraints imposed by both subsystems, hence the conjunction operator.
\end_layout
\begin_layout Standard
\lang british
The
\emph on
event excitation concept
\emph default
captures all states wherein a given event can occur (or is
\emph on
excited
\emph default
). In the most general form it is a function
\begin_inset Formula \[
\mathsf{excited}:E\times S\rightarrow\mathbb{B}
\]
\end_inset
that given an event
\begin_inset Formula $e\in E$
\end_inset
and a state
\begin_inset Formula $s\in S$
\end_inset
checks whether
\begin_inset Formula $e$
\end_inset
is excited in
\begin_inset Formula $s$
\end_inset
. In practice this concept is often realised using
\emph on
interpreted graph models
\emph default
such as Finite State Machines and Petri Nets
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "Cortadella"
\end_inset
, Conditional Partial Order Graphs
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "CPOG1"
\end_inset
, and others. A partial application of the excitation function is often useful:
\begin_inset Formula $\mathsf{excited}(e)$
\end_inset
captures all states where event
\begin_inset Formula $e$
\end_inset
is excited; for example, if
\begin_inset Formula $\mathsf{excited}(e)=\mathbf{0}$
\end_inset
then
\begin_inset Formula $e$
\end_inset
is never excited or
\emph on
dead
\emph default
. Event excitation concepts also form a commutative monoid with
\begin_inset space ~
\end_inset
\begin_inset Formula $e=\mathbf{1}$
\end_inset
and
\begin_inset space ~
\end_inset
\begin_inset Formula $\diamond=\wedge$
\end_inset
. This definition corresponds to the
\emph on
parallel composition
\emph default
operation, a standard notion for many behavioural models
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
after ""
key "PCOMP"
\end_inset
.
\end_layout
\begin_layout Standard
\lang british
Some states may be impossible or undesirable during the normal system operation. To express this we use the