forked from junyanz/pytorch-CycleGAN-and-pix2pix
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
96 lines (86 loc) · 3.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import time
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from slackbot import slackbot
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0
time_start_training = time.time()
total_epoch = opt.niter + opt.niter_decay
bot = slackbot(opt.name)
is_debugging = opt.debugging
if (not is_debugging):
bot.trainingBegin(total_epoch, opt.slack_freq)
if (is_debugging):
print("--------------------this is debugging mode--------------------")
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
if (is_debugging):
time_before_dataEnum = time.time()
print("::start enumerate dataset::")
for i, data in enumerate(dataset):
iter_start_time = time.time()
if (is_debugging):
print("::[%d]time_data_enumerate : (%4f)::" %
(i, iter_start_time - time_before_dataEnum))
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if (is_debugging):
time_after_modelOptimize = time.time()
print("::[%d]time_model_optimize : (%4f)::" %
(i, time_after_modelOptimize - iter_start_time))
if total_steps % opt.display_freq == 0:
visualizer.display_current_results(model.get_current_visuals(),
epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch,
float(epoch_iter) / dataset_size,
opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
if (is_debugging):
iter_end_time = time.time()
print("::[%d]time_etc: (%4f)::" % (i,
iter_end_time - time_after_modelOptimize))
print("::[%d]time_total_iter: (%4f)::" % (i,
iter_end_time - iter_start_time))
print("")
time_before_dataEnum = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
time_taken = time.strftime(
"%H:%M:%S", time.gmtime(time.time() - time_start_training))
print('Time Taken: %s' % time_taken)
model.save('latest')
model.save(epoch)
if epoch % opt.slack_freq == 0:
time_taken = time.strftime(
"%H:%M:%S", time.gmtime(time.time() - time_start_training))
bot.trainingProgress(epoch, total_epoch, time_taken)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, total_epoch, time.time() - epoch_start_time))
model.update_learning_rate()
model.save(epoch)
time_taken = time.strftime("%H:%M:%S",
time.gmtime(time.time() - time_start_training))
print('End of training of epoch (%d) \t Time Taken: %s' % (total_epoch,
time_taken))
if (not is_debugging):
bot.trainingDone(total_epoch, time_taken)