File: compute_matching.py
Complete the function compute_matching
, which takes two lists of equal length and returns a list of the same length where the ith element is True
if the ith elements of the two lists are equal. For example, given the arrays np.array([10, 20, 30])
and np.array([10, 30, 30])
, the function would return np.array([True, False, True])
.
File: compute_matching_indices.py
Complete the function compute_matching_indices
, which takes two arrays of equal length and returns an array of the indices where the elements of the two arrays are equal. For example, given the arrays np.array([10, 20, 30])
and np.array([10, 30, 30])
, the function would return np.array([0, 2])
.
File: powers.py
Complete the function powers(N, p)
, which computes the first N
powers of p
. For example, powers(5,2)
would return the array np.array([1, 2, 4, 8, 16])
.
File: clip_values.py
Complete the function clip_values
, which takes in an n-dimensional array and returns a new array with its values clipped between min_val
and max_val
. For example, clip_values(np.array([1, 2, 3]), min_val=2)
would return np.array([2, 2, 3]
and clip_values(np.array([1, 2, 3]), max_val=2)
would return np.array([1, 2, 2]
. Remember to return a new array and to not modify the input array.
File: find_closest_value.py
Complete the function find_closest_value
which will find the entry and the value in an one-dimensional array that is closest to the mean of the array. For example find_closest_value(np.array([1.0, 2.0, 3.0]))
would return (1, 2.0)
and find_closest_value(np.array([5.0, 1.0, 8.0]))
would return (0, 5.0)
.
File: select_row_col.py
Complete the function select_row_col(x, row_idx, col_idx)
that takes in a 2-dimensional array x
and returns a subset of rows or columns or sub-array specified by row_idx
and col_idx
. If you specify row_idx
as a list and col_idx
as None, you will return a subset of rows. Similarly, if you specify row_idx
as None and col_idx
as a list, you will return a subset of columns. If you specify row_idx
as a list and col_idx
as a list, you will return a sub-array specified by the given rows and columns. If you specify both row_idx
and col_idx
as None, you will return the array itself. For example,
In [1]: x = np.array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
In [2]: se5.select_row_col(x, [1, 2], None)
Out[2]:
array([[3, 4, 5],
[6, 7, 8]])
In [3]: se5.select_row_col(x, None, [1, 2])
Out[3]:
array([[1, 2],
[4, 5],
[7, 8]])
In [4]: se5.select_row_col(x, [1, 2], [0, 2])
Out[4]:
array([[3, 5],
[6, 8]])