-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdominatio.py
117 lines (94 loc) · 3.68 KB
/
dominatio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from collections import namedtuple
from math import sqrt
import random,csv,os,argparse,sys
try:
import Image
except ImportError:
from PIL import Image
Point = namedtuple('Point', ('coords', 'n', 'ct'))
Cluster = namedtuple('Cluster', ('points', 'center', 'n'))
def get_points(img):
points = []
w, h = img.size
for count, color in img.getcolors(w * h):
points.append(Point(color, 3, count))
return points
rtoh = lambda rgb: '#%s' % ''.join(('%02x' % p for p in rgb))
def colorz(filename, n=3):
img = Image.open(filename)
if img.mode is not "RGB":
img = img.convert("RGB")
img.thumbnail((200, 200))
w, h = img.size
points = get_points(img)
clusters = kmeans(points, n, 1)
rgbs = [map(int, c.center.coords) for c in clusters]
return map(rtoh, rgbs)
def euclidean(p1, p2):
return sqrt(sum([
(p1.coords[i] - p2.coords[i]) ** 2 for i in range(p1.n)
]))
def calculate_center(points, n):
vals = [0.0 for i in range(n)]
plen = 0
for p in points:
plen += p.ct
for i in range(n):
vals[i] += (p.coords[i] * p.ct)
return Point([(v / plen) for v in vals], n, 1)
def kmeans(points, k, min_diff):
clusters = [Cluster([p], p, p.n) for p in random.sample(points, k)]
while 1:
plists = [[] for i in range(k)]
for p in points:
smallest_distance = float('Inf')
for i in range(k):
distance = euclidean(p, clusters[i].center)
if distance < smallest_distance:
smallest_distance = distance
idx = i
plists[idx].append(p)
diff = 0
for i in range(k):
old = clusters[i]
center = calculate_center(plists[i], old.n)
new = Cluster(plists[i], center, old.n)
clusters[i] = new
diff = max(diff, euclidean(old.center, new.center))
if diff < min_diff:
break
return clusters
def main():
parser = argparse.ArgumentParser(description='Dominatio. Get the dominant color(s) from an image')
parser.add_argument("-d", "--directory", dest="folder", help="the path to your images folder", required=True)
parser.add_argument("-o", "--output", dest="output", default="output.tsv", help="the output file (.tsv file)")
parser.add_argument("-c", "--colorNumber", dest="color_number", default=1, type=int, help="The number of dominant color(s) to calculate. By default just the first one, max 10")
options = parser.parse_args()
if options.color_number > 10:
sys.stdout.write("It seems you want too many colors! I'll calculate max 10 colors :P\n")
sys.stdout.flush()
options.color_number = 10
images = [f for f in os.listdir(options.folder) if os.path.isfile(os.path.join(options.folder,f))]
writer = csv.writer(open(options.output, 'wb'), delimiter='\t', quotechar='"')
headers = ['file_name']
for i in range(options.color_number):
headers.append('color_' + str(i+1))
writer.writerow(headers)
total = len(images)
for n, image in enumerate(images):
try:
row = [image]
sys.stdout.write('\x1b[2K\r[' + str(n+1) + '/' + str(total) +'] ' + image)
sys.stdout.flush()
dominant = colorz(os.path.join(options.folder,image), options.color_number)
row.extend(dominant)
writer.writerow(row)
except:
sys.stdout.write('\x1b[2K\r[' + str(n+1) + '/' + str(total) +'] ' + "I'm not an image: " + image)
sys.stdout.flush()
continue
sys.stdout.write('\x1b[2K\r')
sys.stdout.flush()
sys.exit()
if __name__ == '__main__':
main()