-
Notifications
You must be signed in to change notification settings - Fork 263
/
Copy pathtest_mergercnn.sh
58 lines (46 loc) · 1.3 KB
/
test_mergercnn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
ge:
# ./experiments/scripts/faster_rcnn_end2end.sh GPU NET DATASET [options args to {train,test}_net.py]
# DATASET is either pascal_voc or coco.
#
# Example:
# ./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc \
# --set EXP_DIR foobar RNG_SEED 42 TRAIN.SCALES "[400, 500, 600, 700]"
set -x
set -e
export PYTHONUNBUFFERED="True"
GPU_ID=$1
NET=$2
NET_lc=${NET,,}
DATASET=$3
array=( $@ )
len=${#array[@]}
EXTRA_ARGS=${array[@]:3:$len}
EXTRA_ARGS_SLUG=${EXTRA_ARGS// /_}
case $DATASET in
pascal_voc)
TRAIN_IMDB="voc_2007_trainval"
TEST_IMDB="voc_2007_test"
PT_DIR="pascal_voc"
ITERS=70000
;;
coco)
# This is a very long and slow training schedule
# You can probably use fewer iterations and reduce the
# time to the LR drop (set in the solver to 350,000 iterations).
TRAIN_IMDB="coco_2014_train"
TEST_IMDB="coco_2014_minival"
PT_DIR="coco"
ITERS=490000
;;
*)
echo "No dataset given"
exit
;;
esac
NET_FINAL="./data/pretrained_model/ResNet50.v2.caffemodel"
time ./tools/test_net.py --gpu ${GPU_ID} \
--def models/${PT_DIR}/${NET}/FP_Net_end2end/test_mergercnn.prototxt \
--net output/FP_Net_end2end/voc_2007_trainval/fpn_iter_60000.caffemodel \
--imdb ${TEST_IMDB} \
--cfg experiments/cfgs/FP_Net_end2end.yml \
${EXTRA_ARGS}