-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_file.py
70 lines (59 loc) · 2.1 KB
/
model_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class UnFlatten(nn.Module):
def forward(self, input, size=1024):
return input.view(input.size(0), size, 1, 1)
class VAE(nn.Module):
def __init__(self, image_channels=3, h_dim=1024, z_dim=32):
super().__init__()
# Define the encoder layers
self.encoder = nn.Sequential(
nn.Conv2d(image_channels, 32, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=4, stride=2),
nn.ReLU(),
Flatten()
)
# Define the bottleneck layers
self.h2mu = nn.Linear(h_dim, z_dim)
self.h2sigma = nn.Linear(h_dim, z_dim)
self.z2h = nn.Linear(z_dim, h_dim)
# Define the decoder layers
self.decoder = nn.Sequential(
UnFlatten(),
nn.ConvTranspose2d(h_dim, 128, kernel_size=5, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=5, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=6, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(32, image_channels, kernel_size=6, stride=2),
nn.Sigmoid(),
)
def reparameterize(self, mu, logvar):
std = logvar.mul(0.5).exp_()
eps = torch.randn(*mu.size())
z = mu + std * eps
return z
def bottleneck(self, h):
mu = self.h2mu(h)
logvar = self.h2sigma(h)
z = self.reparameterize(mu, logvar)
return z, mu, logvar
def encode(self, x):
return self.bottleneck(self.encoder(x))[0]
def decode(self, z):
return self.decoder(self.z2h(z))
def forward(self, x):
h = self.encoder(x)
z, mu, logvar = self.bottleneck(h)
z = self.z2h(z)
return self.decoder(z), mu, logvar