-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
89 lines (71 loc) · 3.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from flask import Flask, render_template, jsonify, request
from flask_cors import CORS, cross_origin
from diabeticRetinopathy.pipeline.diabetes.prediction_pipeline import PredictionPipeline as MLPrediction
from diabeticRetinopathy.pipeline.diabetic_retinopathy.prediction_pipeline import PredictionPipeline as DRPrediction
from diabeticRetinopathy.pipeline.diabetes.training_pipeline import TrainingPipeline as MLTraining
from diabeticRetinopathy.pipeline.diabetic_retinopathy.training_pipeline import TrainingPipeline as DLTraining
import os
import pandas as pd
import numpy as np
from diabeticRetinopathy.utils import read_yaml, load_object, create_directories
from diabeticRetinopathy.constants import *
from keras.models import load_model
from keras.preprocessing import image
app = Flask(__name__)
CORS(app)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/train-diabetes-prediction-model')
def trainDiabetesPredictionRoute():
training_pipeline = MLTraining()
training_pipeline.train()
return 'Diabetes Prediction Model trained successfully'
@app.route('/train-diabetic-retinopathy-prediction-model')
def trainDiabeticRetinopathyPredictionRoute():
training_pipeline = DLTraining()
training_pipeline.train()
return 'Diabetic Retinopathy Model trained successfully'
@app.route('/predict', methods=['POST'])
@cross_origin()
def predictRoute():
try:
dr_class_label = ''
config = read_yaml(CONFIG_FILE_PATH)
params = read_yaml(PARAMS_FILE_PATH)
input_features = {
'Pregnancies': [int(request.form.get('Pregnancies'))],
'Glucose': [int(request.form.get('Glucose'))],
'BloodPressure': [int(request.form.get('BloodPressure'))],
'SkinThickness': [int(request.form.get('SkinThickness'))],
'Insulin': [int(request.form.get('Insulin'))],
'BMI': [float(request.form.get('BMI'))],
'DiabetesPedigreeFunction': [float(request.form.get('DiabetesPedigreeFunction'))],
'Age': [int(request.form.get('Age'))]
}
# ML Model Prediction
input_features = pd.DataFrame(input_features)
prediction_pipeline = MLPrediction()
ml_prediction, ml_probabilities = prediction_pipeline.predict(input_features)
# DL Model Prediction
prediction_config = config.prediction
create_directories([prediction_config.root_dir])
img_path = os.path.join(prediction_config.root_dir, 'inputImage.jpg')
eye_image = request.files['eye_image']
eye_image.save(img_path)
classifier = DRPrediction(img_path)
dl_prediction, dl_probabilities = classifier.predict()
if (ml_prediction != 0) or (dl_prediction != 0):
if dl_prediction != 0:
probability = dl_probabilities[1]
else:
probability = ml_probabilities[1]
status = 'Diabetic'
else:
probability = dl_probabilities[0]
status = 'Non-Diabetic'
return render_template('index.html', status=status, probability=probability*100, show_prediction=True)
except Exception as e:
raise e
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8080)