-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutil.py
200 lines (157 loc) · 5.29 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import json
import numpy as np
from scipy.optimize import minimize
DIST_TO_BIN_SLOPE = 73.484
DIST_TO_BIN_INTERCEPT = 13.2521
TMF882X_BIN_WIDTH = 1 / DIST_TO_BIN_SLOPE
ZONE_SPEC_PATH = "zone_spec.json"
with open(ZONE_SPEC_PATH, "r") as f:
ZONE_SPEC = json.load(f)
def TMF882X_dist_to_bin(dist, slope=DIST_TO_BIN_SLOPE, intercept=DIST_TO_BIN_INTERCEPT):
"""Relates a physical distance to the corresponding histogram bin that distance affects
for the real world measurements of the TMF882X
"""
bin = int((slope * dist) + intercept) # TODO is rounding up, down, or nearest best?
if bin < 0 or bin > 127:
return None
return bin
def TMF882X_bin_to_dist(bin, slope=DIST_TO_BIN_SLOPE, intercept=DIST_TO_BIN_INTERCEPT):
if bin < 0 or bin > 127:
return None
return (bin - intercept) / slope
def rots_to_u_vec(x_rot, y_rot):
"""
Given some angular coordinate rotations (x_rot and y_rot), return a 3D unit vector which points
in the given direction, relative to the camera's optical axis (which is in the positive z
direction).
Args:
x_rot, y_rot: direction to face in angular coordinates
Returns:
3x1 numpy array: a unit vector pointing in the given direction
"""
# start with the u vector facing out from the camera
u = np.array([0, 0, 1])
# to rotate in the positive x angular direction, you need to rotate around the y axis in a
# negative direction
x_rot_mat = np.array(
[[np.cos(x_rot), 0, np.sin(x_rot)], [0, 1, 0], [-np.sin(x_rot), 0, np.cos(x_rot)]]
)
# to rotate in the positive y angular direction, you need to rotate around the x axis in a
# positive direction
y_rot_mat = np.array(
[
[1, 0, 0],
[0, np.cos(-y_rot), -np.sin(-y_rot)],
[0, np.sin(-y_rot), np.cos(-y_rot)],
]
)
u = x_rot_mat @ u
u = y_rot_mat @ u
return u
def fit_plane(pts, initial_est=[0, 0, 1, 0.5]):
"""
Fit a plane given by ax+d = 0 to a set of points
Works by minimizing the sum over all points x of ax+d
Ars:
pts: array of points in 3D space
Returns:
(3x1 numpy array): a vector for plane equation
(float): d in plane equation
(float): sum of residuals for points to plane (orthogonal l2 distance)
"""
pts = np.array(pts)
def loss_fn(x, points):
a = np.array(x[:3])
d = x[3]
loss = 0
for point in points:
loss += np.abs(np.dot(a, np.array(point)) - d)
return loss
def a_constraint(x):
return np.linalg.norm(x[:3]) - 1
soln = minimize(
loss_fn,
np.array(initial_est),
args=(pts),
method="slsqp",
constraints=[{"type": "eq", "fun": a_constraint}],
bounds=[(-1, 1), (-1, 1), (-1, 1), (0, None)],
)
a = soln.x[:3]
d = soln.x[3]
res = soln.fun
return a, d, res
def fit_plane_zdist(pts):
"""
https://math.stackexchange.com/a/2306029
"""
pts = np.array(pts)
xs = pts[:, 0]
ys = pts[:, 1]
zs = pts[:, 2]
tmp_A = []
tmp_b = []
for i in range(len(xs)):
tmp_A.append([xs[i], ys[i], 1])
tmp_b.append(zs[i])
b = np.matrix(tmp_b).T
A = np.matrix(tmp_A)
fit = (A.T * A).I * A.T * b
errors = b - A * fit
residual = np.linalg.norm(errors)
# print("solution: %f x + %f y + %f = z" % (fit[0].item(), fit[1].item(), fit[2].item()))
a = [fit[0].item(), fit[1].item(), -1]
d = fit[2].item()
a = a / np.linalg.norm(a)
d = -d * np.linalg.norm(a)
if d < 0:
a = -a
d = -d
return a, d, residual
def angle_between_vecs(v1, v2, acute=True):
"""
Find the angle between two vectors
https://stackoverflow.com/a/39533085/8841061
Args:
v1 (np.array): 3x1 vector
v2 (np.array): 3x1 vector
acute (bool): if True, return the acute angle between the vectors. Otherwise, return the
obtuse angle between the vectors
Returns:
angle (float): angle between the vectors
"""
angle = np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
if acute == True:
return angle
else:
return 2 * np.pi - angle
def intersect_ray_plane(p, u, a, d, epsilon=1e-6):
"""Find intersection of a ray with a plane
https://rosettacode.org/wiki/Find_the_intersection_of_a_line_with_a_plane#Python
Args:
p (3-tuple of floats): starting point of ray
u (3-tuple of floats): direction of ray
a (3-tuple of floats): the equation for the plane where a[0]x + a[1]y + a[2]z - d = 0.
d (float) the c portion of the plane equation.
Returns:
The distance and intersection point as a tuple, for example, with distance
5.2 and intersection point (8.1, 0.3, 4):
(5.2, (8.1, 0.3, 4)) or float('inf') if the sensor does not see the plane.
Raises:
ValueError: The line is undefined.
"""
a = np.array(a)
p = np.array(p)
u = np.array(u)
plane_point = a * d
ndotu = a.dot(u)
if abs(ndotu) < epsilon:
return None
w = p - plane_point
si = -a.dot(w) / ndotu
Psi = w + si * u + plane_point
dist = np.linalg.norm(Psi - p)
if np.allclose((dist * u) + p, Psi):
return (dist, Psi)
else:
return None