forked from KevinPal/FPGA-3D-Renderer-ECE385
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrix_ops.sv
275 lines (227 loc) · 7.89 KB
/
matrix_ops.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Generated a projection matrix with the specified paramaters
// Used to convert points from 3D to 2D
module gen_prj_mat(
input int half_width,
input int half_height,
input int near,
input int far,
output int prj[4][4]
);
assign prj[0][0] = (near * (1<<8)) / half_width;
assign prj[0][1] = 0;
assign prj[0][2] = 0;
assign prj[0][3] = 0;
assign prj[1][0] = 0;
assign prj[1][1] = (near * (1<<8)) / half_height;
assign prj[1][2] = 0;
assign prj[1][3] = 0;
assign prj[2][0] = 0;
assign prj[2][1] = 0;
assign prj[2][2] = (far * (1<<8)) / (near - far);
assign prj[2][3] = (-1) * (1<<8);
assign prj[3][0] = 0;
assign prj[3][1] = 0;
assign prj[3][2] = (near*far/(1<<8))/(near-far);
assign prj[3][3] = 0;
endmodule
// Generated the translation matrix for the given offset position and
// scale. Used to translate and scale verticies
module gen_trans_mat(
input int scale,
input int pos[3],
output int out[4][4]
);
assign out[0][0] = scale;
assign out[0][1] = 0;
assign out[0][2] = 0;
assign out[0][3] = pos[0];
assign out[1][0] = 0;
assign out[1][1] = scale;
assign out[1][2] = 0;
assign out[1][3] = pos[1];
assign out[2][0] = 0;
assign out[2][1] = 0;
assign out[2][2] = scale;
assign out[2][3] = pos[2];
assign out[3][0] = 0;
assign out[3][1] = 0;
assign out[3][2] = 0;
assign out[3][3] = 1 * (1<<8);
endmodule
// Generates the camera matrix. Used to rotate the camera
module gen_camera_mat(
input int x_axis[3],
input int y_axis[3],
input int z_axis[3],
input int camera_pos[3],
input int trans[3],
output int out[4][4]
);
int dot_pos[3];
vec_dot dot1(x_axis, camera_pos, dot_pos[0]);
vec_dot dot2(y_axis, camera_pos, dot_pos[1]);
vec_dot dot3(z_axis, camera_pos, dot_pos[2]);
assign out[0][0] = x_axis[0];
assign out[0][1] = y_axis[0];
assign out[0][2] = z_axis[0];
assign out[0][3] = trans[0];
assign out[1][0] = x_axis[1];
assign out[1][1] = y_axis[1];
assign out[1][2] = z_axis[1];
assign out[1][3] = trans[1];
assign out[2][0] = x_axis[2];
assign out[2][1] = y_axis[2];
assign out[2][2] = z_axis[2];
assign out[2][3] = trans[2];
assign out[3][0] = dot_pos[0];
assign out[3][1] = dot_pos[1];
assign out[3][2] = dot_pos[2];
assign out[3][3] = 1 * (1<<8);
endmodule
// Multiplies a 4x4 matrix by a 4d vector.
// Used to multiply verticies by the total projection matrix
module mat_vec_mul(
input int m1[4][4],
input int vec[4],
output int out[4]
);
assign out[0] = ((m1[0][0] * vec[0])/(1<<8)) + ((m1[0][1] * vec[1])/(1<<8)) + ((m1[0][2] * vec[2])/(1<<8)) + ((m1[0][3] * vec[3])/(1<<8));
assign out[1] = ((m1[1][0] * vec[0])/(1<<8)) + ((m1[1][1] * vec[1])/(1<<8)) + ((m1[1][2] * vec[2])/(1<<8)) + ((m1[1][3] * vec[3])/(1<<8));
assign out[2] = ((m1[2][0] * vec[0])/(1<<8)) + ((m1[2][1] * vec[1])/(1<<8)) + ((m1[2][2] * vec[2])/(1<<8)) + ((m1[2][3] * vec[3])/(1<<8));
assign out[3] = ((m1[3][0] * vec[0])/(1<<8)) + ((m1[3][1] * vec[1])/(1<<8)) + ((m1[3][2] * vec[2])/(1<<8)) + ((m1[3][3] * vec[3])/(1<<8));
endmodule
// Multiplies a 4x4 matrix by another 4x4 matrix
// Used to combine various matricies into one
module mat_mat_mul(
input int m1[4][4],
input int m2[4][4],
output int out[4][4]
);
assign out[0][0] =((m1[0][0] * m2[0][0])/(1<<8)) + ((m1[0][1] * m2[1][0])/(1<<8)) + ((m1[0][2] * m2[2][0])/(1<<8)) + ((m1[0][3] * m2[3][0])/(1<<8));
assign out[0][1] =((m1[0][0] * m2[0][1])/(1<<8)) + ((m1[0][1] * m2[1][1])/(1<<8)) + ((m1[0][2] * m2[2][1])/(1<<8)) + ((m1[0][3] * m2[3][1])/(1<<8));
assign out[0][2] =((m1[0][0] * m2[0][2])/(1<<8)) + ((m1[0][1] * m2[1][2])/(1<<8)) + ((m1[0][2] * m2[2][2])/(1<<8)) + ((m1[0][3] * m2[3][2])/(1<<8));
assign out[0][3] =((m1[0][0] * m2[0][3])/(1<<8)) + ((m1[0][1] * m2[1][3])/(1<<8)) + ((m1[0][2] * m2[2][3])/(1<<8)) + ((m1[0][3] * m2[3][3])/(1<<8));
assign out[1][0] =((m1[1][0] * m2[0][0])/(1<<8)) + ((m1[1][1] * m2[1][0])/(1<<8)) + ((m1[1][2] * m2[2][0])/(1<<8)) + ((m1[1][3] * m2[3][0])/(1<<8));
assign out[1][1] =((m1[1][0] * m2[0][1])/(1<<8)) + ((m1[1][1] * m2[1][1])/(1<<8)) + ((m1[1][2] * m2[2][1])/(1<<8)) + ((m1[1][3] * m2[3][1])/(1<<8));
assign out[1][2] =((m1[1][0] * m2[0][2])/(1<<8)) + ((m1[1][1] * m2[1][2])/(1<<8)) + ((m1[1][2] * m2[2][2])/(1<<8)) + ((m1[1][3] * m2[3][2])/(1<<8));
assign out[1][3] =((m1[1][0] * m2[0][3])/(1<<8)) + ((m1[1][1] * m2[1][3])/(1<<8)) + ((m1[1][2] * m2[2][3])/(1<<8)) + ((m1[1][3] * m2[3][3])/(1<<8));
assign out[2][0] =((m1[2][0] * m2[0][0])/(1<<8)) + ((m1[2][1] * m2[1][0])/(1<<8)) + ((m1[2][2] * m2[2][0])/(1<<8)) + ((m1[2][3] * m2[3][0])/(1<<8));
assign out[2][1] =((m1[2][0] * m2[0][1])/(1<<8)) + ((m1[2][1] * m2[1][1])/(1<<8)) + ((m1[2][2] * m2[2][1])/(1<<8)) + ((m1[2][3] * m2[3][1])/(1<<8));
assign out[2][2] =((m1[2][0] * m2[0][2])/(1<<8)) + ((m1[2][1] * m2[1][2])/(1<<8)) + ((m1[2][2] * m2[2][2])/(1<<8)) + ((m1[2][3] * m2[3][2])/(1<<8));
assign out[2][3] =((m1[2][0] * m2[0][3])/(1<<8)) + ((m1[2][1] * m2[1][3])/(1<<8)) + ((m1[2][2] * m2[2][3])/(1<<8)) + ((m1[2][3] * m2[3][3])/(1<<8));
assign out[3][0] =((m1[3][0] * m2[0][0])/(1<<8)) + ((m1[3][1] * m2[1][0])/(1<<8)) + ((m1[3][2] * m2[2][0])/(1<<8)) + ((m1[3][3] * m2[3][0])/(1<<8));
assign out[3][1] =((m1[3][0] * m2[0][1])/(1<<8)) + ((m1[3][1] * m2[1][1])/(1<<8)) + ((m1[3][2] * m2[2][1])/(1<<8)) + ((m1[3][3] * m2[3][1])/(1<<8));
assign out[3][2] =((m1[3][0] * m2[0][2])/(1<<8)) + ((m1[3][1] * m2[1][2])/(1<<8)) + ((m1[3][2] * m2[2][2])/(1<<8)) + ((m1[3][3] * m2[3][2])/(1<<8));
assign out[3][3] =((m1[3][0] * m2[0][3])/(1<<8)) + ((m1[3][1] * m2[1][3])/(1<<8)) + ((m1[3][2] * m2[2][3])/(1<<8)) + ((m1[3][3] * m2[3][3])/(1<<8));
endmodule
// Computes the cross product of 2 3 element vectors. Order matters
module vec_cross(
input int a[3],
input int b[3],
output int out[3]
);
assign out[0] = (a[1]/(1<<8))*b[2] - (a[2]/(1<<8))*b[1];
assign out[1] = (a[2]/(1<<8))*b[0] - (a[0]/(1<<8))*b[2];
assign out[2] = ((a[0]*b[1])/(1<<8)) + (-1 * ((a[1]*b[0])/(1<<8)));
int temp1;
int temp2;
assign temp1 = ((a[0]*b[1])/(1<<8));
assign temp2 = ((a[1]*b[0])/(1<<8));
endmodule
// Subtracts two 3D vectors
module vec_sub(
input int a[3],
input int b[3],
output int out[3]
);
assign out[0] = a[0] - b[0];
assign out[1] = a[1] - b[1];
assign out[2] = a[2] - b[2];
endmodule
// Computes the dot product of 2 3D vectors
module vec_dot(
input int a[3],
input int b[3],
output int out
);
longint a_l[3];
longint b_l[3];
always_comb begin
a_l[0] = a[0];
a_l[1] = a[1];
a_l[2] = a[2];
b_l[0] = b[0];
b_l[1] = b[1];
b_l[2] = b[2];
out = ((a_l[0] * b_l[0])/(1<<8)) + ((a_l[1] * b_l[1])/(1<<8)) + ((a_l[2] * b_l[2])/(1<<8));
end
endmodule
//https://dspguru.com/dsp/tricks/magnitude-estimator/
// Estimates vel 2D vec len
module vec2d_norm(
input int a,
input int b,
output int out
);
int abs_x, abs_y;
abs a1(a, abs_x);
abs a2(b, abs_y);
int min, max;
always_comb begin
if(abs_x > abs_y) begin
min = abs_y;
max = abs_x;
end else begin
min = abs_x;
max = abs_y;
end
out = ((243 * max) / (1<<8)) + ((100 * min)/(1<<8));
end
endmodule
// Estimates the length of a 3d vector
module vec_norm(
input int a[3],
output int out
);
int temp;
vec2d_norm n1(a[0], a[1], temp);
vec2d_norm n2(temp, a[2], out);
endmodule
// Multiplies a 3D vector by a scalar
module vec_mul(
input int a[3],
input int b,
output int out[3]
);
assign out[0] = (a[0]/(1<<8)) * b;
assign out[1] = (a[1]/(1<<8)) * b;
assign out[2] = (a[2]/(1<<8)) * b;
endmodule
// Multiplies a 2D vector by a scalar
module vec2_mul(
input int a[2],
input int b,
output int out[2]
);
assign out[0] = (a[0]/(1<<8)) * b;
assign out[1] = (a[1]/(1<<8)) * b;
endmodule
// Adds 2 3d vectors
module vec_add(
input int a[3],
input int b[3],
output int out[3]
);
assign out[0] = a[0] + b[0];
assign out[1] = a[1] + b[1];
assign out[2] = a[2] + b[2];
endmodule
// Adds 2 2d vectors
module vec2_add(
input int a[2],
input int b[2],
output int out[2]
);
assign out[0] = a[0] + b[0];
assign out[1] = a[1] + b[1];
endmodule