diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..129f92d --- /dev/null +++ b/.gitignore @@ -0,0 +1,5 @@ +__pycache__ +build +data +results +*.so diff --git a/configs/config_abc.yaml b/configs/config_abc.yaml new file mode 100644 index 0000000..6f5b525 --- /dev/null +++ b/configs/config_abc.yaml @@ -0,0 +1,11 @@ +dataset_name: ABC +dataset_root: data/3d_shapes_abc_training + +manifold_points: 3000 +non_manifold_points: 2000 +iter_nbr: 600000 +training_random_rotation_x: 180 +training_random_rotation_y: 180 +training_random_rotation_z: 180 + +val_interval: 5 diff --git a/configs/config_default.yaml b/configs/config_default.yaml new file mode 100644 index 0000000..d5b9e0a --- /dev/null +++ b/configs/config_default.yaml @@ -0,0 +1,45 @@ +experiment_name: null +dataset_name: null +dataset_root: null +save_dir: 'results' +train_split: 'training' +val_split: 'validation' +test_split: 'test' +filter_name: null + +manifold_points: 2048 +non_manifold_points: 2048 +random_noise: null # 0.1 +normals: False + +#training +training_random_scale: null # 0.1 +training_random_rotation_x: null # 180 +training_random_rotation_y: null # 180 +training_random_rotation_z: null # 180 +training_batch_size: 16 +training_iter_nbr: 100000 +training_lr_start: 0.001 + +resume: false + +network_backbone: FKAConv +network_latent_size: 32 +network_decoder: InterpAttentionKHeadsNet +network_decoder_k: 64 +network_n_labels: 2 + +device: "cuda" +threads: 8 +log_mode: "no_log" +logging: INFO + +val_num_mesh: null +val_interval: 1 + + + + + + + diff --git a/configs/config_shapenet.yaml b/configs/config_shapenet.yaml new file mode 100644 index 0000000..472055f --- /dev/null +++ b/configs/config_shapenet.yaml @@ -0,0 +1,8 @@ +dataset_name: ShapeNet +dataset_root: data/ShapeNet + +manifold_points: 3000 +non_manifold_points: 2048 +random_noise: 0.005 + +iter_nbr: 600000 diff --git a/configs/config_synthetic.yaml b/configs/config_synthetic.yaml new file mode 100644 index 0000000..b25d6b8 --- /dev/null +++ b/configs/config_synthetic.yaml @@ -0,0 +1,12 @@ +dataset_name: SyntheticRooms +dataset_root: data/synthetic_room_dataset + +manifold_points: 10000 +non_manifold_points: 2048 +random_noise: 0.005 + +training_batch_size: 8 +iter_nbr: 600000 + +val_interval: 5 +val_num_mesh: 20 \ No newline at end of file diff --git a/datasets/__init__.py b/datasets/__init__.py new file mode 100644 index 0000000..9552611 --- /dev/null +++ b/datasets/__init__.py @@ -0,0 +1,15 @@ +from .shapenet import ShapeNet + +from .synthetic_room import ShapeNetSyntheticRooms as SyntheticRooms + +from .scenenet import SceneNet +from .scenenet import SceneNet as SceneNet20 +from .scenenet import SceneNet as SceneNet100 +from .scenenet import SceneNet as SceneNet500 +from .scenenet import SceneNet as SceneNet1000 + +from .abc import ABCTrain as ABC +from .abc_test import ABCTest, ABCTestNoiseFree, ABCTestExtraNoise +from .real_world import RealWorld +from .famous_test import FamousTest, FamousTestNoiseFree, FamousTestExtraNoisy, FamousTestSparse, FamousTestDense +from .thingi10k_test import Thingi10kTest, Thingi10kTestNoiseFree, Thingi10kTestExtraNoisy, Thingi10kTestSparse, Thingi10kTestDense diff --git a/datasets/abc.py b/datasets/abc.py new file mode 100644 index 0000000..ba1fb48 --- /dev/null +++ b/datasets/abc.py @@ -0,0 +1,103 @@ +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import os +import numpy as np +import torch +import logging + + +class ABCTrain(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, dataset_size=None, **kwargs): + + super().__init__(root, transform, None) + + logging.info(f"Dataset - ABC Training - {split} - {dataset_size}") + + + self.root = os.path.join(self.root, "abc_train") + + self.filenames = [] + if split in ["train", "training"]: + split_file = os.path.join(self.root, "trainset.txt") + elif split in ["val", "validation"]: + split_file = os.path.join(self.root, "valset.txt") + else: + raise ValueError("Unknown split") + + with open(split_file) as f: + content = f.readlines() + content = [line.split("\n")[0] for line in content] + content = [os.path.join(self.root, "04_pts", line) for line in content] + self.filenames += content + self.filenames.sort() + + if dataset_size is not None: + self.filenames = self.filenames[:dataset_size] + + logging.info(f"Dataset - len {len(self.filenames)}") + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.metadata[self.get_category(f_id)]["name"] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def process(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + + def get_data_for_evaluation(self, idx): + filename = self.filenames[idx] + raise NotImplementedError + data_shape = np.load(os.path.join(filename, "pointcloud.npz")) + data_space = np.load(os.path.join(filename, "points.npz")) + return data_shape, data_space + + def get(self, idx): + """Get item.""" + filename = self.filenames[idx] + + pts_shp = np.load(filename+".xyz.npy") + + filename = filename.replace("04_pts", "05_query_pts") + pts_space = np.load(filename+".ply.npy") + + filename = filename.replace("05_query_pts", "05_query_dist") + occupancies = np.load(filename+".ply.npy") + occupancies = (occupancies>0).astype(np.int64) + + pts_shp = torch.tensor(pts_shp, dtype=torch.float) + pts_space = torch.tensor(pts_space, dtype=torch.float) + occupancies = torch.tensor(occupancies, dtype=torch.long) + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + pos_non_manifold=pts_space, occupancies=occupancies, # + ) + + return data \ No newline at end of file diff --git a/datasets/abc_test.py b/datasets/abc_test.py new file mode 100644 index 0000000..bc54ae5 --- /dev/null +++ b/datasets/abc_test.py @@ -0,0 +1,119 @@ +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import os +import numpy as np +import torch +import glob +import logging + + +class ABCTest(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, dataset_size=None, variant_directory="abc", **kwargs): + super().__init__(root, transform, None) + + logging.info(f"Dataset - ABC Test - Test only - {dataset_size}") + + + self.root = os.path.join(self.root, variant_directory) + + self.filenames = [] + split_file = os.path.join(self.root, "testset.txt") + + with open(split_file) as f: + content = f.readlines() + content = [line.split("\n")[0] for line in content] + content = [os.path.join(self.root, "04_pts", line) for line in content] + self.filenames += content + self.filenames.sort() + + if dataset_size is not None: + self.filenames = self.filenames[:dataset_size] + + logging.info(f"Dataset - len {len(self.filenames)}") + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.metadata[self.get_category(f_id)]["name"] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def process(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + + def get_data_for_evaluation(self, idx): + filename = self.filenames[idx] + raise NotImplementedError + data_shape = np.load(os.path.join(filename, "pointcloud.npz")) + data_space = np.load(os.path.join(filename, "points.npz")) + return data_shape, data_space + + def get(self, idx): + """Get item.""" + filename = self.filenames[idx] + + pts_shp = np.load(filename+".xyz.npy") + + # np.savetxt("/root/no_backup/test.xyz", np.concatenate([pts_space, occupancies[:,np.newaxis]], axis=1)) + # exit() + + pts_shp = torch.tensor(pts_shp, dtype=torch.float) + pts_space = torch.ones((1,3), dtype=torch.float) + occupancies = torch.ones((1,), dtype=torch.long) + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + pos_non_manifold=pts_space, occupancies=occupancies, # + ) + + return data + +class ABCTestNoiseFree(ABCTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="abc_noisefree", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + + +class ABCTestExtraNoise(ABCTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="abc_extra_noisy", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) diff --git a/datasets/famous_test.py b/datasets/famous_test.py new file mode 100644 index 0000000..e223ba8 --- /dev/null +++ b/datasets/famous_test.py @@ -0,0 +1,139 @@ +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import os +import numpy as np +import torch +import logging + +class FamousTest(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="famous_original", dataset_size=None, **kwargs): + + super().__init__(root, transform, None) + + logging.info(f"Dataset - Famous Test - Test only - {dataset_size}") + + + self.root = os.path.join(self.root, variant_directory) + + self.filenames = [] + split_file = os.path.join(self.root, "testset.txt") + + with open(split_file) as f: + content = f.readlines() + content = [line.split("\n")[0] for line in content] + content = [os.path.join(self.root, "04_pts", line) for line in content] + self.filenames += content + self.filenames.sort() + + if dataset_size is not None: + self.filenames = self.filenames[:dataset_size] + + logging.info(f"Dataset - len {len(self.filenames)}") + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.metadata[self.get_category(f_id)]["name"] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def process(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + + def get_data_for_evaluation(self, idx): + filename = self.filenames[idx] + raise NotImplementedError + data_shape = np.load(os.path.join(filename, "pointcloud.npz")) + data_space = np.load(os.path.join(filename, "points.npz")) + return data_shape, data_space + + def get(self, idx): + """Get item.""" + filename = self.filenames[idx] + + pts_shp = np.load(filename+".xyz.npy") + pts_shp = torch.tensor(pts_shp, dtype=torch.float) + pts_space = torch.ones((1,3), dtype=torch.float) + occupancies = torch.ones((1,), dtype=torch.long) + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + pos_non_manifold=pts_space, occupancies=occupancies, # + ) + + return data + + + +class FamousTestNoiseFree(FamousTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="famous_noisefree", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + +class FamousTestExtraNoisy(FamousTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="famous_extra_noisy", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + +class FamousTestSparse(FamousTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="famous_sparse", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + +class FamousTestDense(FamousTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="famous_dense", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) \ No newline at end of file diff --git a/datasets/real_world.py b/datasets/real_world.py new file mode 100644 index 0000000..091861f --- /dev/null +++ b/datasets/real_world.py @@ -0,0 +1,89 @@ +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import os +import numpy as np +import torch +import logging + +class RealWorld(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, dataset_size=None, **kwargs): + + super().__init__(root, transform, None) + + logging.info(f"Dataset - Real World- {dataset_size}") + + + self.root = os.path.join(self.root, "real_world") + + self.filenames = [] + with open(os.path.join(self.root, "testset.txt")) as f: + content = f.readlines() + content = [line.split("\n")[0] for line in content] + content = [os.path.join(self.root, "03_meshes", line) for line in content] + self.filenames += content + self.filenames.sort() + + if dataset_size is not None: + self.filenames = self.filenames[:dataset_size] + + logging.info(f"Dataset - len {len(self.filenames)}") + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.metadata[self.get_category(f_id)]["name"] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def process(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + + def get_data_for_evaluation(self, idx): + filename = self.filenames[idx] + raise NotImplementedError + data_shape = np.load(os.path.join(filename, "pointcloud.npz")) + data_space = np.load(os.path.join(filename, "points.npz")) + return data_shape, data_space + + def get(self, idx): + """Get item.""" + filename = self.filenames[idx] + + filename = filename.replace("03_meshes", "04_pts") + pts_shp = np.load(filename+".xyz.npy") + + pts_shp = torch.tensor(pts_shp, dtype=torch.float32) + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + normal=None, + pos_non_manifold=torch.zeros((1,3), dtype=torch.float32), + occupancies=None, # + ) + + return data \ No newline at end of file diff --git a/datasets/scenenet.py b/datasets/scenenet.py new file mode 100644 index 0000000..27598e6 --- /dev/null +++ b/datasets/scenenet.py @@ -0,0 +1,123 @@ +import os +import logging +import torch +from torch_geometric.data import Dataset, Data +import importlib +from pathlib import Path +import numpy as np +import trimesh + +class SceneNet(Dataset): + + + def __init__(self, + root, + train=True, + transform=None, split="training", filter_name=None, dataset_size=None, + point_density=None, + **kwargs): + + + super().__init__(root, transform, None) + + logging.info("Dataset - SceneNet") + + self.split = split + self.point_density = point_density + + self.filenames = [ + "1Bathroom/107_labels.obj.ply", + "1Bathroom/1_labels.obj.ply", + "1Bathroom/28_labels.obj.ply", + "1Bathroom/29_labels.obj.ply", + "1Bathroom/4_labels.obj.ply", + "1Bathroom/5_labels.obj.ply", + "1Bathroom/69_labels.obj.ply", + "1Bedroom/3_labels.obj.ply", + "1Bedroom/77_labels.obj.ply", + "1Bedroom/bedroom27.obj.ply", + "1Bedroom/bedroom_1.obj.ply", + "1Bedroom/bedroom_68.obj.ply", + "1Bedroom/bedroom_wenfagx.obj.ply", + "1Bedroom/bedroom_xpg.obj.ply", + "1Kitchen/1-14_labels.obj.ply", + "1Kitchen/102.obj.ply", + "1Kitchen/13_labels.obj.ply", + "1Kitchen/2.obj.ply", + "1Kitchen/35_labels.obj.ply", + "1Kitchen/kitchen_106_blender_name_and_mat.obj.ply", + "1Kitchen/kitchen_16_blender_name_and_mat.obj.ply", + "1Kitchen/kitchen_76_blender_name_and_mat.obj.ply", + "1Living-room/cnh_blender_name_and_mat.obj.ply", + "1Living-room/living_room_33.obj.ply", + "1Living-room/lr_kt7_blender_scene.obj.ply", + "1Living-room/pg_blender_name_and_mat.obj.ply", + "1Living-room/room_89_blender.obj.ply", + "1Living-room/room_89_blender_no_paintings.obj.ply", + "1Living-room/yoa_blender_name_mat.obj.ply", + "1Office/2_crazy3dfree_labels.obj.ply", + "1Office/2_hereisfree_labels.obj.ply", + "1Office/4_3dmodel777.obj.ply", + "1Office/4_hereisfree_labels.obj.ply", + "1Office/7_crazy3dfree_old_labels.obj.ply", + ] + self.filenames = [os.path.join(self.root, filename) for filename in self.filenames] + self.filenames.sort() + + self.dataset_size = dataset_size + if self.dataset_size is not None: + self.filenames = self.filenames[:self.dataset_size] + + logging.info(f"Dataset - len {len(self.filenames)}") + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + def get_category(self, idx): + return self.filenames[idx].split("/")[-2] + + def get_object_name(self, idx): + return self.filenames[idx].split("/")[-1] + + def get_class_name(self, idx): + return "n/a" + + + def get_data_for_evaluation(self, idx): + raise NotImplementedError + scene = self.filenames[idx] + input_pointcloud = np.load(scene) + return input_pointcloud, None + + + def get(self, idx): + """Get item.""" + + # load the mesh + scene_filename = self.filenames[idx] + + data = np.loadtxt(scene_filename+".xyz", dtype=np.float32) + + pos = data[:,:3] + nls = data[:,3:] + + pos = torch.tensor(pos, dtype=torch.float) + nls = torch.tensor(nls, dtype=torch.float) + pos_non_manifold = torch.zeros((1,3), dtype=torch.float) + + + data = Data(shape_id=idx, x=torch.ones_like(pos), + normal=nls, + pos=pos, pos_non_manifold=pos_non_manifold + ) + + return data \ No newline at end of file diff --git a/datasets/scenenet_sample.py b/datasets/scenenet_sample.py new file mode 100644 index 0000000..4a40aa8 --- /dev/null +++ b/datasets/scenenet_sample.py @@ -0,0 +1,72 @@ +import os +import subprocess +import open3d as o3d +import os +import logging +import torch +from torch_geometric.data import Dataset, Data +import importlib +from pathlib import Path +import numpy as np +import trimesh + +point_density = 20 +data_dir = "data/SceneNet" +target_dir = f"data/SceneNet{point_density}" + +filenames = [ +"1Bathroom/107_labels.obj.ply", +"1Bathroom/1_labels.obj.ply", +"1Bathroom/28_labels.obj.ply", +"1Bathroom/29_labels.obj.ply", +"1Bathroom/4_labels.obj.ply", +"1Bathroom/5_labels.obj.ply", +"1Bathroom/69_labels.obj.ply", +"1Bedroom/3_labels.obj.ply", +"1Bedroom/77_labels.obj.ply", +"1Bedroom/bedroom27.obj.ply", +"1Bedroom/bedroom_1.obj.ply", +"1Bedroom/bedroom_68.obj.ply", +"1Bedroom/bedroom_wenfagx.obj.ply", +"1Bedroom/bedroom_xpg.obj.ply", +"1Kitchen/1-14_labels.obj.ply", +"1Kitchen/102.obj.ply", +"1Kitchen/13_labels.obj.ply", +"1Kitchen/2.obj.ply", +"1Kitchen/35_labels.obj.ply", +"1Kitchen/kitchen_106_blender_name_and_mat.obj.ply", +"1Kitchen/kitchen_16_blender_name_and_mat.obj.ply", +"1Kitchen/kitchen_76_blender_name_and_mat.obj.ply", +"1Living-room/cnh_blender_name_and_mat.obj.ply", +"1Living-room/living_room_33.obj.ply", +"1Living-room/lr_kt7_blender_scene.obj.ply", +"1Living-room/pg_blender_name_and_mat.obj.ply", +"1Living-room/room_89_blender.obj.ply", +"1Living-room/room_89_blender_no_paintings.obj.ply", +"1Living-room/yoa_blender_name_mat.obj.ply", +"1Office/2_crazy3dfree_labels.obj.ply", +"1Office/2_hereisfree_labels.obj.ply", +"1Office/4_3dmodel777.obj.ply", +"1Office/4_hereisfree_labels.obj.ply", +"1Office/7_crazy3dfree_old_labels.obj.ply", +] + +for filename in filenames: + + mesh = trimesh.load(os.path.join(data_dir, filename)) + target_fname = os.path.join(target_dir, filename+".xyz") + + area = mesh.area + n_points = int(area * point_density) + + pos, face_index = trimesh.sample.sample_surface(mesh, n_points) + nls = mesh.face_normals[face_index] + + pos = pos.astype(np.float16) + nls = pos.astype(np.float16) + + pts = np.concatenate([pos, nls], axis=1) + + # create the directory + os.makedirs(os.path.dirname(target_fname), exist_ok=True) + np.savetxt(target_fname, pts) diff --git a/datasets/scenenet_watertight.py b/datasets/scenenet_watertight.py new file mode 100644 index 0000000..8aad316 --- /dev/null +++ b/datasets/scenenet_watertight.py @@ -0,0 +1,66 @@ +import os +import subprocess +import open3d as o3d + +# processed using the code from https://github.com/hjwdzh/Manifold + +raw_data_dir="../downloadscenenet" +manifold_code_dir="./" + +filenames =[ +"1Bathroom/107_labels.obj", +"1Bathroom/1_labels.obj", +"1Bathroom/28_labels.obj", +"1Bathroom/29_labels.obj", +"1Bathroom/4_labels.obj", +"1Bathroom/5_labels.obj", +"1Bathroom/69_labels.obj", +"1Bedroom/3_labels.obj", +"1Bedroom/77_labels.obj", +"1Bedroom/bedroom27.obj" +"1Bedroom/bedroom_1.obj", +"1Bedroom/bedroom_68.obj", +"1Bedroom/bedroom_wenfagx.obj", +"1Bedroom/bedroom_xpg.obj", +"1Kitchen/1-14_labels.obj", +"1Kitchen/102.obj", +"1Kitchen/13_labels.obj", +"1Kitchen/2.obj", +"1Kitchen/35_labels.obj", +"1Kitchen/kitchen_106_blender_name_and_mat.obj", +"1Kitchen/kitchen_16_blender_name_and_mat.obj", +"1Kitchen/kitchen_76_blender_name_and_mat.obj", +"1Living-room/cnh_blender_name_and_mat.obj", +"1Living-room/living_room_33.obj", +"1Living-room/lr_kt7_blender_scene.obj", +"1Living-room/pg_blender_name_and_mat.obj", +"1Living-room/room_89_blender.obj", +"1Living-room/room_89_blender_no_paintings.obj", +"1Living-room/yoa_blender_name_mat.obj", +"1Office/2_crazy3dfree_labels.obj", +"1Office/2_hereisfree_labels.obj", +"1Office/4_3dmodel777.obj", +"1Office/4_hereisfree_labels.obj", +"1Office/7_crazy3dfree_labels.obj", +] + +filenames = [os.path.join(raw_data_dir, filename) for filename in filenames] + +for filename in filenames: + print(filename) + fname = filename.split("/") + fname = fname[-2:] + os.makedirs(fname[0], exist_ok=True) + fname = os.path.join(fname[0], fname[1]) + + # watertight + subprocess.call([os.path.join(manifold_code_dir,"Manifold/build/manifold"), + filename, "tmp.obj", "500000"]) + + # mesh clean + mesh = o3d.io.read_triangle_mesh("tmp.obj") + mesh.remove_degenerate_triangles() + mesh.remove_duplicated_triangles() + mesh.remove_duplicated_vertices() + + o3d.io.write_triangle_mesh(fname+".ply", mesh) diff --git a/datasets/shapenet.py b/datasets/shapenet.py new file mode 100644 index 0000000..24f5664 --- /dev/null +++ b/datasets/shapenet.py @@ -0,0 +1,181 @@ +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import os +import numpy as np +import torch +import glob +import logging + +class ShapeNet(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, dataset_size=None, **kwargs): + + super().__init__(root, transform, None) + + logging.info(f"Dataset - ShapeNet- {dataset_size}") + + self.split = split + self.filter_name = filter_name + self.filelists = [] + self.num_non_manifold_points = num_non_manifold_points + if split in ["train", "training"]: + for path in glob.glob(os.path.join(self.root,"*/train.lst")): + self.filelists.append(path) + elif split in ["validation", "val"]: + for path in glob.glob(os.path.join(self.root,"*/val.lst")): + self.filelists.append(path) + elif split in ["trainVal", "trainingValidation", "training_validation"]: + for path in glob.glob(os.path.join(self.root,"*/train.lst")): + self.filelists.append(path) + for path in glob.glob(os.path.join(self.root,"*/val.lst")): + self.filelists.append(path) + elif split in ["test", "testing"]: + for path in glob.glob(os.path.join(self.root,"*/test.lst")): + self.filelists.append(path) + self.filelists.sort() + + self.filenames = [] + + for flist in self.filelists: + with open(flist) as f: + dirname = os.path.dirname(flist) + content = f.readlines() + content = [line.split("\n")[0] for line in content] + content = [os.path.join(dirname, line) for line in content] + if dataset_size is not None: + content = content[:dataset_size] + self.filenames += content + + if self.filter_name is not None: + logging.info(f"Dataset - filter {self.filter_name}") + fname_list = [] + for fname in self.filenames: + if self.filter_name in fname: + fname_list.append(fname) + self.filenames = fname_list + + fnames = [] + for fname in self.filenames: + if os.path.exists(fname): + fnames.append(fname) + self.filenames = fnames + + logging.info(f"Dataset - len {len(self.filenames)}") + + + self.metadata = { + "04256520": { + "id": "04256520", + "name": "sofa" + }, + "02691156": { + "id": "02691156", + "name": "airplane" + }, + "03636649": { + "id": "03636649", + "name": "lamp" + }, + "04401088": { + "id": "04401088", + "name": "phone" + }, + "04530566": { + "id": "04530566", + "name": "vessel" + }, + "03691459": { + "id": "03691459", + "name": "speaker" + }, + "03001627": { + "id": "03001627", + "name": "chair" + }, + "02933112": { + "id": "02933112", + "name": "cabinet" + }, + "04379243": { + "id": "04379243", + "name": "table" + }, + "03211117": { + "id": "03211117", + "name": "display" + }, + "02958343": { + "id": "02958343", + "name": "car" + }, + "02828884": { + "id": "02828884", + "name": "bench" + }, + "04090263": { + "id": "04090263", + "name": "rifle" + } + } + + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.metadata[self.get_category(f_id)]["name"] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def process(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + + def get_data_for_evaluation(self, idx): + filename = self.filenames[idx] + data_shape = np.load(os.path.join(filename, "pointcloud.npz")) + data_space = np.load(os.path.join(filename, "points.npz")) + return data_shape, data_space + + def get(self, idx): + """Get item.""" + filename = self.filenames[idx] + manifold_data =np.load(os.path.join(filename, "pointcloud.npz")) + points_shape = manifold_data["points"] + normals_shape = manifold_data["normals"] + pts_shp = torch.tensor(points_shape, dtype=torch.float) + nls_shp = torch.tensor(normals_shape, dtype=torch.float) + + points = np.load(os.path.join(filename, "points.npz")) + points_space = torch.tensor(points["points"], dtype=torch.float) + occupancies = torch.tensor(np.unpackbits(points['occupancies']), dtype=torch.long) + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + normal=nls_shp, + pos_non_manifold=points_space, occupancies=occupancies, # + ) + + return data \ No newline at end of file diff --git a/datasets/synthetic_room.py b/datasets/synthetic_room.py new file mode 100644 index 0000000..56d1f32 --- /dev/null +++ b/datasets/synthetic_room.py @@ -0,0 +1,145 @@ +import os +import numpy as np +import glob +import torch +from torch_geometric.data import Dataset +from torch_geometric.data import Data +import logging + + + +class ShapeNetSyntheticRooms(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, dataset_size=None, **kwargs): + + super().__init__(root, transform, None) + + logging.info(f"ShapeNetSyntheticRoom") + + input_directories = ["rooms_04", "rooms_05", "rooms_06", "rooms_07", "rooms_08"] + self.split = split + self.filter_name = filter_name + self.num_non_manifold_points = num_non_manifold_points + + self.filenames = [] + for input_directory in input_directories: + if self.split in ["training", "train"]: + split_file = ["train"] + elif self.split in ["test", "testing"]: + split_file = ["test"] + elif self.split in ["val", "validation"]: + split_file = ["val"] + elif self.split in ["trainval", "trainVal", "TrainVal"]: + split_file = ["train", "val"] + else: + raise ValueError(f"Wrong split value {self.split}") + for sp_file in split_file: + lines = open(os.path.join(self.root, input_directory, f"{sp_file}.lst")).readlines() + lines = [l.split("\n")[0] for l in lines] + lines = [os.path.join(self.root, input_directory, l) for l in lines] + self.filenames += lines + + if dataset_size is not None: + self.filenames = self.filenames[:dataset_size] + logging.info(f"dataset len {len(self.filenames)}") + + + + self.object_classes = ['04256520', '03636649', '03001627', '04379243', '02933112'] + self.object_classes.sort() + + self.class_corresp = { + 0: "outside", + 1: "ground", + 2: "wall", + 3:'02933112', + 4:'03001627', + 5: '03636649', + 6: '04256520', + 7: '04379243', + } + + self.class_colors = { + 1: [100,100,100], + 2: [255,255,0], + 3: [255,0,0], + 4: [0,255,0], + 5: [0,0,255], + 6: [255,0,255], + 7: [0,255,255], + } + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.filenames[f_id].split("/")[-2] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): + pass + + def download(self): + pass + + def _process(self): + pass + + def process(self): + pass + + def len(self): + return len(self.filenames) + + def get_data_for_evaluation(self, idx): + scene = self.filenames[idx] + + input_pointcloud = glob.glob(os.path.join(scene, "pointcloud/*.npz")) + input_pointcloud = input_pointcloud[torch.randint(0,len(input_pointcloud),size=(1,)).item()] + input_pointcloud = np.load(input_pointcloud) + + non_manifold_pc = glob.glob(os.path.join(scene, "points_iou/*.npz")) + non_manifold_pc = non_manifold_pc[torch.randint(0,len(non_manifold_pc),size=(1,)).item()] + non_manifold_pc = np.load(non_manifold_pc) + + return input_pointcloud, non_manifold_pc + + def get(self, idx): + """Get item.""" + + scene = self.filenames[idx] + + manifold_data = glob.glob(os.path.join(scene, "pointcloud/*.npz")) + manifold_data = manifold_data[torch.randint(0,len(manifold_data),size=(1,)).item()] + manifold_data = np.load(manifold_data) + points_shape = manifold_data["points"] + normals_shape = manifold_data["normals"] + pts_shp = torch.tensor(points_shape, dtype=torch.float) + nls_shp = torch.tensor(normals_shape, dtype=torch.float) + + + non_manifold_data = glob.glob(os.path.join(scene, "points_iou/*.npz")) + non_manifold_data = non_manifold_data[torch.randint(0,len(non_manifold_data),size=(1,)).item()] + non_manifold_data = np.load(non_manifold_data) + points_space = torch.tensor(non_manifold_data["points"], dtype=torch.float) + occupancies = torch.tensor(np.unpackbits(non_manifold_data['occupancies']), dtype=torch.long) + + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + normal=nls_shp, + pos_non_manifold=points_space, occupancies=occupancies, # + ) + + return data \ No newline at end of file diff --git a/datasets/thingi10k_test.py b/datasets/thingi10k_test.py new file mode 100644 index 0000000..7383db7 --- /dev/null +++ b/datasets/thingi10k_test.py @@ -0,0 +1,143 @@ +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import os +import numpy as np +import torch +import logging + +class Thingi10kTest(Dataset): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="thingi10k_scans_original", dataset_size=None, **kwargs): + + super().__init__(root, transform, None) + + logging.info(f"Dataset - Thingi10k Test - Test only - {dataset_size}") + + + self.root = os.path.join(self.root, variant_directory) + + self.filenames = [] + split_file = os.path.join(self.root, "testset.txt") + + with open(split_file) as f: + content = f.readlines() + content = [line.split("\n")[0] for line in content] + content = [os.path.join(self.root, "04_pts", line) for line in content] + self.filenames += content + self.filenames.sort() + + if dataset_size is not None: + self.filenames = self.filenames[:dataset_size] + + logging.info(f"Dataset - len {len(self.filenames)}") + + def get_category(self, f_id): + return self.filenames[f_id].split("/")[-2] + + def get_object_name(self, f_id): + return self.filenames[f_id].split("/")[-1] + + def get_class_name(self, f_id): + return self.metadata[self.get_category(f_id)]["name"] + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + pass + + def download(self): + pass + + def process(self): + pass + + def _process(self): + pass + + def len(self): + return len(self.filenames) + + + def get_data_for_evaluation(self, idx): + filename = self.filenames[idx] + raise NotImplementedError + data_shape = np.load(os.path.join(filename, "pointcloud.npz")) + data_space = np.load(os.path.join(filename, "points.npz")) + return data_shape, data_space + + def get(self, idx): + """Get item.""" + filename = self.filenames[idx] + + pts_shp = np.load(filename+".xyz.npy") + + # np.savetxt("/root/no_backup/test.xyz", np.concatenate([pts_space, occupancies[:,np.newaxis]], axis=1)) + # exit() + + pts_shp = torch.tensor(pts_shp, dtype=torch.float) + pts_space = torch.ones((1,3), dtype=torch.float) + occupancies = torch.ones((1,), dtype=torch.long) + + data = Data(x = torch.ones_like(pts_shp), + shape_id=idx, + pos=pts_shp, + pos_non_manifold=pts_space, occupancies=occupancies, # + ) + + return data + + + +class Thingi10kTestNoiseFree(Thingi10kTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="thingi10k_scans_noisefree", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + +class Thingi10kTestExtraNoisy(Thingi10kTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="thingi10k_scans_extra_noisy", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + +class Thingi10kTestSparse(Thingi10kTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="thingi10k_scans_sparse", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) + +class Thingi10kTestDense(Thingi10kTest): + + def __init__(self, root, split="training", transform=None, filter_name=None, num_non_manifold_points=2048, variant_directory="thingi10k_scans_dense", dataset_size=None, **kwargs): + + super().__init__(root, + split=split, + transform=transform, + filter_name=filter_name, + num_non_manifold_points=num_non_manifold_points, + variant_directory=variant_directory, + dataset_size=dataset_size, **kwargs) \ No newline at end of file diff --git a/eval/eval_point2surf/__init__.py b/eval/eval_point2surf/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/eval/eval_point2surf/evaluation.py b/eval/eval_point2surf/evaluation.py new file mode 100644 index 0000000..0f2ce3f --- /dev/null +++ b/eval/eval_point2surf/evaluation.py @@ -0,0 +1,405 @@ +import numpy as np +import os + +from .utils_mp import start_process_pool +from .file_utils import make_dir_for_file + + +def calc_accuracy(num_true, num_predictions): + if num_predictions == 0: + return float('NaN') + else: + return num_true / num_predictions + + +def calc_precision(num_true_pos, num_false_pos): + if isinstance(num_true_pos, (int, float)) and isinstance(num_false_pos, (int, float)) and \ + num_true_pos + num_false_pos == 0: + return float('NaN') + else: + return num_true_pos / (num_true_pos + num_false_pos) + + +def calc_recall(num_true_pos, num_false_neg): + if isinstance(num_true_pos, (int, float)) and isinstance(num_false_neg, (int, float)) and \ + num_true_pos + num_false_neg == 0: + return float('NaN') + else: + return num_true_pos / (num_true_pos + num_false_neg) + + +def calc_f1(precision, recall): + if isinstance(precision, (int, float)) and isinstance(recall, (int, float)) and \ + precision + recall == 0: + return float('NaN') + else: + return 2.0 * (precision * recall) / (precision + recall) + + +def compare_predictions_binary_tensors(ground_truth, predicted, prediction_name): + """ + :param ground_truth: + :param predicted: + :param prediction_name: + :return: res_dict, prec_per_patch + """ + + import torch + + if ground_truth.shape != predicted.shape: + raise ValueError('The ground truth matrix and the predicted matrix have different sizes!') + + if not isinstance(ground_truth, torch.Tensor) and not isinstance(predicted, torch.Tensor): + raise ValueError('Both matrices must be dense of type torch.tensor!') + + ground_truth_int = (ground_truth > 0.0).to(dtype=torch.int32) + predicted_int = (predicted > 0.0).to(dtype=torch.int32) + res_dict = dict() + res_dict['comp_name'] = prediction_name + + res_dict["predictions"] = float(torch.numel(ground_truth_int)) + res_dict["pred_gt"] = float(torch.numel(ground_truth_int)) + res_dict["positives"] = float(torch.nonzero(predicted_int).shape[0]) + res_dict["pos_gt"] = float(torch.nonzero(ground_truth_int).shape[0]) + res_dict["true_neg"] = res_dict["predictions"] - float(torch.nonzero(predicted_int + ground_truth_int).shape[0]) + res_dict["negatives"] = res_dict["predictions"] - res_dict["positives"] + res_dict["neg_gt"] = res_dict["pred_gt"] - res_dict["pos_gt"] + true_pos = ((predicted_int + ground_truth_int) == 2).sum().to(dtype=torch.float32) + res_dict["true_pos"] = float(true_pos.sum()) + res_dict["true"] = res_dict["true_pos"] + res_dict["true_neg"] + false_pos = ((predicted_int * 2 + ground_truth_int) == 2).sum().to(dtype=torch.float32) + res_dict["false_pos"] = float(false_pos.sum()) + false_neg = ((predicted_int + 2 * ground_truth_int) == 2).sum().to(dtype=torch.float32) + res_dict["false_neg"] = float(false_neg.sum()) + res_dict["false"] = res_dict["false_pos"] + res_dict["false_neg"] + res_dict["accuracy"] = calc_accuracy(res_dict["true"], res_dict["predictions"]) + res_dict["precision"] = calc_precision(res_dict["true_pos"], res_dict["false_pos"]) + res_dict["recall"] = calc_recall(res_dict["true_pos"], res_dict["false_neg"]) + res_dict["f1_score"] = calc_f1(res_dict["precision"], res_dict["recall"]) + + return res_dict + + +def eval_predictions(pred_path, gt_path, report_file=None, unsigned=False): + files = [f for f in os.listdir(pred_path) if os.path.isfile(os.path.join(pred_path, f)) and f[-4:] == '.npy'] + + results = [] + for f in files: + gt_off_path = os.path.join(gt_path, f[:-8] + '.ply.npy') + rec_off_path = os.path.join(pred_path, f) + + mat_gt = np.load(gt_off_path) + mat_rec = np.load(rec_off_path) + + if unsigned: + mat_gt = np.abs(mat_gt) + mat_rec = np.abs(mat_rec) + + gt_or_pred_nz = ((mat_rec != 0.0) + (mat_gt != 0.0)) > 0 + l2 = (mat_rec - mat_gt) + l2_sq = l2 * l2 + mse = l2_sq[gt_or_pred_nz].mean() + + mat_gt_mean = mat_gt.mean() + mat_rec_mean = mat_rec.mean() + mat_gt_var = (mat_gt * mat_gt).mean() - mat_gt_mean * mat_gt_mean + mat_rec_var = (mat_rec * mat_rec).mean() - mat_rec_mean * mat_rec_mean + + res_dict = { + 'file': f, + 'mse': mse, + 'mean_gt': mat_gt_mean, + 'mean_pred': mat_rec_mean, + 'var_gt': mat_gt_var, + 'var_pred': mat_rec_var, + } + results.append(res_dict) + + print('compare_prediction: {} vs {}\n'.format(gt_path, pred_path)) + lines = print_list_of_dicts(results, ['file', 'mse', 'mean_gt', 'mean_pred', 'var_gt', 'var_pred'], mode='csv') + + if report_file is not None: + make_dir_for_file(report_file) + with open(report_file, 'w') as the_file: + for l in lines: + the_file.write(l + '\n') + + +def print_list_of_dicts(comp_res, keys_to_print=None, mode='latex'): + + if len(comp_res) == 0: + return 'WARNING: comp_res is empty' + + if keys_to_print is None or len(keys_to_print) == 0: + keys_to_print = comp_res[0].keys() + + def get_separator(i, length): + if mode == 'latex': + if i < length - 1: + return ' & ' + else: + return ' \\\\' + elif mode == 'csv': + return ',' + + # key per line, mesh per column + #for key in keys_to_print: + # line = key + ' && ' + # for i, d in enumerate(comp_res): + # if isinstance(d[key], str): + # line += d[key] + get_separator(i, len(keys_to_print)) + # else: + # line += '{0:.3f}'.format(d[key]) + get_separator(i, len(keys_to_print)) + # print(line) + + # mesh per line, key per column + lines = [] + # contents + for d in comp_res: + line = '' + for i, key in enumerate(keys_to_print): + if isinstance(d[key], str): + line += d[key][:10].replace('_', ' ').rjust(max(10, len(key))) + get_separator(i, len(keys_to_print)) + else: + line += '{0:.5f}'.format(d[key]).rjust(max(10, len(key))) + get_separator(i, len(keys_to_print)) + lines.append(line) + + lines.sort() + + # header + line = '' + for i, key in enumerate(keys_to_print): + line += key.replace('_', ' ').rjust(10) + get_separator(i, len(keys_to_print)) + lines.insert(0, line) + + for l in lines: + print(l) + + return lines + + +def visualize_patch(patch_pts_ps, patch_pts_ms, query_point_ps, pts_sub_sample_ms, query_point_ms, + file_path='debug/patch.ply'): + + from .point_cloud import write_ply + + def filter_padding(patch_pts, query_point): + query_point_repeated = np.repeat(np.expand_dims(np.array(query_point), axis=0), patch_pts.shape[0], axis=0) + same_points = patch_pts == query_point_repeated + non_padding_point_ids = np.sum(same_points, axis=1) != 3 + return patch_pts[non_padding_point_ids] + + patch_pts_ps = filter_padding(patch_pts_ps, query_point_ps) + if patch_pts_ms is not None: + patch_pts_ms = filter_padding(patch_pts_ms, query_point_ms) + + query_point_ps = np.expand_dims(query_point_ps, axis=0) \ + if len(query_point_ps.shape) < 2 else query_point_ps + query_point_ms = np.expand_dims(query_point_ms, axis=0) \ + if len(query_point_ms.shape) < 2 else query_point_ms + + pts = np.concatenate((patch_pts_ps, query_point_ps, pts_sub_sample_ms, query_point_ms), axis=0) + if patch_pts_ms is not None: + pts = np.concatenate((pts, patch_pts_ms), axis=0) + + def repeat_color_for_points(color, points): + return np.repeat(np.expand_dims(np.array(color), axis=0), points.shape[0], axis=0) + + colors_patch_pts_ps = repeat_color_for_points([0.0, 0.0, 1.0], patch_pts_ps) + colors_query_point_ps = repeat_color_for_points([1.0, 1.0, 0.0], query_point_ps) + colors_pts_sub_sample_ms = repeat_color_for_points([0.0, 1.0, 0.0], pts_sub_sample_ms) + colors_query_point_ms = repeat_color_for_points([1.0, 0.0, 1.0], query_point_ms) + colors = np.concatenate((colors_patch_pts_ps, colors_query_point_ps, colors_pts_sub_sample_ms, + colors_query_point_ms), axis=0) + if patch_pts_ms is not None: + colors_patch_pts_ms = repeat_color_for_points([1.0, 0.0, 0.0], patch_pts_ms) + colors = np.concatenate((colors, colors_patch_pts_ms), axis=0) + + write_ply(file_path=file_path, points=pts, colors=colors) + + +def _chamfer_distance_single_file(file_in, file_ref, samples_per_model, num_processes=1): + # http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L14%20-%203d%20deep%20learning%20on%20point%20cloud%20representation%20(analysis).pdf + + import trimesh + import trimesh.sample + import sys + import scipy.spatial as spatial + + def sample_mesh(mesh_file, num_samples): + try: + mesh = trimesh.load(mesh_file) + except: + return np.zeros((0, 3)) + samples, face_indices = trimesh.sample.sample_surface_even(mesh, num_samples) + return samples + + new_mesh_samples = sample_mesh(file_in, samples_per_model) + ref_mesh_samples = sample_mesh(file_ref, samples_per_model) + + if new_mesh_samples.shape[0] == 0 or ref_mesh_samples.shape[0] == 0: + return file_in, file_ref, -1.0 + + leaf_size = 100 + sys.setrecursionlimit(int(max(1000, round(new_mesh_samples.shape[0] / leaf_size)))) + kdtree_new_mesh_samples = spatial.cKDTree(new_mesh_samples, leaf_size) + kdtree_ref_mesh_samples = spatial.cKDTree(ref_mesh_samples, leaf_size) + + ref_new_dist, corr_new_ids = kdtree_new_mesh_samples.query(ref_mesh_samples, 1, n_jobs=num_processes) + new_ref_dist, corr_ref_ids = kdtree_ref_mesh_samples.query(new_mesh_samples, 1, n_jobs=num_processes) + + ref_new_dist_sum = np.sum(ref_new_dist) + new_ref_dist_sum = np.sum(new_ref_dist) + chamfer_dist = ref_new_dist_sum + new_ref_dist_sum + + return file_in, file_ref, chamfer_dist + + +def _hausdorff_distance_directed_single_file(file_in, file_ref, samples_per_model): + import scipy.spatial as spatial + import trimesh + import trimesh.sample + + def sample_mesh(mesh_file, num_samples): + try: + mesh = trimesh.load(mesh_file) + except: + return np.zeros((0, 3)) + samples, face_indices = trimesh.sample.sample_surface_even(mesh, num_samples) + return samples + + new_mesh_samples = sample_mesh(file_in, samples_per_model) + ref_mesh_samples = sample_mesh(file_ref, samples_per_model) + + if new_mesh_samples.shape[0] == 0 or ref_mesh_samples.shape[0] == 0: + return file_in, file_ref, -1.0 + + dist, _, _ = spatial.distance.directed_hausdorff(new_mesh_samples, ref_mesh_samples) + return file_in, file_ref, dist + + +def _hausdorff_distance_single_file(file_in, file_ref, samples_per_model): + import scipy.spatial as spatial + import trimesh + import trimesh.sample + + def sample_mesh(mesh_file, num_samples): + try: + mesh = trimesh.load(mesh_file) + except: + return np.zeros((0, 3)) + samples, face_indices = trimesh.sample.sample_surface_even(mesh, num_samples) + return samples + + new_mesh_samples = sample_mesh(file_in, samples_per_model) + ref_mesh_samples = sample_mesh(file_ref, samples_per_model) + + if new_mesh_samples.shape[0] == 0 or ref_mesh_samples.shape[0] == 0: + return file_in, file_ref, -1.0, -1.0, -1.0 + + dist_new_ref, _, _ = spatial.distance.directed_hausdorff(new_mesh_samples, ref_mesh_samples) + dist_ref_new, _, _ = spatial.distance.directed_hausdorff(ref_mesh_samples, new_mesh_samples) + dist = max(dist_new_ref, dist_ref_new) + return file_in, file_ref, dist_new_ref, dist_ref_new, dist + + +def mesh_comparison(new_meshes_dir_abs, ref_meshes_dir_abs, + num_processes, report_name, samples_per_model=10000, dataset_file_abs=None): + if not os.path.isdir(new_meshes_dir_abs): + print('Warning: dir to check doesn\'t exist'.format(new_meshes_dir_abs)) + return + + new_mesh_files = [f for f in os.listdir(new_meshes_dir_abs) + if os.path.isfile(os.path.join(new_meshes_dir_abs, f))] + ref_mesh_files = [f for f in os.listdir(ref_meshes_dir_abs) + if os.path.isfile(os.path.join(ref_meshes_dir_abs, f))] + + if dataset_file_abs is None: + mesh_files_to_compare_set = set(ref_mesh_files) # set for efficient search + else: + if not os.path.isfile(dataset_file_abs): + raise ValueError('File does not exist: {}'.format(dataset_file_abs)) + with open(dataset_file_abs) as f: + mesh_files_to_compare_set = f.readlines() + mesh_files_to_compare_set = [f.replace('\n', '') + '.ply' for f in mesh_files_to_compare_set] + mesh_files_to_compare_set = [f.split('.')[0] for f in mesh_files_to_compare_set] + mesh_files_to_compare_set = set(mesh_files_to_compare_set) + + # # skip if everything is unchanged + # new_mesh_files_abs = [os.path.join(new_meshes_dir_abs, f) for f in new_mesh_files] + # ref_mesh_files_abs = [os.path.join(ref_meshes_dir_abs, f) for f in ref_mesh_files] + # if not utils_files.call_necessary(new_mesh_files_abs + ref_mesh_files_abs, report_name): + # return + + def ref_mesh_for_new_mesh(new_mesh_file: str, all_ref_meshes: list) -> list: + stem_new_mesh_file = new_mesh_file.split('.')[0] + ref_files = list(set([f for f in all_ref_meshes if f.split('.')[0] == stem_new_mesh_file])) + return ref_files + + call_params = [] + for fi, new_mesh_file in enumerate(new_mesh_files): + # if new_mesh_file.split('.')[0] in mesh_files_to_compare_set: + if new_mesh_file in mesh_files_to_compare_set: + new_mesh_file_abs = os.path.join(new_meshes_dir_abs, new_mesh_file) + ref_mesh_files_matching = ref_mesh_for_new_mesh(new_mesh_file, ref_mesh_files) + if len(ref_mesh_files_matching) > 0: + ref_mesh_file_abs = os.path.join(ref_meshes_dir_abs, ref_mesh_files_matching[0]) + call_params.append((new_mesh_file_abs, ref_mesh_file_abs, samples_per_model)) + if len(call_params) == 0: + raise ValueError('Results are empty!') + results_hausdorff = start_process_pool(_hausdorff_distance_single_file, call_params, num_processes) + results = [(r[0], r[1], str(r[2]), str(r[3]), str(r[4])) for r in results_hausdorff] + + call_params = [] + for fi, new_mesh_file in enumerate(new_mesh_files): + # if new_mesh_file.split('.')[0] in mesh_files_to_compare_set: + if new_mesh_file in mesh_files_to_compare_set: + new_mesh_file_abs = os.path.join(new_meshes_dir_abs, new_mesh_file) + ref_mesh_files_matching = ref_mesh_for_new_mesh(new_mesh_file, ref_mesh_files) + if len(ref_mesh_files_matching) > 0: + ref_mesh_file_abs = os.path.join(ref_meshes_dir_abs, ref_mesh_files_matching[0]) + call_params.append((new_mesh_file_abs, ref_mesh_file_abs, samples_per_model)) + results_chamfer = start_process_pool(_chamfer_distance_single_file, call_params, num_processes) + results = [r + (str(results_chamfer[ri][2]),) for ri, r in enumerate(results)] + + # no reference but reconstruction + for fi, new_mesh_file in enumerate(new_mesh_files): + # if new_mesh_file.split('.')[0] not in mesh_files_to_compare_set: + if new_mesh_file not in mesh_files_to_compare_set: + if dataset_file_abs is None: + new_mesh_file_abs = os.path.join(new_meshes_dir_abs, new_mesh_file) + ref_mesh_files_matching = ref_mesh_for_new_mesh(new_mesh_file, ref_mesh_files) + if len(ref_mesh_files_matching) > 0: + reference_mesh_file_abs = os.path.join(ref_meshes_dir_abs, ref_mesh_files_matching[0]) + results.append((new_mesh_file_abs, reference_mesh_file_abs, str(-2), str(-2), str(-2), str(-2))) + else: + # mesh_files_to_compare_set.remove(new_mesh_file.split('.')[0]) + mesh_files_to_compare_set.remove(new_mesh_file) + + # no reconstruction but reference + for ref_without_new_mesh in mesh_files_to_compare_set: + new_mesh_file_abs = os.path.join(new_meshes_dir_abs, ref_without_new_mesh) + reference_mesh_file_abs = os.path.join(ref_meshes_dir_abs, ref_without_new_mesh) + results.append((new_mesh_file_abs, reference_mesh_file_abs, str(-1), str(-1), str(-1), str(-1))) + + # sort by file name + results = sorted(results, key=lambda x: x[0]) + + # compute the average of the scores + res = np.array([list(item[2:]) for item in results], dtype=np.float) + res = res.mean(axis=0) + res = ("mean", "mean", str(res[0]), str(res[1]), str(res[2]), str(res[3])) + results.append(res) + + + make_dir_for_file(report_name) + csv_lines = ['in mesh,ref mesh,Hausdorff dist new-ref,Hausdorff dist ref-new,Hausdorff dist,' + 'Chamfer dist(-1: no input; -2: no reference)'] + csv_lines += [','.join(item) for item in results] + #csv_lines += ['=AVERAGE(E2:E41)'] + csv_lines_str = '\n'.join(csv_lines) + with open(report_name, "w") as text_file: + text_file.write(csv_lines_str) + + + \ No newline at end of file diff --git a/eval/eval_point2surf/file_utils.py b/eval/eval_point2surf/file_utils.py new file mode 100644 index 0000000..8a60023 --- /dev/null +++ b/eval/eval_point2surf/file_utils.py @@ -0,0 +1,253 @@ +import numpy as np +import os +import scipy.sparse as sparse + + +def filename_to_hash(file_path): + import hashlib + if not os.path.isfile(file_path): + raise ValueError('Path does not point to a file: {}'.format(file_path)) + hash_input = os.path.basename(file_path).split('.')[0] + hash = int(hashlib.md5(hash_input.encode()).hexdigest(), 16) % (2**32 - 1) + return hash + + +def load_npy_if_valid(filename, data_type, mmap_mode=None): + if not os.path.isfile(filename) or (os.path.isfile(filename + '.npy') and + (os.path.getmtime(filename + '.npy') > os.path.getmtime(filename))): + data = np.load(filename + '.npy', mmap_mode).astype(data_type) + else: + data = np.loadtxt(filename).astype(data_type) + np.save(filename + '.npy', data) + if os.path.isfile(filename + '.npy') and (os.path.getmtime(filename + '.npy') < os.path.getmtime(filename)): + print('Warning: \"' + filename + '\" is newer than \"' + filename + '.npy\". Loading \"' + filename + '\"') + + return data + + +def npz_to_txt(path_in, path_out, num_files=None): + + files = [f for f in os.listdir(path_in) if os.path.isfile(os.path.join(path_in, f)) and f[-4:] == '.npz'] + + for fi, f in enumerate(files): + print('Converting npz to txt: ' + f) + npz_to_txt_file(file_npz_in=os.path.join(path_in, f), file_txt_out=os.path.join(path_out, f[:-4])) + if not num_files is None and fi >= num_files - 1: + break + + +def npz_to_txt_file(file_npz_in, file_txt_out): + + sparse_mat = sparse.load_npz(file_npz_in) + + coo = sparse_mat.nonzero() + coo_x = coo[0] + coo_y = coo[1] + + make_dir_for_file(file_txt_out) + + with open(file_txt_out, 'w') as the_file: + for i in range(coo_x.shape[0]): + the_file.write(str(coo_x[i]) + ' ' + str(coo_y[i]) + ' ' + str(sparse_mat[coo_x[i], coo_y[i]]) + '\n') + + +def txt_to_npz_file(file_txt_in, file_npz_out, dtype=None, size=None): + if dtype is None: + dtype={'names': ('i', 'j', 'val'), + 'formats': (np.uint32, np.uint32, np.float32)} + v_from, v_to, val = np.loadtxt(file_txt_in, unpack=True, dtype=dtype) + if size is None: + size = max(v_from.max(), v_to.max()) + sparse_mat = sparse.coo_matrix((val, (v_from, v_to)), (size+1, size+1)).tocsr() + sparse.save_npz(file_npz_out, sparse_mat) + + +def txt_to_npz(path, ending='.txt', dtype=None, size=None): + + files = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f)) and f[-len(ending):] == ending] + + for f in files: + file = os.path.join(path, f) + file_npz = file+'.npz' + print(file + ' to ' + file_npz) + txt_to_npz_file(file_txt_in=file, file_npz_out=file_npz, dtype=dtype, size=size) + + +def txt_to_npy_file(file_txt_in, file_npy_out): + arr = np.loadtxt(file_txt_in, unpack=True) + arr = arr.transpose()[:, :3].astype(np.float32) + np.save(file_npy_out, arr) + + +def txt_to_npy(path, ending='.txt'): + files = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f)) and f[-len(ending):] == ending] + + for f in files: + file = os.path.join(path, f) + file_npy = file + '.npy' + print(file + ' to ' + file_npy) + txt_to_npy_file(file_txt_in=file, file_npy_out=file_npy) + + +def concat_txt_files(files_in, file_out): + lines_per_file = [] + for fi, f in enumerate(files_in): + with open(f) as file: + new_lines = file.readlines() + new_lines = [l.replace(' \n', '') for l in new_lines] + lines_per_file.append(new_lines) + + # assume same number of lines in all files + lines_output = [] + for li in range(len(lines_per_file[0])): + lines = [f[li] for f in lines_per_file] + lines_output.append(' '.join(lines)) + + with open(file_out, "w+") as file: + file.writelines(lines_output) + + +def concat_txt_dirs(ref_dir, ref_ending, dirs, endings_per_dir=('.txt',), out_dir='../concat/', out_ending='.txt'): + + file_stems = [os.path.splitext(f)[0] for f in os.listdir(ref_dir) + if os.path.isfile(os.path.join(ref_dir, f)) and f[-len(ref_ending):] == ref_ending] + files = [] + for fi, file_stem in enumerate(file_stems): + files.append([os.path.join(dir, file_stem + endings_per_dir[di]) for di, dir in enumerate(dirs)]) + + os.makedirs(out_dir, exist_ok=True) + + for fi, f in enumerate(files): + file_out = os.path.join(out_dir, file_stems[fi] + out_ending) + if call_necessary(f, file_out): + print('concat {} to {}'.format(f, file_out)) + concat_txt_files(files_in=f, file_out=file_out) + + +def make_dir_for_file(file): + file_dir = os.path.dirname(file) + if file_dir != '': + if not os.path.exists(file_dir): + try: + os.makedirs(os.path.dirname(file)) + except OSError as exc: # Guard against race condition + raise + + +def load_npz(npz_file, mmap_mode=None): + try: + return sparse.load_npz(npz_file) + except: + # npz does not contain a sparse matrix but the data to construct one + geodesic_file = np.load(npz_file, mmap_mode) + data = geodesic_file['data'] + col_ind = geodesic_file['col_ind'] + row_ind = geodesic_file['row_ind'] + shape = tuple(geodesic_file['shape']) + return sparse.csr_matrix((data, (row_ind, col_ind)), shape=shape) + + +def path_leaf(path): + import ntpath + head, tail = ntpath.split(path) + return tail or ntpath.basename(head) + + +def touch_files_in_dir(dir, extension=None): + import os + from pathlib import Path + + files = [f for f in os.listdir(dir) if os.path.isfile(os.path.join(dir, f))] + if extension is not None: + files = [f for f in files if f[-len(extension):] == extension] + for fi, f in enumerate(files): + file_in_abs = os.path.join(dir, f) + Path(file_in_abs).touch() + + +def copy_list_of_files_in_dir(dir_in, dir_out, file_list): + import os + import shutil + + files = [f for f in os.listdir(dir_in) if os.path.isfile(os.path.join(dir_in, f))] + file_stems = [os.path.basename(f) for f in files] + file_stems = [f.split('.')[0] for f in file_stems] + + if file_list is None: + files_to_copy_set = set(file_stems) # set for efficient search + else: + with open(file_list) as f: + files_to_copy_set = f.readlines() + files_to_copy_set = [f.replace('\n', '') for f in files_to_copy_set] + files_to_copy_set = [f.split('.')[0] for f in files_to_copy_set] + files_to_copy_set = set(files_to_copy_set) + + os.makedirs(dir_out, exist_ok=True) + + for fi, f in enumerate(files): + if file_stems[fi] in files_to_copy_set: + file_in_abs = os.path.join(dir_in, f) + file_out_abs = os.path.join(dir_out, f) + shutil.copyfile(src=file_in_abs, dst=file_out_abs) + + +def call_necessary(file_in, file_out, min_file_size=0): + """ + Check if all input files exist and at least one output file does not exist or is invalid. + :param file_in: list of str or str + :param file_out: list of str or str + :param min_file_size: int + :return: + """ + + if isinstance(file_in, str): + file_in = [file_in] + elif isinstance(file_in, list): + pass + else: + raise ValueError('Wrong input type') + + if isinstance(file_out, str): + file_out = [file_out] + elif isinstance(file_out, list): + pass + else: + raise ValueError('Wrong output type') + + inputs_missing = [f for f in file_in if not os.path.isfile(f)] + if len(inputs_missing) > 0: + print('WARNING: Input file are missing: {}'.format(inputs_missing)) + return False + + outputs_missing = [f for f in file_out if not os.path.isfile(f)] + if len(outputs_missing) > 0: + if len(outputs_missing) < len(file_out): + print("WARNING: Only some output files are missing: {}".format(outputs_missing)) + return True + + min_output_file_size = min([os.path.getsize(f) for f in file_out]) + if min_output_file_size < min_file_size: + return True + + oldest_input_file_mtime = max([os.path.getmtime(f) for f in file_in]) + youngest_output_file_mtime = min([os.path.getmtime(f) for f in file_out]) + + if oldest_input_file_mtime >= youngest_output_file_mtime: + # debug + import time + input_file_mtime_arg_max = np.argmax(np.array([os.path.getmtime(f) for f in file_in])) + output_file_mtime_arg_min = np.argmin(np.array([os.path.getmtime(f) for f in file_out])) + input_file_mtime_max = time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(oldest_input_file_mtime)) + output_file_mtime_min = time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(youngest_output_file_mtime)) + print('Input file {} \nis newer than output file {}: \n{} >= {}'.format( + file_in[input_file_mtime_arg_max], file_out[output_file_mtime_arg_min], + input_file_mtime_max, output_file_mtime_min)) + return True + + return False + + +def xyz_to_npy(file): + from .point_cloud import load_xyz + p = load_xyz(file) + np.save(file + '.npy', p) \ No newline at end of file diff --git a/eval/eval_point2surf/point_cloud.py b/eval/eval_point2surf/point_cloud.py new file mode 100644 index 0000000..9c8f44c --- /dev/null +++ b/eval/eval_point2surf/point_cloud.py @@ -0,0 +1,193 @@ +import numpy as np +import scipy.spatial as spatial + +from .file_utils import make_dir_for_file + + +def get_aabb(points: np.ndarray): + aabb_min = points.min(axis=0) + aabb_max = points.max(axis=0) + return aabb_min, aabb_max + + +def load_xyz(file_path): + data = np.loadtxt(file_path).astype('float32') + nan_lines = np.isnan(data).any(axis=1) + num_nan_lines = np.sum(nan_lines) + if num_nan_lines > 0: + data = data[~nan_lines] # filter rows with nan values + print('Ignored {} points containing NaN coordinates in point cloud {}'.format(num_nan_lines, file_path)) + return data + + +def write_ply(file_path: str, points: np.ndarray, normals=None, colors=None): + """ + Write point cloud file as .ply. + :param file_path: + :param points: + :param normals: + :param colors: + :return: None + """ + + import trimesh + + assert(file_path.endswith('.ply')) + + make_dir_for_file(file_path) + + if points.shape == (3,): + points = np.expand_dims(points, axis=0) + + if points.shape[0] == 3 and points.shape[1] != 3: + points = points.transpose([1, 0]) + + if colors is not None and colors.shape[0] == 3 and colors.shape[1] != 3: + colors = colors.transpose([1, 0]) + + if normals is not None and normals.shape[0] == 3 and normals.shape[1] != 3: + normals = normals.transpose([1, 0]) + + # convert 2d points to 3d + if points.shape[1] == 2: + vertices_2p5d = np.zeros((points.shape[0], 3)) + vertices_2p5d[:, :2] = points + vertices_2p5d[:, 2] = 0.0 + points = vertices_2p5d + + mesh = trimesh.Trimesh(vertices=points, vertex_colors=colors, vertex_normals=normals) + mesh.export(file_path) + + +def write_xyz(file_path, points: np.ndarray, normals=None, colors=None): + """ + Write point cloud file. + :param file_path: + :param points: + :param normals: + :param colors: + :return: None + """ + + make_dir_for_file(file_path) + + if points.shape == (3,): + points = np.expand_dims(points, axis=0) + + if points.shape[0] == 3 and points.shape[1] != 3: + points = points.transpose([1, 0]) + + if colors is not None and colors.shape[0] == 3 and colors.shape[1] != 3: + colors = colors.transpose([1, 0]) + + if normals is not None and normals.shape[0] == 3 and normals.shape[1] != 3: + normals = normals.transpose([1, 0]) + + with open(file_path, 'w') as fp: + + # convert 2d points to 3d + if points.shape[1] == 2: + vertices_2p5d = np.zeros((points.shape[0], 3)) + vertices_2p5d[:, :2] = points + vertices_2p5d[:, 2] = 0.0 + points = vertices_2p5d + + # write points + # meshlab doesn't like colors, only using normals. try cloud compare instead. + for vi, v in enumerate(points): + line_vertex = str(v[0]) + " " + str(v[1]) + " " + str(v[2]) + " " + if normals is not None: + line_vertex += str(normals[vi][0]) + " " + str(normals[vi][1]) + " " + str(normals[vi][2]) + " " + if colors is not None: + line_vertex += str(colors[vi][0]) + " " + str(colors[vi][1]) + " " + str(colors[vi][2]) + " " + fp.write(line_vertex + "\n") + + +def load_pcd(file_in): + # PCD: http://pointclouds.org/documentation/tutorials/pcd_file_format.php + # PCD RGB: http://docs.pointclouds.org/trunk/structpcl_1_1_r_g_b.html#a4ad91ab9726a3580e6dfc734ab77cd18 + + def read_header(lines_header): + header_info = dict() + + def add_line_to_header_dict(header_dict, line, expected_field): + line_parts = line.split(sep=' ') + assert (line_parts[0] == expected_field), \ + ('Warning: "' + expected_field + '" expected but not found in pcd header!') + header_dict[expected_field] = (' '.join(line_parts[1:])).replace('\n', '') + + add_line_to_header_dict(header_info, lines_header[0], '#') + add_line_to_header_dict(header_info, lines_header[1], 'VERSION') + add_line_to_header_dict(header_info, lines_header[2], 'FIELDS') + add_line_to_header_dict(header_info, lines_header[3], 'SIZE') + add_line_to_header_dict(header_info, lines_header[4], 'TYPE') + add_line_to_header_dict(header_info, lines_header[5], 'COUNT') + add_line_to_header_dict(header_info, lines_header[6], 'WIDTH') + add_line_to_header_dict(header_info, lines_header[7], 'HEIGHT') + add_line_to_header_dict(header_info, lines_header[8], 'VIEWPOINT') + add_line_to_header_dict(header_info, lines_header[9], 'POINTS') + add_line_to_header_dict(header_info, lines_header[10], 'DATA') + + # TODO: lift limitations + assert header_info['VERSION'] == '0.7' + assert header_info['FIELDS'] == 'x y z rgb label' + assert header_info['SIZE'] == '4 4 4 4 4' + assert header_info['TYPE'] == 'F F F F U' + assert header_info['COUNT'] == '1 1 1 1 1' + # assert header_info['HEIGHT'] == '1' + assert header_info['DATA'] == 'ascii' + # assert header_info['WIDTH'] == header_info['POINTS'] + + return header_info + + f = open(file_in, "r") + f_lines = f.readlines() + f_lines_header = f_lines[:11] + f_lines_points = f_lines[11:] + header_info = read_header(f_lines_header) + header_info['_file_'] = file_in + + num_points = int(header_info['POINTS']) + point_data_list_str_ = [l.split(sep=' ')[:3] for l in f_lines_points] + point_data_list = [[float(l[0]), float(l[1]), float(l[2])] for l in point_data_list_str_] + + # filter nan points that appear through the blensor kinect sensor + point_data_list = [p for p in point_data_list if + (not np.isnan(p[0]) and not np.isnan(p[1]) and not np.isnan(p[2]))] + + point_data = np.array(point_data_list) + + f.close() + + return point_data, header_info + + +def get_patch_radius(grid_res, epsilon): + return (1.0 + epsilon) / grid_res + + +def get_patch_kdtree( + kdtree: spatial.cKDTree, rng: np.random.RandomState, + query_point, patch_radius, points_per_patch, n_jobs): + + if patch_radius <= 0.0: + pts_dists_ms, patch_pts_ids = kdtree.query(x=query_point, k=points_per_patch, n_jobs=n_jobs) + else: + patch_pts_ids = kdtree.query_ball_point(x=query_point, r=patch_radius, n_jobs=n_jobs) + patch_pts_ids = np.array(patch_pts_ids, dtype=np.int32) + point_count = patch_pts_ids.shape[0] + + # if there are too many neighbors, pick a random subset + if point_count > points_per_patch: + patch_pts_ids = patch_pts_ids[rng.choice(np.arange(point_count), points_per_patch, replace=False)] + + # pad with zeros + if point_count < points_per_patch: + missing_points = points_per_patch - point_count + padding = np.full((missing_points), -1, dtype=np.int32) + if point_count == 0: + patch_pts_ids = padding + else: + patch_pts_ids = np.concatenate((patch_pts_ids, padding), axis=0) + + return patch_pts_ids \ No newline at end of file diff --git a/eval/eval_point2surf/utils_mp.py b/eval/eval_point2surf/utils_mp.py new file mode 100644 index 0000000..dc4dd47 --- /dev/null +++ b/eval/eval_point2surf/utils_mp.py @@ -0,0 +1,37 @@ +import subprocess +import multiprocessing + + +def mp_worker(call): + """ + Small function that starts a new thread with a system call. Used for thread pooling. + :param call: + :return: + """ + call = call.split(' ') + verbose = call[-1] == '--verbose' + if verbose: + call = call[:-1] + subprocess.run(call) + else: + #subprocess.run(call, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) # suppress outputs + subprocess.run(call, stdout=subprocess.DEVNULL) + + +def start_process_pool(worker_function, parameters, num_processes, timeout=None): + + if len(parameters) > 0: + if num_processes <= 1: + print('Running loop for {} with {} calls on {} workers'.format( + str(worker_function), len(parameters), num_processes)) + results = [] + for c in parameters: + results.append(worker_function(*c)) + return results + print('Running loop for {} with {} calls on {} subprocess workers'.format( + str(worker_function), len(parameters), num_processes)) + with multiprocessing.Pool(processes=num_processes, maxtasksperchild=1) as pool: + results = pool.starmap(worker_function, parameters) + return results + else: + return None \ No newline at end of file diff --git a/eval/src/__init__.py b/eval/src/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/eval/src/common.py b/eval/src/common.py new file mode 100644 index 0000000..ece0f2b --- /dev/null +++ b/eval/src/common.py @@ -0,0 +1,301 @@ +import torch +from eval.src.utils.libkdtree import KDTree +import numpy as np + + +def compute_iou(occ1, occ2): + ''' Computes the Intersection over Union (IoU) value for two sets of + occupancy values. + Args: + occ1 (tensor): first set of occupancy values + occ2 (tensor): second set of occupancy values + ''' + occ1 = np.asarray(occ1) + occ2 = np.asarray(occ2) + + # Put all data in second dimension + # Also works for 1-dimensional data + if occ1.ndim >= 2: + occ1 = occ1.reshape(occ1.shape[0], -1) + if occ2.ndim >= 2: + occ2 = occ2.reshape(occ2.shape[0], -1) + + # Convert to boolean values + occ1 = (occ1 >= 0.5) + occ2 = (occ2 >= 0.5) + + # Compute IOU + area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1) + area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1) + + iou = (area_intersect / area_union) + + return iou + + +def chamfer_distance(points1, points2, use_kdtree=True, give_id=False): + ''' Returns the chamfer distance for the sets of points. + Args: + points1 (numpy array): first point set + points2 (numpy array): second point set + use_kdtree (bool): whether to use a kdtree + give_id (bool): whether to return the IDs of nearest points + ''' + if use_kdtree: + return chamfer_distance_kdtree(points1, points2, give_id=give_id) + else: + return chamfer_distance_naive(points1, points2) + + +def chamfer_distance_naive(points1, points2): + ''' Naive implementation of the Chamfer distance. + Args: + points1 (numpy array): first point set + points2 (numpy array): second point set + ''' + assert(points1.size() == points2.size()) + batch_size, T, _ = points1.size() + + points1 = points1.view(batch_size, T, 1, 3) + points2 = points2.view(batch_size, 1, T, 3) + + distances = (points1 - points2).pow(2).sum(-1) + + chamfer1 = distances.min(dim=1)[0].mean(dim=1) + chamfer2 = distances.min(dim=2)[0].mean(dim=1) + + chamfer = chamfer1 + chamfer2 + return chamfer + + +def chamfer_distance_kdtree(points1, points2, give_id=False): + ''' KD-tree based implementation of the Chamfer distance. + Args: + points1 (numpy array): first point set + points2 (numpy array): second point set + give_id (bool): whether to return the IDs of the nearest points + ''' + # Points have size batch_size x T x 3 + batch_size = points1.size(0) + + # First convert points to numpy + points1_np = points1.detach().cpu().numpy() + points2_np = points2.detach().cpu().numpy() + + # Get list of nearest neighbors indieces + idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np) + idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device) + # Expands it as batch_size x 1 x 3 + idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1) + + # Get list of nearest neighbors indieces + idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np) + idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device) + # Expands it as batch_size x T x 3 + idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2) + + # Compute nearest neighbors in points2 to points in points1 + # points_12[i, j, k] = points2[i, idx_nn_12_expand[i, j, k], k] + points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand) + + # Compute nearest neighbors in points1 to points in points2 + # points_21[i, j, k] = points2[i, idx_nn_21_expand[i, j, k], k] + points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand) + + # Compute chamfer distance + chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1) + chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1) + + # Take sum + chamfer = chamfer1 + chamfer2 + + # If required, also return nearest neighbors + if give_id: + return chamfer1, chamfer2, idx_nn_12, idx_nn_21 + + return chamfer + + +def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1): + ''' Returns the nearest neighbors for point sets batchwise. + Args: + points_src (numpy array): source points + points_tgt (numpy array): target points + k (int): number of nearest neighbors to return + ''' + indices = [] + distances = [] + + for (p1, p2) in zip(points_src, points_tgt): + kdtree = KDTree(p2) + dist, idx = kdtree.query(p1, k=k) + indices.append(idx) + distances.append(dist) + + return indices, distances + + +def normalize_imagenet(x): + ''' Normalize input images according to ImageNet standards. + Args: + x (tensor): input images + ''' + x = x.clone() + x[:, 0] = (x[:, 0] - 0.485) / 0.229 + x[:, 1] = (x[:, 1] - 0.456) / 0.224 + x[:, 2] = (x[:, 2] - 0.406) / 0.225 + return x + + +def make_3d_grid(bb_min, bb_max, shape): + ''' Makes a 3D grid. + Args: + bb_min (tuple): bounding box minimum + bb_max (tuple): bounding box maximum + shape (tuple): output shape + ''' + size = shape[0] * shape[1] * shape[2] + + pxs = torch.linspace(bb_min[0], bb_max[0], shape[0]) + pys = torch.linspace(bb_min[1], bb_max[1], shape[1]) + pzs = torch.linspace(bb_min[2], bb_max[2], shape[2]) + + pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size) + pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size) + pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size) + p = torch.stack([pxs, pys, pzs], dim=1) + + return p + + +def transform_points(points, transform): + ''' Transforms points with regard to passed camera information. + Args: + points (tensor): points tensor + transform (tensor): transformation matrices + ''' + assert(points.size(2) == 3) + assert(transform.size(1) == 3) + assert(points.size(0) == transform.size(0)) + + if transform.size(2) == 4: + R = transform[:, :, :3] + t = transform[:, :, 3:] + points_out = points @ R.transpose(1, 2) + t.transpose(1, 2) + elif transform.size(2) == 3: + K = transform + points_out = points @ K.transpose(1, 2) + + return points_out + + +def b_inv(b_mat): + ''' Performs batch matrix inversion. + Arguments: + b_mat: the batch of matrices that should be inverted + ''' + + eye = b_mat.new_ones(b_mat.size(-1)).diag().expand_as(b_mat) + b_inv, _ = torch.gesv(eye, b_mat) + return b_inv + + +def transform_points_back(points, transform): + ''' Inverts the transformation. + Args: + points (tensor): points tensor + transform (tensor): transformation matrices + ''' + assert(points.size(2) == 3) + assert(transform.size(1) == 3) + assert(points.size(0) == transform.size(0)) + + if transform.size(2) == 4: + R = transform[:, :, :3] + t = transform[:, :, 3:] + points_out = points - t.transpose(1, 2) + points_out = points_out @ b_inv(R.transpose(1, 2)) + elif transform.size(2) == 3: + K = transform + points_out = points @ b_inv(K.transpose(1, 2)) + + return points_out + + +def project_to_camera(points, transform): + ''' Projects points to the camera plane. + Args: + points (tensor): points tensor + transform (tensor): transformation matrices + ''' + p_camera = transform_points(points, transform) + p_camera = p_camera[..., :2] / p_camera[..., 2:] + return p_camera + + +def get_camera_args(data, loc_field=None, scale_field=None, device=None): + ''' Returns dictionary of camera arguments. + Args: + data (dict): data dictionary + loc_field (str): name of location field + scale_field (str): name of scale field + device (device): pytorch device + ''' + Rt = data['inputs.world_mat'].to(device) + K = data['inputs.camera_mat'].to(device) + + if loc_field is not None: + loc = data[loc_field].to(device) + else: + loc = torch.zeros(K.size(0), 3, device=K.device, dtype=K.dtype) + + if scale_field is not None: + scale = data[scale_field].to(device) + else: + scale = torch.zeros(K.size(0), device=K.device, dtype=K.dtype) + + Rt = fix_Rt_camera(Rt, loc, scale) + K = fix_K_camera(K, img_size=137.) + kwargs = {'Rt': Rt, 'K': K} + return kwargs + + +def fix_Rt_camera(Rt, loc, scale): + ''' Fixes Rt camera matrix. + Args: + Rt (tensor): Rt camera matrix + loc (tensor): location + scale (float): scale + ''' + # Rt is B x 3 x 4 + # loc is B x 3 and scale is B + batch_size = Rt.size(0) + R = Rt[:, :, :3] + t = Rt[:, :, 3:] + + scale = scale.view(batch_size, 1, 1) + R_new = R * scale + t_new = t + R @ loc.unsqueeze(2) + + Rt_new = torch.cat([R_new, t_new], dim=2) + + assert(Rt_new.size() == (batch_size, 3, 4)) + return Rt_new + + +def fix_K_camera(K, img_size=137): + """Fix camera projection matrix. + This changes a camera projection matrix that maps to + [0, img_size] x [0, img_size] to one that maps to [-1, 1] x [-1, 1]. + Args: + K (np.ndarray): Camera projection matrix. + img_size (float): Size of image plane K projects to. + """ + # Unscale and recenter + scale_mat = torch.tensor([ + [2./img_size, 0, -1], + [0, 2./img_size, -1], + [0, 0, 1.], + ], device=K.device, dtype=K.dtype) + K_new = scale_mat.view(1, 3, 3) @ K + return K_new \ No newline at end of file diff --git a/eval/src/eval.py b/eval/src/eval.py new file mode 100644 index 0000000..e2341ae --- /dev/null +++ b/eval/src/eval.py @@ -0,0 +1,213 @@ +import logging +import numpy as np +import trimesh +# from scipy.spatial import cKDTree +from eval.src.utils.libkdtree import KDTree +from eval.src.utils.libmesh import check_mesh_contains +from eval.src.common import compute_iou + +# Maximum values for bounding box [-0.5, 0.5]^3 +EMPTY_PCL_DICT = { + 'completeness': np.sqrt(3), + 'accuracy': np.sqrt(3), + 'completeness2': 3, + 'accuracy2': 3, + 'chamfer': 6, +} + +EMPTY_PCL_DICT_NORMALS = { + 'normals completeness': -1., + 'normals accuracy': -1., + 'normals': -1., +} + +logger = logging.getLogger(__name__) + + +class MeshEvaluator(object): + ''' Mesh evaluation class. + It handles the mesh evaluation process. + Args: + n_points (int): number of points to be used for evaluation + ''' + + def __init__(self, n_points=100000): + self.n_points = n_points + + def eval_mesh(self, mesh, pointcloud_tgt, normals_tgt, + points_iou, occ_tgt, remove_wall=False): + ''' Evaluates a mesh. + Args: + mesh (trimesh): mesh which should be evaluated + pointcloud_tgt (numpy array): target point cloud + normals_tgt (numpy array): target normals + points_iou (numpy_array): points tensor for IoU evaluation + occ_tgt (numpy_array): GT occupancy values for IoU points + ''' + if len(mesh.vertices) != 0 and len(mesh.faces) != 0: + if remove_wall: #! Remove walls and floors + pointcloud, idx = mesh.sample(2*self.n_points, return_index=True) + eps = 0.007 + x_max, x_min = pointcloud_tgt[:, 0].max(), pointcloud_tgt[:, 0].min() + y_max, y_min = pointcloud_tgt[:, 1].max(), pointcloud_tgt[:, 1].min() + z_max, z_min = pointcloud_tgt[:, 2].max(), pointcloud_tgt[:, 2].min() + + # add small offsets + x_max, x_min = x_max + eps, x_min - eps + y_max, y_min = y_max + eps, y_min - eps + z_max, z_min = z_max + eps, z_min - eps + + mask_x = (pointcloud[:, 0] <= x_max) & (pointcloud[:, 0] >= x_min) + mask_y = (pointcloud[:, 1] >= y_min) # floor + mask_z = (pointcloud[:, 2] <= z_max) & (pointcloud[:, 2] >= z_min) + + mask = mask_x & mask_y & mask_z + pointcloud_new = pointcloud[mask] + # Subsample + idx_new = np.random.randint(pointcloud_new.shape[0], size=self.n_points) + pointcloud = pointcloud_new[idx_new] + idx = idx[mask][idx_new] + else: + pointcloud, idx = mesh.sample(self.n_points, return_index=True) + + pointcloud = pointcloud.astype(np.float32) + normals = mesh.face_normals[idx] + else: + pointcloud = np.empty((0, 3)) + normals = np.empty((0, 3)) + + out_dict = self.eval_pointcloud( + pointcloud, pointcloud_tgt, normals, normals_tgt) + + + if (points_iou is not None) and (occ_tgt is not None) and len(mesh.vertices) != 0 and len(mesh.faces) != 0: + occ = check_mesh_contains(mesh, points_iou) + out_dict['iou'] = compute_iou(occ, occ_tgt) + else: + out_dict['iou'] = 0. + + return out_dict + + def eval_pointcloud(self, pointcloud, pointcloud_tgt, + normals=None, normals_tgt=None, + thresholds=np.linspace(1./1000, 1, 1000)): + ''' Evaluates a point cloud. + Args: + pointcloud (numpy array): predicted point cloud + pointcloud_tgt (numpy array): target point cloud + normals (numpy array): predicted normals + normals_tgt (numpy array): target normals + thresholds (numpy array): threshold values for the F-score calculation + ''' + # Return maximum losses if pointcloud is empty + if pointcloud.shape[0] == 0: + logger.warn('Empty pointcloud / mesh detected!') + out_dict = EMPTY_PCL_DICT.copy() + if normals is not None and normals_tgt is not None: + out_dict.update(EMPTY_PCL_DICT_NORMALS) + return out_dict + + pointcloud = np.asarray(pointcloud) + pointcloud_tgt = np.asarray(pointcloud_tgt) + + # Completeness: how far are the points of the target point cloud + # from thre predicted point cloud + completeness, completeness_normals = distance_p2p( + pointcloud_tgt, normals_tgt, pointcloud, normals + ) + recall = get_threshold_percentage(completeness, thresholds) + completeness2 = completeness**2 + + completeness = completeness.mean() + completeness2 = completeness2.mean() + completeness_normals = completeness_normals.mean() + + # Accuracy: how far are th points of the predicted pointcloud + # from the target pointcloud + accuracy, accuracy_normals = distance_p2p( + pointcloud, normals, pointcloud_tgt, normals_tgt + ) + precision = get_threshold_percentage(accuracy, thresholds) + accuracy2 = accuracy**2 + + accuracy = accuracy.mean() + accuracy2 = accuracy2.mean() + accuracy_normals = accuracy_normals.mean() + + # Chamfer distance + chamferL2 = 0.5 * (completeness2 + accuracy2) + normals_correctness = ( + 0.5 * completeness_normals + 0.5 * accuracy_normals + ) + chamferL1 = 0.5 * (completeness + accuracy) + + # F-Score + F = [ + 2 * precision[i] * recall[i] / (precision[i] + recall[i]) + for i in range(len(precision)) + ] + + out_dict = { + 'completeness': completeness, + 'accuracy': accuracy, + 'normals completeness': completeness_normals, + 'normals accuracy': accuracy_normals, + 'normals': normals_correctness, + 'completeness2': completeness2, + 'accuracy2': accuracy2, + 'chamfer-L2': chamferL2, + 'chamfer-L1': chamferL1, + 'f-score': F[9], # threshold = 1.0% + 'f-score-15': F[14], # threshold = 1.5% + 'f-score-20': F[19], # threshold = 2.0% + } + + return out_dict + + +def distance_p2p(points_src, normals_src, points_tgt, normals_tgt): + ''' Computes minimal distances of each point in points_src to points_tgt. + Args: + points_src (numpy array): source points + normals_src (numpy array): source normals + points_tgt (numpy array): target points + normals_tgt (numpy array): target normals + ''' + kdtree = KDTree(points_tgt) + dist, idx = kdtree.query(points_src) + + if normals_src is not None and normals_tgt is not None: + normals_src = \ + normals_src / np.linalg.norm(normals_src, axis=-1, keepdims=True) + normals_tgt = \ + normals_tgt / np.linalg.norm(normals_tgt, axis=-1, keepdims=True) + + normals_dot_product = (normals_tgt[idx] * normals_src).sum(axis=-1) + # Handle normals that point into wrong direction gracefully + # (mostly due to mehtod not caring about this in generation) + normals_dot_product = np.abs(normals_dot_product) + else: + normals_dot_product = np.array( + [np.nan] * points_src.shape[0], dtype=np.float32) + return dist, normals_dot_product + + +def distance_p2m(points, mesh): + ''' Compute minimal distances of each point in points to mesh. + Args: + points (numpy array): points array + mesh (trimesh): mesh + ''' + _, dist, _ = trimesh.proximity.closest_point(mesh, points) + return dist + +def get_threshold_percentage(dist, thresholds): + ''' Evaluates a point cloud. + Args: + dist (numpy array): calculated distance + thresholds (numpy array): threshold values for the F-score calculation + ''' + in_threshold = [ + (dist <= t).mean() for t in thresholds + ] + return in_threshold \ No newline at end of file diff --git a/eval/src/utils/__init__.py b/eval/src/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/eval/src/utils/binvox_rw.py b/eval/src/utils/binvox_rw.py new file mode 100644 index 0000000..c9c11d6 --- /dev/null +++ b/eval/src/utils/binvox_rw.py @@ -0,0 +1,287 @@ +# Copyright (C) 2012 Daniel Maturana +# This file is part of binvox-rw-py. +# +# binvox-rw-py is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# binvox-rw-py is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with binvox-rw-py. If not, see . +# +# Modified by Christopher B. Choy +# for python 3 support + +""" +Binvox to Numpy and back. + + +>>> import numpy as np +>>> import binvox_rw +>>> with open('chair.binvox', 'rb') as f: +... m1 = binvox_rw.read_as_3d_array(f) +... +>>> m1.dims +[32, 32, 32] +>>> m1.scale +41.133000000000003 +>>> m1.translate +[0.0, 0.0, 0.0] +>>> with open('chair_out.binvox', 'wb') as f: +... m1.write(f) +... +>>> with open('chair_out.binvox', 'rb') as f: +... m2 = binvox_rw.read_as_3d_array(f) +... +>>> m1.dims==m2.dims +True +>>> m1.scale==m2.scale +True +>>> m1.translate==m2.translate +True +>>> np.all(m1.data==m2.data) +True + +>>> with open('chair.binvox', 'rb') as f: +... md = binvox_rw.read_as_3d_array(f) +... +>>> with open('chair.binvox', 'rb') as f: +... ms = binvox_rw.read_as_coord_array(f) +... +>>> data_ds = binvox_rw.dense_to_sparse(md.data) +>>> data_sd = binvox_rw.sparse_to_dense(ms.data, 32) +>>> np.all(data_sd==md.data) +True +>>> # the ordering of elements returned by numpy.nonzero changes with axis +>>> # ordering, so to compare for equality we first lexically sort the voxels. +>>> np.all(ms.data[:, np.lexsort(ms.data)] == data_ds[:, np.lexsort(data_ds)]) +True +""" + +import numpy as np + +class Voxels(object): + """ Holds a binvox model. + data is either a three-dimensional numpy boolean array (dense representation) + or a two-dimensional numpy float array (coordinate representation). + + dims, translate and scale are the model metadata. + + dims are the voxel dimensions, e.g. [32, 32, 32] for a 32x32x32 model. + + scale and translate relate the voxels to the original model coordinates. + + To translate voxel coordinates i, j, k to original coordinates x, y, z: + + x_n = (i+.5)/dims[0] + y_n = (j+.5)/dims[1] + z_n = (k+.5)/dims[2] + x = scale*x_n + translate[0] + y = scale*y_n + translate[1] + z = scale*z_n + translate[2] + + """ + + def __init__(self, data, dims, translate, scale, axis_order): + self.data = data + self.dims = dims + self.translate = translate + self.scale = scale + assert (axis_order in ('xzy', 'xyz')) + self.axis_order = axis_order + + def clone(self): + data = self.data.copy() + dims = self.dims[:] + translate = self.translate[:] + return Voxels(data, dims, translate, self.scale, self.axis_order) + + def write(self, fp): + write(self, fp) + +def read_header(fp): + """ Read binvox header. Mostly meant for internal use. + """ + line = fp.readline().strip() + if not line.startswith(b'#binvox'): + raise IOError('Not a binvox file') + dims = [int(i) for i in fp.readline().strip().split(b' ')[1:]] + translate = [float(i) for i in fp.readline().strip().split(b' ')[1:]] + scale = [float(i) for i in fp.readline().strip().split(b' ')[1:]][0] + line = fp.readline() + return dims, translate, scale + +def read_as_3d_array(fp, fix_coords=True): + """ Read binary binvox format as array. + + Returns the model with accompanying metadata. + + Voxels are stored in a three-dimensional numpy array, which is simple and + direct, but may use a lot of memory for large models. (Storage requirements + are 8*(d^3) bytes, where d is the dimensions of the binvox model. Numpy + boolean arrays use a byte per element). + + Doesn't do any checks on input except for the '#binvox' line. + """ + dims, translate, scale = read_header(fp) + raw_data = np.frombuffer(fp.read(), dtype=np.uint8) + # if just using reshape() on the raw data: + # indexing the array as array[i,j,k], the indices map into the + # coords as: + # i -> x + # j -> z + # k -> y + # if fix_coords is true, then data is rearranged so that + # mapping is + # i -> x + # j -> y + # k -> z + values, counts = raw_data[::2], raw_data[1::2] + data = np.repeat(values, counts).astype(np.bool) + data = data.reshape(dims) + if fix_coords: + # xzy to xyz TODO the right thing + data = np.transpose(data, (0, 2, 1)) + axis_order = 'xyz' + else: + axis_order = 'xzy' + return Voxels(data, dims, translate, scale, axis_order) + + +def read_as_coord_array(fp, fix_coords=True): + """ Read binary binvox format as coordinates. + + Returns binvox model with voxels in a "coordinate" representation, i.e. an + 3 x N array where N is the number of nonzero voxels. Each column + corresponds to a nonzero voxel and the 3 rows are the (x, z, y) coordinates + of the voxel. (The odd ordering is due to the way binvox format lays out + data). Note that coordinates refer to the binvox voxels, without any + scaling or translation. + + Use this to save memory if your model is very sparse (mostly empty). + + Doesn't do any checks on input except for the '#binvox' line. + """ + dims, translate, scale = read_header(fp) + raw_data = np.frombuffer(fp.read(), dtype=np.uint8) + + values, counts = raw_data[::2], raw_data[1::2] + + sz = np.prod(dims) + index, end_index = 0, 0 + end_indices = np.cumsum(counts) + indices = np.concatenate(([0], end_indices[:-1])).astype(end_indices.dtype) + + values = values.astype(np.bool) + indices = indices[values] + end_indices = end_indices[values] + + nz_voxels = [] + for index, end_index in zip(indices, end_indices): + nz_voxels.extend(range(index, end_index)) + nz_voxels = np.array(nz_voxels) + # TODO are these dims correct? + # according to docs, + # index = x * wxh + z * width + y; // wxh = width * height = d * d + + x = nz_voxels / (dims[0]*dims[1]) + zwpy = nz_voxels % (dims[0]*dims[1]) # z*w + y + z = zwpy / dims[0] + y = zwpy % dims[0] + if fix_coords: + data = np.vstack((x, y, z)) + axis_order = 'xyz' + else: + data = np.vstack((x, z, y)) + axis_order = 'xzy' + + #return Voxels(data, dims, translate, scale, axis_order) + return Voxels(np.ascontiguousarray(data), dims, translate, scale, axis_order) + +def dense_to_sparse(voxel_data, dtype=np.int): + """ From dense representation to sparse (coordinate) representation. + No coordinate reordering. + """ + if voxel_data.ndim!=3: + raise ValueError('voxel_data is wrong shape; should be 3D array.') + return np.asarray(np.nonzero(voxel_data), dtype) + +def sparse_to_dense(voxel_data, dims, dtype=np.bool): + if voxel_data.ndim!=2 or voxel_data.shape[0]!=3: + raise ValueError('voxel_data is wrong shape; should be 3xN array.') + if np.isscalar(dims): + dims = [dims]*3 + dims = np.atleast_2d(dims).T + # truncate to integers + xyz = voxel_data.astype(np.int) + # discard voxels that fall outside dims + valid_ix = ~np.any((xyz < 0) | (xyz >= dims), 0) + xyz = xyz[:,valid_ix] + out = np.zeros(dims.flatten(), dtype=dtype) + out[tuple(xyz)] = True + return out + +#def get_linear_index(x, y, z, dims): + #""" Assuming xzy order. (y increasing fastest. + #TODO ensure this is right when dims are not all same + #""" + #return x*(dims[1]*dims[2]) + z*dims[1] + y + +def write(voxel_model, fp): + """ Write binary binvox format. + + Note that when saving a model in sparse (coordinate) format, it is first + converted to dense format. + + Doesn't check if the model is 'sane'. + + """ + if voxel_model.data.ndim==2: + # TODO avoid conversion to dense + dense_voxel_data = sparse_to_dense(voxel_model.data, voxel_model.dims) + else: + dense_voxel_data = voxel_model.data + + fp.write('#binvox 1\n') + fp.write('dim '+' '.join(map(str, voxel_model.dims))+'\n') + fp.write('translate '+' '.join(map(str, voxel_model.translate))+'\n') + fp.write('scale '+str(voxel_model.scale)+'\n') + fp.write('data\n') + if not voxel_model.axis_order in ('xzy', 'xyz'): + raise ValueError('Unsupported voxel model axis order') + + if voxel_model.axis_order=='xzy': + voxels_flat = dense_voxel_data.flatten() + elif voxel_model.axis_order=='xyz': + voxels_flat = np.transpose(dense_voxel_data, (0, 2, 1)).flatten() + + # keep a sort of state machine for writing run length encoding + state = voxels_flat[0] + ctr = 0 + for c in voxels_flat: + if c==state: + ctr += 1 + # if ctr hits max, dump + if ctr==255: + fp.write(chr(state)) + fp.write(chr(ctr)) + ctr = 0 + else: + # if switch state, dump + fp.write(chr(state)) + fp.write(chr(ctr)) + state = c + ctr = 1 + # flush out remainders + if ctr > 0: + fp.write(chr(state)) + fp.write(chr(ctr)) + +if __name__ == '__main__': + import doctest + doctest.testmod() diff --git a/eval/src/utils/icp.py b/eval/src/utils/icp.py new file mode 100644 index 0000000..982b4d7 --- /dev/null +++ b/eval/src/utils/icp.py @@ -0,0 +1,121 @@ +import numpy as np +from sklearn.neighbors import NearestNeighbors + + +def best_fit_transform(A, B): + ''' + Calculates the least-squares best-fit transform that maps corresponding + points A to B in m spatial dimensions + Input: + A: Nxm numpy array of corresponding points + B: Nxm numpy array of corresponding points + Returns: + T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B + R: mxm rotation matrix + t: mx1 translation vector + ''' + + assert A.shape == B.shape + + # get number of dimensions + m = A.shape[1] + + # translate points to their centroids + centroid_A = np.mean(A, axis=0) + centroid_B = np.mean(B, axis=0) + AA = A - centroid_A + BB = B - centroid_B + + # rotation matrix + H = np.dot(AA.T, BB) + U, S, Vt = np.linalg.svd(H) + R = np.dot(Vt.T, U.T) + + # special reflection case + if np.linalg.det(R) < 0: + Vt[m-1,:] *= -1 + R = np.dot(Vt.T, U.T) + + # translation + t = centroid_B.T - np.dot(R,centroid_A.T) + + # homogeneous transformation + T = np.identity(m+1) + T[:m, :m] = R + T[:m, m] = t + + return T, R, t + + +def nearest_neighbor(src, dst): + ''' + Find the nearest (Euclidean) neighbor in dst for each point in src + Input: + src: Nxm array of points + dst: Nxm array of points + Output: + distances: Euclidean distances of the nearest neighbor + indices: dst indices of the nearest neighbor + ''' + + assert src.shape == dst.shape + + neigh = NearestNeighbors(n_neighbors=1) + neigh.fit(dst) + distances, indices = neigh.kneighbors(src, return_distance=True) + return distances.ravel(), indices.ravel() + + +def icp(A, B, init_pose=None, max_iterations=20, tolerance=0.001): + ''' + The Iterative Closest Point method: finds best-fit transform that maps + points A on to points B + Input: + A: Nxm numpy array of source mD points + B: Nxm numpy array of destination mD point + init_pose: (m+1)x(m+1) homogeneous transformation + max_iterations: exit algorithm after max_iterations + tolerance: convergence criteria + Output: + T: final homogeneous transformation that maps A on to B + distances: Euclidean distances (errors) of the nearest neighbor + i: number of iterations to converge + ''' + + assert A.shape == B.shape + + # get number of dimensions + m = A.shape[1] + + # make points homogeneous, copy them to maintain the originals + src = np.ones((m+1,A.shape[0])) + dst = np.ones((m+1,B.shape[0])) + src[:m,:] = np.copy(A.T) + dst[:m,:] = np.copy(B.T) + + # apply the initial pose estimation + if init_pose is not None: + src = np.dot(init_pose, src) + + prev_error = 0 + + for i in range(max_iterations): + # find the nearest neighbors between the current source and destination points + distances, indices = nearest_neighbor(src[:m,:].T, dst[:m,:].T) + + # compute the transformation between the current source and nearest destination points + T,_,_ = best_fit_transform(src[:m,:].T, dst[:m,indices].T) + + # update the current source + src = np.dot(T, src) + + # check error + mean_error = np.mean(distances) + if np.abs(prev_error - mean_error) < tolerance: + break + prev_error = mean_error + + # calculate final transformation + T,_,_ = best_fit_transform(A, src[:m,:].T) + + return T, distances, i diff --git a/eval/src/utils/io.py b/eval/src/utils/io.py new file mode 100644 index 0000000..247b3b7 --- /dev/null +++ b/eval/src/utils/io.py @@ -0,0 +1,112 @@ +import os +from plyfile import PlyElement, PlyData +import numpy as np + + +def export_pointcloud(vertices, out_file, as_text=True): + assert(vertices.shape[1] == 3) + vertices = vertices.astype(np.float32) + vertices = np.ascontiguousarray(vertices) + vector_dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] + vertices = vertices.view(dtype=vector_dtype).flatten() + plyel = PlyElement.describe(vertices, 'vertex') + plydata = PlyData([plyel], text=as_text) + plydata.write(out_file) + + +def load_pointcloud(in_file): + plydata = PlyData.read(in_file) + vertices = np.stack([ + plydata['vertex']['x'], + plydata['vertex']['y'], + plydata['vertex']['z'] + ], axis=1) + return vertices + + +def read_off(file): + """ + Reads vertices and faces from an off file. + + :param file: path to file to read + :type file: str + :return: vertices and faces as lists of tuples + :rtype: [(float)], [(int)] + """ + + assert os.path.exists(file), 'file %s not found' % file + + with open(file, 'r') as fp: + lines = fp.readlines() + lines = [line.strip() for line in lines] + + # Fix for ModelNet bug were 'OFF' and the number of vertices and faces + # are all in the first line. + if len(lines[0]) > 3: + assert lines[0][:3] == 'OFF' or lines[0][:3] == 'off', \ + 'invalid OFF file %s' % file + + parts = lines[0][3:].split(' ') + assert len(parts) == 3 + + num_vertices = int(parts[0]) + assert num_vertices > 0 + + num_faces = int(parts[1]) + assert num_faces > 0 + + start_index = 1 + # This is the regular case! + else: + assert lines[0] == 'OFF' or lines[0] == 'off', \ + 'invalid OFF file %s' % file + + parts = lines[1].split(' ') + assert len(parts) == 3 + + num_vertices = int(parts[0]) + assert num_vertices > 0 + + num_faces = int(parts[1]) + assert num_faces > 0 + + start_index = 2 + + vertices = [] + for i in range(num_vertices): + vertex = lines[start_index + i].split(' ') + vertex = [float(point.strip()) for point in vertex if point != ''] + assert len(vertex) == 3 + + vertices.append(vertex) + + faces = [] + for i in range(num_faces): + face = lines[start_index + num_vertices + i].split(' ') + face = [index.strip() for index in face if index != ''] + + # check to be sure + for index in face: + assert index != '', \ + 'found empty vertex index: %s (%s)' \ + % (lines[start_index + num_vertices + i], file) + + face = [int(index) for index in face] + + assert face[0] == len(face) - 1, \ + 'face should have %d vertices but as %d (%s)' \ + % (face[0], len(face) - 1, file) + assert face[0] == 3, \ + 'only triangular meshes supported (%s)' % file + for index in face: + assert index >= 0 and index < num_vertices, \ + 'vertex %d (of %d vertices) does not exist (%s)' \ + % (index, num_vertices, file) + + assert len(face) > 1 + + faces.append(face) + + return vertices, faces + + assert False, 'could not open %s' % file diff --git a/eval/src/utils/libkdtree/.gitignore b/eval/src/utils/libkdtree/.gitignore new file mode 100644 index 0000000..378eac2 --- /dev/null +++ b/eval/src/utils/libkdtree/.gitignore @@ -0,0 +1 @@ +build diff --git a/eval/src/utils/libkdtree/LICENSE.txt b/eval/src/utils/libkdtree/LICENSE.txt new file mode 100644 index 0000000..e3acbd5 --- /dev/null +++ b/eval/src/utils/libkdtree/LICENSE.txt @@ -0,0 +1,165 @@ + GNU LESSER GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007, 2015 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + + This version of the GNU Lesser General Public License incorporates +the terms and conditions of version 3 of the GNU General Public +License, supplemented by the additional permissions listed below. + + 0. Additional Definitions. + + As used herein, "this License" refers to version 3 of the GNU Lesser +General Public License, and the "GNU GPL" refers to version 3 of the GNU +General Public License. + + "The Library" refers to a covered work governed by this License, +other than an Application or a Combined Work as defined below. + + An "Application" is any work that makes use of an interface provided +by the Library, but which is not otherwise based on the Library. +Defining a subclass of a class defined by the Library is deemed a mode +of using an interface provided by the Library. + + A "Combined Work" is a work produced by combining or linking an +Application with the Library. The particular version of the Library +with which the Combined Work was made is also called the "Linked +Version". + + The "Minimal Corresponding Source" for a Combined Work means the +Corresponding Source for the Combined Work, excluding any source code +for portions of the Combined Work that, considered in isolation, are +based on the Application, and not on the Linked Version. + + The "Corresponding Application Code" for a Combined Work means the +object code and/or source code for the Application, including any data +and utility programs needed for reproducing the Combined Work from the +Application, but excluding the System Libraries of the Combined Work. + + 1. Exception to Section 3 of the GNU GPL. + + You may convey a covered work under sections 3 and 4 of this License +without being bound by section 3 of the GNU GPL. + + 2. Conveying Modified Versions. + + If you modify a copy of the Library, and, in your modifications, a +facility refers to a function or data to be supplied by an Application +that uses the facility (other than as an argument passed when the +facility is invoked), then you may convey a copy of the modified +version: + + a) under this License, provided that you make a good faith effort to + ensure that, in the event an Application does not supply the + function or data, the facility still operates, and performs + whatever part of its purpose remains meaningful, or + + b) under the GNU GPL, with none of the additional permissions of + this License applicable to that copy. + + 3. Object Code Incorporating Material from Library Header Files. + + The object code form of an Application may incorporate material from +a header file that is part of the Library. You may convey such object +code under terms of your choice, provided that, if the incorporated +material is not limited to numerical parameters, data structure +layouts and accessors, or small macros, inline functions and templates +(ten or fewer lines in length), you do both of the following: + + a) Give prominent notice with each copy of the object code that the + Library is used in it and that the Library and its use are + covered by this License. + + b) Accompany the object code with a copy of the GNU GPL and this license + document. + + 4. Combined Works. + + You may convey a Combined Work under terms of your choice that, +taken together, effectively do not restrict modification of the +portions of the Library contained in the Combined Work and reverse +engineering for debugging such modifications, if you also do each of +the following: + + a) Give prominent notice with each copy of the Combined Work that + the Library is used in it and that the Library and its use are + covered by this License. + + b) Accompany the Combined Work with a copy of the GNU GPL and this license + document. + + c) For a Combined Work that displays copyright notices during + execution, include the copyright notice for the Library among + these notices, as well as a reference directing the user to the + copies of the GNU GPL and this license document. + + d) Do one of the following: + + 0) Convey the Minimal Corresponding Source under the terms of this + License, and the Corresponding Application Code in a form + suitable for, and under terms that permit, the user to + recombine or relink the Application with a modified version of + the Linked Version to produce a modified Combined Work, in the + manner specified by section 6 of the GNU GPL for conveying + Corresponding Source. + + 1) Use a suitable shared library mechanism for linking with the + Library. A suitable mechanism is one that (a) uses at run time + a copy of the Library already present on the user's computer + system, and (b) will operate properly with a modified version + of the Library that is interface-compatible with the Linked + Version. + + e) Provide Installation Information, but only if you would otherwise + be required to provide such information under section 6 of the + GNU GPL, and only to the extent that such information is + necessary to install and execute a modified version of the + Combined Work produced by recombining or relinking the + Application with a modified version of the Linked Version. (If + you use option 4d0, the Installation Information must accompany + the Minimal Corresponding Source and Corresponding Application + Code. If you use option 4d1, you must provide the Installation + Information in the manner specified by section 6 of the GNU GPL + for conveying Corresponding Source.) + + 5. Combined Libraries. + + You may place library facilities that are a work based on the +Library side by side in a single library together with other library +facilities that are not Applications and are not covered by this +License, and convey such a combined library under terms of your +choice, if you do both of the following: + + a) Accompany the combined library with a copy of the same work based + on the Library, uncombined with any other library facilities, + conveyed under the terms of this License. + + b) Give prominent notice with the combined library that part of it + is a work based on the Library, and explaining where to find the + accompanying uncombined form of the same work. + + 6. Revised Versions of the GNU Lesser General Public License. + + The Free Software Foundation may publish revised and/or new versions +of the GNU Lesser General Public License from time to time. Such new +versions will be similar in spirit to the present version, but may +differ in detail to address new problems or concerns. + + Each version is given a distinguishing version number. If the +Library as you received it specifies that a certain numbered version +of the GNU Lesser General Public License "or any later version" +applies to it, you have the option of following the terms and +conditions either of that published version or of any later version +published by the Free Software Foundation. If the Library as you +received it does not specify a version number of the GNU Lesser +General Public License, you may choose any version of the GNU Lesser +General Public License ever published by the Free Software Foundation. + + If the Library as you received it specifies that a proxy can decide +whether future versions of the GNU Lesser General Public License shall +apply, that proxy's public statement of acceptance of any version is +permanent authorization for you to choose that version for the +Library. diff --git a/eval/src/utils/libkdtree/MANIFEST.in b/eval/src/utils/libkdtree/MANIFEST.in new file mode 100644 index 0000000..0ff2a61 --- /dev/null +++ b/eval/src/utils/libkdtree/MANIFEST.in @@ -0,0 +1,2 @@ +exclude pykdtree/render_template.py +include LICENSE.txt diff --git a/eval/src/utils/libkdtree/README b/eval/src/utils/libkdtree/README new file mode 100644 index 0000000..cb7001e --- /dev/null +++ b/eval/src/utils/libkdtree/README @@ -0,0 +1,148 @@ +.. image:: https://travis-ci.org/storpipfugl/pykdtree.svg?branch=master + :target: https://travis-ci.org/storpipfugl/pykdtree +.. image:: https://ci.appveyor.com/api/projects/status/ubo92368ktt2d25g/branch/master + :target: https://ci.appveyor.com/project/storpipfugl/pykdtree + +======== +pykdtree +======== + +Objective +--------- +pykdtree is a kd-tree implementation for fast nearest neighbour search in Python. +The aim is to be the fastest implementation around for common use cases (low dimensions and low number of neighbours) for both tree construction and queries. + +The implementation is based on scipy.spatial.cKDTree and libANN by combining the best features from both and focus on implementation efficiency. + +The interface is similar to that of scipy.spatial.cKDTree except only Euclidean distance measure is supported. + +Queries are optionally multithreaded using OpenMP. + +Installation +------------ +Default build of pykdtree with OpenMP enabled queries using libgomp + +.. code-block:: bash + + $ cd + $ python setup.py install + +If it fails with undefined compiler flags or you want to use another OpenMP implementation please modify setup.py at the indicated point to match your system. + +Building without OpenMP support is controlled by the USE_OMP environment variable + +.. code-block:: bash + + $ cd + $ export USE_OMP=0 + $ python setup.py install + +Note evironment variables are by default not exported when using sudo so in this case do + +.. code-block:: bash + + $ USE_OMP=0 sudo -E python setup.py install + +Usage +----- +The usage of pykdtree is similar to scipy.spatial.cKDTree so for now refer to its documentation + + >>> from pykdtree.kdtree import KDTree + >>> kd_tree = KDTree(data_pts) + >>> dist, idx = kd_tree.query(query_pts, k=8) + +The number of threads to be used in OpenMP enabled queries can be controlled with the standard OpenMP environment variable OMP_NUM_THREADS. + +The **leafsize** argument (number of data points per leaf) for the tree creation can be used to control the memory overhead of the kd-tree. pykdtree uses a default **leafsize=16**. +Increasing **leafsize** will reduce the memory overhead and construction time but increase query time. + +pykdtree accepts data in double precision (numpy.float64) or single precision (numpy.float32) floating point. If data of another type is used an internal copy in double precision is made resulting in a memory overhead. If the kd-tree is constructed on single precision data the query points must be single precision as well. + +Benchmarks +---------- +Comparison with scipy.spatial.cKDTree and libANN. This benchmark is on geospatial 3D data with 10053632 data points and 4276224 query points. The results are indexed relative to the construction time of scipy.spatial.cKDTree. A leafsize of 10 (scipy.spatial.cKDTree default) is used. + +Note: libANN is *not* thread safe. In this benchmark libANN is compiled with "-O3 -funroll-loops -ffast-math -fprefetch-loop-arrays" in order to achieve optimum performance. + +================== ===================== ====== ======== ================== +Operation scipy.spatial.cKDTree libANN pykdtree pykdtree 4 threads +------------------ --------------------- ------ -------- ------------------ + +Construction 100 304 96 96 + +query 1 neighbour 1267 294 223 70 + +Total 1 neighbour 1367 598 319 166 + +query 8 neighbours 2193 625 449 143 + +Total 8 neighbours 2293 929 545 293 +================== ===================== ====== ======== ================== + +Looking at the combined construction and query this gives the following performance improvement relative to scipy.spatial.cKDTree + +========== ====== ======== ================== +Neighbours libANN pykdtree pykdtree 4 threads +---------- ------ -------- ------------------ +1 129% 329% 723% + +8 147% 320% 682% +========== ====== ======== ================== + +Note: mileage will vary with the dataset at hand and computer architecture. + +Test +---- +Run the unit tests using nosetest + +.. code-block:: bash + + $ cd + $ python setup.py nosetests + +Installing on AppVeyor +---------------------- + +Pykdtree requires the "stdint.h" header file which is not available on certain +versions of Windows or certain Windows compilers including those on the +continuous integration platform AppVeyor. To get around this the header file(s) +can be downloaded and placed in the correct "include" directory. This can +be done by adding the `anaconda/missing-headers.ps1` script to your repository +and running it the install step of `appveyor.yml`: + + # install missing headers that aren't included with MSVC 2008 + # https://github.com/omnia-md/conda-recipes/pull/524 + - "powershell ./appveyor/missing-headers.ps1" + +In addition to this, AppVeyor does not support OpenMP so this feature must be +turned off by adding the following to `appveyor.yml` in the +`environment` section: + + environment: + global: + # Don't build with openmp because it isn't supported in appveyor's compilers + USE_OMP: "0" + +Changelog +--------- +v1.3.1 : Fix masking in the "query" method introduced in 1.3.0 + +v1.3.0 : Keyword argument "mask" added to "query" method. OpenMP compilation now works for MS Visual Studio compiler + +v1.2.2 : Build process fixes + +v1.2.1 : Fixed OpenMP thread safety issue introduced in v1.2.0 + +v1.2.0 : 64 and 32 bit MSVC Windows support added + +v1.1.1 : Same as v1.1 release due to incorrect pypi release + +v1.1 : Build process improvements. Add data attribute to kdtree class for scipy interface compatibility + +v1.0 : Switched license from GPLv3 to LGPLv3 + +v0.3 : Avoid zipping of installed egg + +v0.2 : Reduced memory footprint. Can now handle single precision data internally avoiding copy conversion to double precision. Default leafsize changed from 10 to 16 as this reduces the memory footprint and makes it a cache line multiplum (negligible if any query performance observed in benchmarks). Reduced memory allocation for leaf nodes. Applied patch for building on OS X. + +v0.1 : Initial version. diff --git a/eval/src/utils/libkdtree/README.rst b/eval/src/utils/libkdtree/README.rst new file mode 100644 index 0000000..cb7001e --- /dev/null +++ b/eval/src/utils/libkdtree/README.rst @@ -0,0 +1,148 @@ +.. image:: https://travis-ci.org/storpipfugl/pykdtree.svg?branch=master + :target: https://travis-ci.org/storpipfugl/pykdtree +.. image:: https://ci.appveyor.com/api/projects/status/ubo92368ktt2d25g/branch/master + :target: https://ci.appveyor.com/project/storpipfugl/pykdtree + +======== +pykdtree +======== + +Objective +--------- +pykdtree is a kd-tree implementation for fast nearest neighbour search in Python. +The aim is to be the fastest implementation around for common use cases (low dimensions and low number of neighbours) for both tree construction and queries. + +The implementation is based on scipy.spatial.cKDTree and libANN by combining the best features from both and focus on implementation efficiency. + +The interface is similar to that of scipy.spatial.cKDTree except only Euclidean distance measure is supported. + +Queries are optionally multithreaded using OpenMP. + +Installation +------------ +Default build of pykdtree with OpenMP enabled queries using libgomp + +.. code-block:: bash + + $ cd + $ python setup.py install + +If it fails with undefined compiler flags or you want to use another OpenMP implementation please modify setup.py at the indicated point to match your system. + +Building without OpenMP support is controlled by the USE_OMP environment variable + +.. code-block:: bash + + $ cd + $ export USE_OMP=0 + $ python setup.py install + +Note evironment variables are by default not exported when using sudo so in this case do + +.. code-block:: bash + + $ USE_OMP=0 sudo -E python setup.py install + +Usage +----- +The usage of pykdtree is similar to scipy.spatial.cKDTree so for now refer to its documentation + + >>> from pykdtree.kdtree import KDTree + >>> kd_tree = KDTree(data_pts) + >>> dist, idx = kd_tree.query(query_pts, k=8) + +The number of threads to be used in OpenMP enabled queries can be controlled with the standard OpenMP environment variable OMP_NUM_THREADS. + +The **leafsize** argument (number of data points per leaf) for the tree creation can be used to control the memory overhead of the kd-tree. pykdtree uses a default **leafsize=16**. +Increasing **leafsize** will reduce the memory overhead and construction time but increase query time. + +pykdtree accepts data in double precision (numpy.float64) or single precision (numpy.float32) floating point. If data of another type is used an internal copy in double precision is made resulting in a memory overhead. If the kd-tree is constructed on single precision data the query points must be single precision as well. + +Benchmarks +---------- +Comparison with scipy.spatial.cKDTree and libANN. This benchmark is on geospatial 3D data with 10053632 data points and 4276224 query points. The results are indexed relative to the construction time of scipy.spatial.cKDTree. A leafsize of 10 (scipy.spatial.cKDTree default) is used. + +Note: libANN is *not* thread safe. In this benchmark libANN is compiled with "-O3 -funroll-loops -ffast-math -fprefetch-loop-arrays" in order to achieve optimum performance. + +================== ===================== ====== ======== ================== +Operation scipy.spatial.cKDTree libANN pykdtree pykdtree 4 threads +------------------ --------------------- ------ -------- ------------------ + +Construction 100 304 96 96 + +query 1 neighbour 1267 294 223 70 + +Total 1 neighbour 1367 598 319 166 + +query 8 neighbours 2193 625 449 143 + +Total 8 neighbours 2293 929 545 293 +================== ===================== ====== ======== ================== + +Looking at the combined construction and query this gives the following performance improvement relative to scipy.spatial.cKDTree + +========== ====== ======== ================== +Neighbours libANN pykdtree pykdtree 4 threads +---------- ------ -------- ------------------ +1 129% 329% 723% + +8 147% 320% 682% +========== ====== ======== ================== + +Note: mileage will vary with the dataset at hand and computer architecture. + +Test +---- +Run the unit tests using nosetest + +.. code-block:: bash + + $ cd + $ python setup.py nosetests + +Installing on AppVeyor +---------------------- + +Pykdtree requires the "stdint.h" header file which is not available on certain +versions of Windows or certain Windows compilers including those on the +continuous integration platform AppVeyor. To get around this the header file(s) +can be downloaded and placed in the correct "include" directory. This can +be done by adding the `anaconda/missing-headers.ps1` script to your repository +and running it the install step of `appveyor.yml`: + + # install missing headers that aren't included with MSVC 2008 + # https://github.com/omnia-md/conda-recipes/pull/524 + - "powershell ./appveyor/missing-headers.ps1" + +In addition to this, AppVeyor does not support OpenMP so this feature must be +turned off by adding the following to `appveyor.yml` in the +`environment` section: + + environment: + global: + # Don't build with openmp because it isn't supported in appveyor's compilers + USE_OMP: "0" + +Changelog +--------- +v1.3.1 : Fix masking in the "query" method introduced in 1.3.0 + +v1.3.0 : Keyword argument "mask" added to "query" method. OpenMP compilation now works for MS Visual Studio compiler + +v1.2.2 : Build process fixes + +v1.2.1 : Fixed OpenMP thread safety issue introduced in v1.2.0 + +v1.2.0 : 64 and 32 bit MSVC Windows support added + +v1.1.1 : Same as v1.1 release due to incorrect pypi release + +v1.1 : Build process improvements. Add data attribute to kdtree class for scipy interface compatibility + +v1.0 : Switched license from GPLv3 to LGPLv3 + +v0.3 : Avoid zipping of installed egg + +v0.2 : Reduced memory footprint. Can now handle single precision data internally avoiding copy conversion to double precision. Default leafsize changed from 10 to 16 as this reduces the memory footprint and makes it a cache line multiplum (negligible if any query performance observed in benchmarks). Reduced memory allocation for leaf nodes. Applied patch for building on OS X. + +v0.1 : Initial version. diff --git a/eval/src/utils/libkdtree/__init__.py b/eval/src/utils/libkdtree/__init__.py new file mode 100644 index 0000000..cbd34df --- /dev/null +++ b/eval/src/utils/libkdtree/__init__.py @@ -0,0 +1,6 @@ +from .pykdtree.kdtree import KDTree + + +__all__ = [ + KDTree +] diff --git a/eval/src/utils/libkdtree/pykdtree/__init__.py b/eval/src/utils/libkdtree/pykdtree/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/eval/src/utils/libkdtree/pykdtree/_kdtree_core.c b/eval/src/utils/libkdtree/pykdtree/_kdtree_core.c new file mode 100644 index 0000000..aebb816 --- /dev/null +++ b/eval/src/utils/libkdtree/pykdtree/_kdtree_core.c @@ -0,0 +1,1417 @@ +/* +pykdtree, Fast kd-tree implementation with OpenMP-enabled queries + +Copyright (C) 2013 - present Esben S. Nielsen + +This program is free software: you can redistribute it and/or modify it under +the terms of the GNU Lesser General Public License as published by the Free +Software Foundation, either version 3 of the License, or + (at your option) any later version. + +This program is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more +details. + +You should have received a copy of the GNU Lesser General Public License along +with this program. If not, see . +*/ + +/* +This kd-tree implementation is based on the scipy.spatial.cKDTree by +Anne M. Archibald and libANN by David M. Mount and Sunil Arya. +*/ + + +#include +#include +#include +#include + +#define PA(i,d) (pa[no_dims * pidx[i] + d]) +#define PASWAP(a,b) { uint32_t tmp = pidx[a]; pidx[a] = pidx[b]; pidx[b] = tmp; } + +#ifdef _MSC_VER +#define restrict __restrict +#endif + + +typedef struct +{ + float cut_val; + int8_t cut_dim; + uint32_t start_idx; + uint32_t n; + float cut_bounds_lv; + float cut_bounds_hv; + struct Node_float *left_child; + struct Node_float *right_child; +} Node_float; + +typedef struct +{ + float *bbox; + int8_t no_dims; + uint32_t *pidx; + struct Node_float *root; +} Tree_float; + + +typedef struct +{ + double cut_val; + int8_t cut_dim; + uint32_t start_idx; + uint32_t n; + double cut_bounds_lv; + double cut_bounds_hv; + struct Node_double *left_child; + struct Node_double *right_child; +} Node_double; + +typedef struct +{ + double *bbox; + int8_t no_dims; + uint32_t *pidx; + struct Node_double *root; +} Tree_double; + + + +void insert_point_float(uint32_t *closest_idx, float *closest_dist, uint32_t pidx, float cur_dist, uint32_t k); +void get_bounding_box_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, float *bbox); +int partition_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *bbox, int8_t *cut_dim, + float *cut_val, uint32_t *n_lo); +Tree_float* construct_tree_float(float *pa, int8_t no_dims, uint32_t n, uint32_t bsp); +Node_float* construct_subtree_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, float *bbox); +Node_float * create_node_float(uint32_t start_idx, uint32_t n, int is_leaf); +void delete_subtree_float(Node_float *root); +void delete_tree_float(Tree_float *tree); +void print_tree_float(Node_float *root, int level); +float calc_dist_float(float *point1_coord, float *point2_coord, int8_t no_dims); +float get_cube_offset_float(int8_t dim, float *point_coord, float *bbox); +float get_min_dist_float(float *point_coord, int8_t no_dims, float *bbox); +void search_leaf_float(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord, + uint32_t k, uint32_t *restrict closest_idx, float *restrict closest_dist); +void search_leaf_float_mask(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord, + uint32_t k, uint8_t *restrict mask, uint32_t *restrict closest_idx, float *restrict closest_dist); +void search_splitnode_float(Node_float *root, float *pa, uint32_t *pidx, int8_t no_dims, float *point_coord, + float min_dist, uint32_t k, float distance_upper_bound, float eps_fac, uint8_t *mask, uint32_t * closest_idx, float *closest_dist); +void search_tree_float(Tree_float *tree, float *pa, float *point_coords, + uint32_t num_points, uint32_t k, float distance_upper_bound, + float eps, uint8_t *mask, uint32_t *closest_idxs, float *closest_dists); + + +void insert_point_double(uint32_t *closest_idx, double *closest_dist, uint32_t pidx, double cur_dist, uint32_t k); +void get_bounding_box_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, double *bbox); +int partition_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *bbox, int8_t *cut_dim, + double *cut_val, uint32_t *n_lo); +Tree_double* construct_tree_double(double *pa, int8_t no_dims, uint32_t n, uint32_t bsp); +Node_double* construct_subtree_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, double *bbox); +Node_double * create_node_double(uint32_t start_idx, uint32_t n, int is_leaf); +void delete_subtree_double(Node_double *root); +void delete_tree_double(Tree_double *tree); +void print_tree_double(Node_double *root, int level); +double calc_dist_double(double *point1_coord, double *point2_coord, int8_t no_dims); +double get_cube_offset_double(int8_t dim, double *point_coord, double *bbox); +double get_min_dist_double(double *point_coord, int8_t no_dims, double *bbox); +void search_leaf_double(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord, + uint32_t k, uint32_t *restrict closest_idx, double *restrict closest_dist); +void search_leaf_double_mask(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord, + uint32_t k, uint8_t *restrict mask, uint32_t *restrict closest_idx, double *restrict closest_dist); +void search_splitnode_double(Node_double *root, double *pa, uint32_t *pidx, int8_t no_dims, double *point_coord, + double min_dist, uint32_t k, double distance_upper_bound, double eps_fac, uint8_t *mask, uint32_t * closest_idx, double *closest_dist); +void search_tree_double(Tree_double *tree, double *pa, double *point_coords, + uint32_t num_points, uint32_t k, double distance_upper_bound, + double eps, uint8_t *mask, uint32_t *closest_idxs, double *closest_dists); + + + +/************************************************ +Insert point into priority queue +Params: + closest_idx : index queue + closest_dist : distance queue + pidx : permutation index of data points + cur_dist : distance to point inserted + k : number of neighbours +************************************************/ +void insert_point_float(uint32_t *closest_idx, float *closest_dist, uint32_t pidx, float cur_dist, uint32_t k) +{ + int i; + for (i = k - 1; i > 0; i--) + { + if (closest_dist[i - 1] > cur_dist) + { + closest_dist[i] = closest_dist[i - 1]; + closest_idx[i] = closest_idx[i - 1]; + } + else + { + break; + } + } + closest_idx[i] = pidx; + closest_dist[i] = cur_dist; +} + +/************************************************ +Get the bounding box of a set of points +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + n : number of points + bbox : bounding box (return) +************************************************/ +void get_bounding_box_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, float *bbox) +{ + float cur; + int8_t bbox_idx, i, j; + uint32_t i2; + + /* Use first data point to initialize */ + for (i = 0; i < no_dims; i++) + { + bbox[2 * i] = bbox[2 * i + 1] = PA(0, i); + } + + /* Update using rest of data points */ + for (i2 = 1; i2 < n; i2++) + { + for (j = 0; j < no_dims; j++) + { + bbox_idx = 2 * j; + cur = PA(i2, j); + if (cur < bbox[bbox_idx]) + { + bbox[bbox_idx] = cur; + } + else if (cur > bbox[bbox_idx + 1]) + { + bbox[bbox_idx + 1] = cur; + } + } + } +} + +/************************************************ +Partition a range of data points by manipulation the permutation index. +The sliding midpoint rule is used for the partitioning. +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + start_idx : index of first data point to use + n : number of data points + bbox : bounding box of data points + cut_dim : dimension used for partition (return) + cut_val : value of cutting point (return) + n_lo : number of point below cutting plane (return) +************************************************/ +int partition_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *bbox, int8_t *cut_dim, float *cut_val, uint32_t *n_lo) +{ + int8_t dim = 0, i; + uint32_t p, q, i2; + float size = 0, min_val, max_val, split, side_len, cur_val; + uint32_t end_idx = start_idx + n - 1; + + /* Find largest bounding box side */ + for (i = 0; i < no_dims; i++) + { + side_len = bbox[2 * i + 1] - bbox[2 * i]; + if (side_len > size) + { + dim = i; + size = side_len; + } + } + + min_val = bbox[2 * dim]; + max_val = bbox[2 * dim + 1]; + + /* Check for zero length or inconsistent */ + if (min_val >= max_val) + return 1; + + /* Use middle for splitting */ + split = (min_val + max_val) / 2; + + /* Partition all data points around middle */ + p = start_idx; + q = end_idx; + while (p <= q) + { + if (PA(p, dim) < split) + { + p++; + } + else if (PA(q, dim) >= split) + { + /* Guard for underflow */ + if (q > 0) + { + q--; + } + else + { + break; + } + } + else + { + PASWAP(p, q); + p++; + q--; + } + } + + /* Check for empty splits */ + if (p == start_idx) + { + /* No points less than split. + Split at lowest point instead. + Minimum 1 point will be in lower box. + */ + + uint32_t j = start_idx; + split = PA(j, dim); + for (i2 = start_idx + 1; i2 <= end_idx; i2++) + { + /* Find lowest point */ + cur_val = PA(i2, dim); + if (cur_val < split) + { + j = i2; + split = cur_val; + } + } + PASWAP(j, start_idx); + p = start_idx + 1; + } + else if (p == end_idx + 1) + { + /* No points greater than split. + Split at highest point instead. + Minimum 1 point will be in higher box. + */ + + uint32_t j = end_idx; + split = PA(j, dim); + for (i2 = start_idx; i2 < end_idx; i2++) + { + /* Find highest point */ + cur_val = PA(i2, dim); + if (cur_val > split) + { + j = i2; + split = cur_val; + } + } + PASWAP(j, end_idx); + p = end_idx; + } + + /* Set return values */ + *cut_dim = dim; + *cut_val = split; + *n_lo = p - start_idx; + return 0; +} + +/************************************************ +Construct a sub tree over a range of data points. +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + start_idx : index of first data point to use + n : number of data points + bsp : number of points per leaf + bbox : bounding box of set of data points +************************************************/ +Node_float* construct_subtree_float(float *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, float *bbox) +{ + /* Create new node */ + int is_leaf = (n <= bsp); + Node_float *root = create_node_float(start_idx, n, is_leaf); + int rval; + int8_t cut_dim; + uint32_t n_lo; + float cut_val, lv, hv; + if (is_leaf) + { + /* Make leaf node */ + root->cut_dim = -1; + } + else + { + /* Make split node */ + /* Partition data set and set node info */ + rval = partition_float(pa, pidx, no_dims, start_idx, n, bbox, &cut_dim, &cut_val, &n_lo); + if (rval == 1) + { + root->cut_dim = -1; + return root; + } + root->cut_val = cut_val; + root->cut_dim = cut_dim; + + /* Recurse on both subsets */ + lv = bbox[2 * cut_dim]; + hv = bbox[2 * cut_dim + 1]; + + /* Set bounds for cut dimension */ + root->cut_bounds_lv = lv; + root->cut_bounds_hv = hv; + + /* Update bounding box before call to lower subset and restore after */ + bbox[2 * cut_dim + 1] = cut_val; + root->left_child = (struct Node_float *)construct_subtree_float(pa, pidx, no_dims, start_idx, n_lo, bsp, bbox); + bbox[2 * cut_dim + 1] = hv; + + /* Update bounding box before call to higher subset and restore after */ + bbox[2 * cut_dim] = cut_val; + root->right_child = (struct Node_float *)construct_subtree_float(pa, pidx, no_dims, start_idx + n_lo, n - n_lo, bsp, bbox); + bbox[2 * cut_dim] = lv; + } + return root; +} + +/************************************************ +Construct a tree over data points. +Params: + pa : data points + no_dims: number of dimensions + n : number of data points + bsp : number of points per leaf +************************************************/ +Tree_float* construct_tree_float(float *pa, int8_t no_dims, uint32_t n, uint32_t bsp) +{ + Tree_float *tree = (Tree_float *)malloc(sizeof(Tree_float)); + uint32_t i; + uint32_t *pidx; + float *bbox; + + tree->no_dims = no_dims; + + /* Initialize permutation array */ + pidx = (uint32_t *)malloc(sizeof(uint32_t) * n); + for (i = 0; i < n; i++) + { + pidx[i] = i; + } + + bbox = (float *)malloc(2 * sizeof(float) * no_dims); + get_bounding_box_float(pa, pidx, no_dims, n, bbox); + tree->bbox = bbox; + + /* Construct subtree on full dataset */ + tree->root = (struct Node_float *)construct_subtree_float(pa, pidx, no_dims, 0, n, bsp, bbox); + + tree->pidx = pidx; + return tree; +} + +/************************************************ +Create a tree node. +Params: + start_idx : index of first data point to use + n : number of data points +************************************************/ +Node_float* create_node_float(uint32_t start_idx, uint32_t n, int is_leaf) +{ + Node_float *new_node; + if (is_leaf) + { + /* + Allocate only the part of the struct that will be used in a leaf node. + This relies on the C99 specification of struct layout conservation and padding and + that dereferencing is never attempted for the node pointers in a leaf. + */ + new_node = (Node_float *)malloc(sizeof(Node_float) - 2 * sizeof(Node_float *)); + } + else + { + new_node = (Node_float *)malloc(sizeof(Node_float)); + } + new_node->n = n; + new_node->start_idx = start_idx; + return new_node; +} + +/************************************************ +Delete subtree +Params: + root : root node of subtree to delete +************************************************/ +void delete_subtree_float(Node_float *root) +{ + if (root->cut_dim != -1) + { + delete_subtree_float((Node_float *)root->left_child); + delete_subtree_float((Node_float *)root->right_child); + } + free(root); +} + +/************************************************ +Delete tree +Params: + tree : Tree struct of kd tree +************************************************/ +void delete_tree_float(Tree_float *tree) +{ + delete_subtree_float((Node_float *)tree->root); + free(tree->bbox); + free(tree->pidx); + free(tree); +} + +/************************************************ +Print +************************************************/ +void print_tree_float(Node_float *root, int level) +{ + int i; + for (i = 0; i < level; i++) + { + printf(" "); + } + printf("(cut_val: %f, cut_dim: %i)\n", root->cut_val, root->cut_dim); + if (root->cut_dim != -1) + print_tree_float((Node_float *)root->left_child, level + 1); + if (root->cut_dim != -1) + print_tree_float((Node_float *)root->right_child, level + 1); +} + +/************************************************ +Calculate squared cartesian distance between points +Params: + point1_coord : point 1 + point2_coord : point 2 +************************************************/ +float calc_dist_float(float *point1_coord, float *point2_coord, int8_t no_dims) +{ + /* Calculate squared distance */ + float dist = 0, dim_dist; + int8_t i; + for (i = 0; i < no_dims; i++) + { + dim_dist = point2_coord[i] - point1_coord[i]; + dist += dim_dist * dim_dist; + } + return dist; +} + +/************************************************ +Get squared distance from point to cube in specified dimension +Params: + dim : dimension + point_coord : cartesian coordinates of point + bbox : cube +************************************************/ +float get_cube_offset_float(int8_t dim, float *point_coord, float *bbox) +{ + float dim_coord = point_coord[dim]; + + if (dim_coord < bbox[2 * dim]) + { + /* Left of cube in dimension */ + return dim_coord - bbox[2 * dim]; + } + else if (dim_coord > bbox[2 * dim + 1]) + { + /* Right of cube in dimension */ + return dim_coord - bbox[2 * dim + 1]; + } + else + { + /* Inside cube in dimension */ + return 0.; + } +} + +/************************************************ +Get minimum squared distance between point and cube. +Params: + point_coord : cartesian coordinates of point + no_dims : number of dimensions + bbox : cube +************************************************/ +float get_min_dist_float(float *point_coord, int8_t no_dims, float *bbox) +{ + float cube_offset = 0, cube_offset_dim; + int8_t i; + + for (i = 0; i < no_dims; i++) + { + cube_offset_dim = get_cube_offset_float(i, point_coord, bbox); + cube_offset += cube_offset_dim * cube_offset_dim; + } + + return cube_offset; +} + +/************************************************ +Search a leaf node for closest point +Params: + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + start_idx : index of first data point to use + size : number of data points + point_coord : query point + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_leaf_float(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord, + uint32_t k, uint32_t *restrict closest_idx, float *restrict closest_dist) +{ + float cur_dist; + uint32_t i; + /* Loop through all points in leaf */ + for (i = 0; i < n; i++) + { + /* Get distance to query point */ + cur_dist = calc_dist_float(&PA(start_idx + i, 0), point_coord, no_dims); + /* Update closest info if new point is closest so far*/ + if (cur_dist < closest_dist[k - 1]) + { + insert_point_float(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k); + } + } +} + + +/************************************************ +Search a leaf node for closest point with data point mask +Params: + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + start_idx : index of first data point to use + size : number of data points + point_coord : query point + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_leaf_float_mask(float *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, float *restrict point_coord, + uint32_t k, uint8_t *mask, uint32_t *restrict closest_idx, float *restrict closest_dist) +{ + float cur_dist; + uint32_t i; + /* Loop through all points in leaf */ + for (i = 0; i < n; i++) + { + /* Is this point masked out? */ + if (mask[pidx[start_idx + i]]) + { + continue; + } + /* Get distance to query point */ + cur_dist = calc_dist_float(&PA(start_idx + i, 0), point_coord, no_dims); + /* Update closest info if new point is closest so far*/ + if (cur_dist < closest_dist[k - 1]) + { + insert_point_float(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k); + } + } +} + +/************************************************ +Search subtree for nearest to query point +Params: + root : root node of subtree + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + point_coord : query point + min_dist : minumum distance to nearest neighbour + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_splitnode_float(Node_float *root, float *pa, uint32_t *pidx, int8_t no_dims, float *point_coord, + float min_dist, uint32_t k, float distance_upper_bound, float eps_fac, uint8_t *mask, + uint32_t *closest_idx, float *closest_dist) +{ + int8_t dim; + float dist_left, dist_right; + float new_offset; + float box_diff; + + /* Skip if distance bound exeeded */ + if (min_dist > distance_upper_bound) + { + return; + } + + dim = root->cut_dim; + + /* Handle leaf node */ + if (dim == -1) + { + if (mask) + { + search_leaf_float_mask(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, mask, closest_idx, closest_dist); + } + else + { + search_leaf_float(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, closest_idx, closest_dist); + } + return; + } + + /* Get distance to cutting plane */ + new_offset = point_coord[dim] - root->cut_val; + + if (new_offset < 0) + { + /* Left of cutting plane */ + dist_left = min_dist; + if (dist_left < closest_dist[k - 1] * eps_fac) + { + /* Search left subtree if minimum distance is below limit */ + search_splitnode_float((Node_float *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + + /* Right of cutting plane. Update minimum distance. + See Algorithms for Fast Vector Quantization + Sunil Arya and David M. Mount. */ + box_diff = root->cut_bounds_lv - point_coord[dim]; + if (box_diff < 0) + { + box_diff = 0; + } + dist_right = min_dist - box_diff * box_diff + new_offset * new_offset; + if (dist_right < closest_dist[k - 1] * eps_fac) + { + /* Search right subtree if minimum distance is below limit*/ + search_splitnode_float((Node_float *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + } + else + { + /* Right of cutting plane */ + dist_right = min_dist; + if (dist_right < closest_dist[k - 1] * eps_fac) + { + /* Search right subtree if minimum distance is below limit*/ + search_splitnode_float((Node_float *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + + /* Left of cutting plane. Update minimum distance. + See Algorithms for Fast Vector Quantization + Sunil Arya and David M. Mount. */ + box_diff = point_coord[dim] - root->cut_bounds_hv; + if (box_diff < 0) + { + box_diff = 0; + } + dist_left = min_dist - box_diff * box_diff + new_offset * new_offset; + if (dist_left < closest_dist[k - 1] * eps_fac) + { + /* Search left subtree if minimum distance is below limit*/ + search_splitnode_float((Node_float *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + } +} + +/************************************************ +Search for nearest neighbour for a set of query points +Params: + tree : Tree struct of kd tree + pa : data points + pidx : permutation index of data points + point_coords : query points + num_points : number of query points + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_tree_float(Tree_float *tree, float *pa, float *point_coords, + uint32_t num_points, uint32_t k, float distance_upper_bound, + float eps, uint8_t *mask, uint32_t *closest_idxs, float *closest_dists) +{ + float min_dist; + float eps_fac = 1 / ((1 + eps) * (1 + eps)); + int8_t no_dims = tree->no_dims; + float *bbox = tree->bbox; + uint32_t *pidx = tree->pidx; + uint32_t j = 0; +#if defined(_MSC_VER) && defined(_OPENMP) + int32_t i = 0; + int32_t local_num_points = (int32_t) num_points; +#else + uint32_t i; + uint32_t local_num_points = num_points; +#endif + Node_float *root = (Node_float *)tree->root; + + /* Queries are OpenMP enabled */ + #pragma omp parallel + { + /* The low chunk size is important to avoid L2 cache trashing + for spatial coherent query datasets + */ + #pragma omp for private(i, j) schedule(static, 100) nowait + for (i = 0; i < local_num_points; i++) + { + for (j = 0; j < k; j++) + { + closest_idxs[i * k + j] = UINT32_MAX; + closest_dists[i * k + j] = DBL_MAX; + } + min_dist = get_min_dist_float(point_coords + no_dims * i, no_dims, bbox); + search_splitnode_float(root, pa, pidx, no_dims, point_coords + no_dims * i, min_dist, + k, distance_upper_bound, eps_fac, mask, &closest_idxs[i * k], &closest_dists[i * k]); + } + } +} + +/************************************************ +Insert point into priority queue +Params: + closest_idx : index queue + closest_dist : distance queue + pidx : permutation index of data points + cur_dist : distance to point inserted + k : number of neighbours +************************************************/ +void insert_point_double(uint32_t *closest_idx, double *closest_dist, uint32_t pidx, double cur_dist, uint32_t k) +{ + int i; + for (i = k - 1; i > 0; i--) + { + if (closest_dist[i - 1] > cur_dist) + { + closest_dist[i] = closest_dist[i - 1]; + closest_idx[i] = closest_idx[i - 1]; + } + else + { + break; + } + } + closest_idx[i] = pidx; + closest_dist[i] = cur_dist; +} + +/************************************************ +Get the bounding box of a set of points +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + n : number of points + bbox : bounding box (return) +************************************************/ +void get_bounding_box_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, double *bbox) +{ + double cur; + int8_t bbox_idx, i, j; + uint32_t i2; + + /* Use first data point to initialize */ + for (i = 0; i < no_dims; i++) + { + bbox[2 * i] = bbox[2 * i + 1] = PA(0, i); + } + + /* Update using rest of data points */ + for (i2 = 1; i2 < n; i2++) + { + for (j = 0; j < no_dims; j++) + { + bbox_idx = 2 * j; + cur = PA(i2, j); + if (cur < bbox[bbox_idx]) + { + bbox[bbox_idx] = cur; + } + else if (cur > bbox[bbox_idx + 1]) + { + bbox[bbox_idx + 1] = cur; + } + } + } +} + +/************************************************ +Partition a range of data points by manipulation the permutation index. +The sliding midpoint rule is used for the partitioning. +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + start_idx : index of first data point to use + n : number of data points + bbox : bounding box of data points + cut_dim : dimension used for partition (return) + cut_val : value of cutting point (return) + n_lo : number of point below cutting plane (return) +************************************************/ +int partition_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *bbox, int8_t *cut_dim, double *cut_val, uint32_t *n_lo) +{ + int8_t dim = 0, i; + uint32_t p, q, i2; + double size = 0, min_val, max_val, split, side_len, cur_val; + uint32_t end_idx = start_idx + n - 1; + + /* Find largest bounding box side */ + for (i = 0; i < no_dims; i++) + { + side_len = bbox[2 * i + 1] - bbox[2 * i]; + if (side_len > size) + { + dim = i; + size = side_len; + } + } + + min_val = bbox[2 * dim]; + max_val = bbox[2 * dim + 1]; + + /* Check for zero length or inconsistent */ + if (min_val >= max_val) + return 1; + + /* Use middle for splitting */ + split = (min_val + max_val) / 2; + + /* Partition all data points around middle */ + p = start_idx; + q = end_idx; + while (p <= q) + { + if (PA(p, dim) < split) + { + p++; + } + else if (PA(q, dim) >= split) + { + /* Guard for underflow */ + if (q > 0) + { + q--; + } + else + { + break; + } + } + else + { + PASWAP(p, q); + p++; + q--; + } + } + + /* Check for empty splits */ + if (p == start_idx) + { + /* No points less than split. + Split at lowest point instead. + Minimum 1 point will be in lower box. + */ + + uint32_t j = start_idx; + split = PA(j, dim); + for (i2 = start_idx + 1; i2 <= end_idx; i2++) + { + /* Find lowest point */ + cur_val = PA(i2, dim); + if (cur_val < split) + { + j = i2; + split = cur_val; + } + } + PASWAP(j, start_idx); + p = start_idx + 1; + } + else if (p == end_idx + 1) + { + /* No points greater than split. + Split at highest point instead. + Minimum 1 point will be in higher box. + */ + + uint32_t j = end_idx; + split = PA(j, dim); + for (i2 = start_idx; i2 < end_idx; i2++) + { + /* Find highest point */ + cur_val = PA(i2, dim); + if (cur_val > split) + { + j = i2; + split = cur_val; + } + } + PASWAP(j, end_idx); + p = end_idx; + } + + /* Set return values */ + *cut_dim = dim; + *cut_val = split; + *n_lo = p - start_idx; + return 0; +} + +/************************************************ +Construct a sub tree over a range of data points. +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + start_idx : index of first data point to use + n : number of data points + bsp : number of points per leaf + bbox : bounding box of set of data points +************************************************/ +Node_double* construct_subtree_double(double *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, double *bbox) +{ + /* Create new node */ + int is_leaf = (n <= bsp); + Node_double *root = create_node_double(start_idx, n, is_leaf); + int rval; + int8_t cut_dim; + uint32_t n_lo; + double cut_val, lv, hv; + if (is_leaf) + { + /* Make leaf node */ + root->cut_dim = -1; + } + else + { + /* Make split node */ + /* Partition data set and set node info */ + rval = partition_double(pa, pidx, no_dims, start_idx, n, bbox, &cut_dim, &cut_val, &n_lo); + if (rval == 1) + { + root->cut_dim = -1; + return root; + } + root->cut_val = cut_val; + root->cut_dim = cut_dim; + + /* Recurse on both subsets */ + lv = bbox[2 * cut_dim]; + hv = bbox[2 * cut_dim + 1]; + + /* Set bounds for cut dimension */ + root->cut_bounds_lv = lv; + root->cut_bounds_hv = hv; + + /* Update bounding box before call to lower subset and restore after */ + bbox[2 * cut_dim + 1] = cut_val; + root->left_child = (struct Node_double *)construct_subtree_double(pa, pidx, no_dims, start_idx, n_lo, bsp, bbox); + bbox[2 * cut_dim + 1] = hv; + + /* Update bounding box before call to higher subset and restore after */ + bbox[2 * cut_dim] = cut_val; + root->right_child = (struct Node_double *)construct_subtree_double(pa, pidx, no_dims, start_idx + n_lo, n - n_lo, bsp, bbox); + bbox[2 * cut_dim] = lv; + } + return root; +} + +/************************************************ +Construct a tree over data points. +Params: + pa : data points + no_dims: number of dimensions + n : number of data points + bsp : number of points per leaf +************************************************/ +Tree_double* construct_tree_double(double *pa, int8_t no_dims, uint32_t n, uint32_t bsp) +{ + Tree_double *tree = (Tree_double *)malloc(sizeof(Tree_double)); + uint32_t i; + uint32_t *pidx; + double *bbox; + + tree->no_dims = no_dims; + + /* Initialize permutation array */ + pidx = (uint32_t *)malloc(sizeof(uint32_t) * n); + for (i = 0; i < n; i++) + { + pidx[i] = i; + } + + bbox = (double *)malloc(2 * sizeof(double) * no_dims); + get_bounding_box_double(pa, pidx, no_dims, n, bbox); + tree->bbox = bbox; + + /* Construct subtree on full dataset */ + tree->root = (struct Node_double *)construct_subtree_double(pa, pidx, no_dims, 0, n, bsp, bbox); + + tree->pidx = pidx; + return tree; +} + +/************************************************ +Create a tree node. +Params: + start_idx : index of first data point to use + n : number of data points +************************************************/ +Node_double* create_node_double(uint32_t start_idx, uint32_t n, int is_leaf) +{ + Node_double *new_node; + if (is_leaf) + { + /* + Allocate only the part of the struct that will be used in a leaf node. + This relies on the C99 specification of struct layout conservation and padding and + that dereferencing is never attempted for the node pointers in a leaf. + */ + new_node = (Node_double *)malloc(sizeof(Node_double) - 2 * sizeof(Node_double *)); + } + else + { + new_node = (Node_double *)malloc(sizeof(Node_double)); + } + new_node->n = n; + new_node->start_idx = start_idx; + return new_node; +} + +/************************************************ +Delete subtree +Params: + root : root node of subtree to delete +************************************************/ +void delete_subtree_double(Node_double *root) +{ + if (root->cut_dim != -1) + { + delete_subtree_double((Node_double *)root->left_child); + delete_subtree_double((Node_double *)root->right_child); + } + free(root); +} + +/************************************************ +Delete tree +Params: + tree : Tree struct of kd tree +************************************************/ +void delete_tree_double(Tree_double *tree) +{ + delete_subtree_double((Node_double *)tree->root); + free(tree->bbox); + free(tree->pidx); + free(tree); +} + +/************************************************ +Print +************************************************/ +void print_tree_double(Node_double *root, int level) +{ + int i; + for (i = 0; i < level; i++) + { + printf(" "); + } + printf("(cut_val: %f, cut_dim: %i)\n", root->cut_val, root->cut_dim); + if (root->cut_dim != -1) + print_tree_double((Node_double *)root->left_child, level + 1); + if (root->cut_dim != -1) + print_tree_double((Node_double *)root->right_child, level + 1); +} + +/************************************************ +Calculate squared cartesian distance between points +Params: + point1_coord : point 1 + point2_coord : point 2 +************************************************/ +double calc_dist_double(double *point1_coord, double *point2_coord, int8_t no_dims) +{ + /* Calculate squared distance */ + double dist = 0, dim_dist; + int8_t i; + for (i = 0; i < no_dims; i++) + { + dim_dist = point2_coord[i] - point1_coord[i]; + dist += dim_dist * dim_dist; + } + return dist; +} + +/************************************************ +Get squared distance from point to cube in specified dimension +Params: + dim : dimension + point_coord : cartesian coordinates of point + bbox : cube +************************************************/ +double get_cube_offset_double(int8_t dim, double *point_coord, double *bbox) +{ + double dim_coord = point_coord[dim]; + + if (dim_coord < bbox[2 * dim]) + { + /* Left of cube in dimension */ + return dim_coord - bbox[2 * dim]; + } + else if (dim_coord > bbox[2 * dim + 1]) + { + /* Right of cube in dimension */ + return dim_coord - bbox[2 * dim + 1]; + } + else + { + /* Inside cube in dimension */ + return 0.; + } +} + +/************************************************ +Get minimum squared distance between point and cube. +Params: + point_coord : cartesian coordinates of point + no_dims : number of dimensions + bbox : cube +************************************************/ +double get_min_dist_double(double *point_coord, int8_t no_dims, double *bbox) +{ + double cube_offset = 0, cube_offset_dim; + int8_t i; + + for (i = 0; i < no_dims; i++) + { + cube_offset_dim = get_cube_offset_double(i, point_coord, bbox); + cube_offset += cube_offset_dim * cube_offset_dim; + } + + return cube_offset; +} + +/************************************************ +Search a leaf node for closest point +Params: + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + start_idx : index of first data point to use + size : number of data points + point_coord : query point + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_leaf_double(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord, + uint32_t k, uint32_t *restrict closest_idx, double *restrict closest_dist) +{ + double cur_dist; + uint32_t i; + /* Loop through all points in leaf */ + for (i = 0; i < n; i++) + { + /* Get distance to query point */ + cur_dist = calc_dist_double(&PA(start_idx + i, 0), point_coord, no_dims); + /* Update closest info if new point is closest so far*/ + if (cur_dist < closest_dist[k - 1]) + { + insert_point_double(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k); + } + } +} + + +/************************************************ +Search a leaf node for closest point with data point mask +Params: + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + start_idx : index of first data point to use + size : number of data points + point_coord : query point + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_leaf_double_mask(double *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, double *restrict point_coord, + uint32_t k, uint8_t *mask, uint32_t *restrict closest_idx, double *restrict closest_dist) +{ + double cur_dist; + uint32_t i; + /* Loop through all points in leaf */ + for (i = 0; i < n; i++) + { + /* Is this point masked out? */ + if (mask[pidx[start_idx + i]]) + { + continue; + } + /* Get distance to query point */ + cur_dist = calc_dist_double(&PA(start_idx + i, 0), point_coord, no_dims); + /* Update closest info if new point is closest so far*/ + if (cur_dist < closest_dist[k - 1]) + { + insert_point_double(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k); + } + } +} + +/************************************************ +Search subtree for nearest to query point +Params: + root : root node of subtree + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + point_coord : query point + min_dist : minumum distance to nearest neighbour + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_splitnode_double(Node_double *root, double *pa, uint32_t *pidx, int8_t no_dims, double *point_coord, + double min_dist, uint32_t k, double distance_upper_bound, double eps_fac, uint8_t *mask, + uint32_t *closest_idx, double *closest_dist) +{ + int8_t dim; + double dist_left, dist_right; + double new_offset; + double box_diff; + + /* Skip if distance bound exeeded */ + if (min_dist > distance_upper_bound) + { + return; + } + + dim = root->cut_dim; + + /* Handle leaf node */ + if (dim == -1) + { + if (mask) + { + search_leaf_double_mask(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, mask, closest_idx, closest_dist); + } + else + { + search_leaf_double(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, closest_idx, closest_dist); + } + return; + } + + /* Get distance to cutting plane */ + new_offset = point_coord[dim] - root->cut_val; + + if (new_offset < 0) + { + /* Left of cutting plane */ + dist_left = min_dist; + if (dist_left < closest_dist[k - 1] * eps_fac) + { + /* Search left subtree if minimum distance is below limit */ + search_splitnode_double((Node_double *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + + /* Right of cutting plane. Update minimum distance. + See Algorithms for Fast Vector Quantization + Sunil Arya and David M. Mount. */ + box_diff = root->cut_bounds_lv - point_coord[dim]; + if (box_diff < 0) + { + box_diff = 0; + } + dist_right = min_dist - box_diff * box_diff + new_offset * new_offset; + if (dist_right < closest_dist[k - 1] * eps_fac) + { + /* Search right subtree if minimum distance is below limit*/ + search_splitnode_double((Node_double *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + } + else + { + /* Right of cutting plane */ + dist_right = min_dist; + if (dist_right < closest_dist[k - 1] * eps_fac) + { + /* Search right subtree if minimum distance is below limit*/ + search_splitnode_double((Node_double *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + + /* Left of cutting plane. Update minimum distance. + See Algorithms for Fast Vector Quantization + Sunil Arya and David M. Mount. */ + box_diff = point_coord[dim] - root->cut_bounds_hv; + if (box_diff < 0) + { + box_diff = 0; + } + dist_left = min_dist - box_diff * box_diff + new_offset * new_offset; + if (dist_left < closest_dist[k - 1] * eps_fac) + { + /* Search left subtree if minimum distance is below limit*/ + search_splitnode_double((Node_double *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + } +} + +/************************************************ +Search for nearest neighbour for a set of query points +Params: + tree : Tree struct of kd tree + pa : data points + pidx : permutation index of data points + point_coords : query points + num_points : number of query points + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_tree_double(Tree_double *tree, double *pa, double *point_coords, + uint32_t num_points, uint32_t k, double distance_upper_bound, + double eps, uint8_t *mask, uint32_t *closest_idxs, double *closest_dists) +{ + double min_dist; + double eps_fac = 1 / ((1 + eps) * (1 + eps)); + int8_t no_dims = tree->no_dims; + double *bbox = tree->bbox; + uint32_t *pidx = tree->pidx; + uint32_t j = 0; +#if defined(_MSC_VER) && defined(_OPENMP) + int32_t i = 0; + int32_t local_num_points = (int32_t) num_points; +#else + uint32_t i; + uint32_t local_num_points = num_points; +#endif + Node_double *root = (Node_double *)tree->root; + + /* Queries are OpenMP enabled */ + #pragma omp parallel + { + /* The low chunk size is important to avoid L2 cache trashing + for spatial coherent query datasets + */ + #pragma omp for private(i, j) schedule(static, 100) nowait + for (i = 0; i < local_num_points; i++) + { + for (j = 0; j < k; j++) + { + closest_idxs[i * k + j] = UINT32_MAX; + closest_dists[i * k + j] = DBL_MAX; + } + min_dist = get_min_dist_double(point_coords + no_dims * i, no_dims, bbox); + search_splitnode_double(root, pa, pidx, no_dims, point_coords + no_dims * i, min_dist, + k, distance_upper_bound, eps_fac, mask, &closest_idxs[i * k], &closest_dists[i * k]); + } + } +} diff --git a/eval/src/utils/libkdtree/pykdtree/_kdtree_core.c.mako b/eval/src/utils/libkdtree/pykdtree/_kdtree_core.c.mako new file mode 100644 index 0000000..a8270f5 --- /dev/null +++ b/eval/src/utils/libkdtree/pykdtree/_kdtree_core.c.mako @@ -0,0 +1,734 @@ +/* +pykdtree, Fast kd-tree implementation with OpenMP-enabled queries + +Copyright (C) 2013 - present Esben S. Nielsen + +This program is free software: you can redistribute it and/or modify it under +the terms of the GNU Lesser General Public License as published by the Free +Software Foundation, either version 3 of the License, or + (at your option) any later version. + +This program is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more +details. + +You should have received a copy of the GNU Lesser General Public License along +with this program. If not, see . +*/ + +/* +This kd-tree implementation is based on the scipy.spatial.cKDTree by +Anne M. Archibald and libANN by David M. Mount and Sunil Arya. +*/ + + +#include +#include +#include +#include + +#define PA(i,d) (pa[no_dims * pidx[i] + d]) +#define PASWAP(a,b) { uint32_t tmp = pidx[a]; pidx[a] = pidx[b]; pidx[b] = tmp; } + +#ifdef _MSC_VER +#define restrict __restrict +#endif + +% for DTYPE in ['float', 'double']: + +typedef struct +{ + ${DTYPE} cut_val; + int8_t cut_dim; + uint32_t start_idx; + uint32_t n; + ${DTYPE} cut_bounds_lv; + ${DTYPE} cut_bounds_hv; + struct Node_${DTYPE} *left_child; + struct Node_${DTYPE} *right_child; +} Node_${DTYPE}; + +typedef struct +{ + ${DTYPE} *bbox; + int8_t no_dims; + uint32_t *pidx; + struct Node_${DTYPE} *root; +} Tree_${DTYPE}; + +% endfor + +% for DTYPE in ['float', 'double']: + +void insert_point_${DTYPE}(uint32_t *closest_idx, ${DTYPE} *closest_dist, uint32_t pidx, ${DTYPE} cur_dist, uint32_t k); +void get_bounding_box_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, ${DTYPE} *bbox); +int partition_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, ${DTYPE} *bbox, int8_t *cut_dim, + ${DTYPE} *cut_val, uint32_t *n_lo); +Tree_${DTYPE}* construct_tree_${DTYPE}(${DTYPE} *pa, int8_t no_dims, uint32_t n, uint32_t bsp); +Node_${DTYPE}* construct_subtree_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, ${DTYPE} *bbox); +Node_${DTYPE} * create_node_${DTYPE}(uint32_t start_idx, uint32_t n, int is_leaf); +void delete_subtree_${DTYPE}(Node_${DTYPE} *root); +void delete_tree_${DTYPE}(Tree_${DTYPE} *tree); +void print_tree_${DTYPE}(Node_${DTYPE} *root, int level); +${DTYPE} calc_dist_${DTYPE}(${DTYPE} *point1_coord, ${DTYPE} *point2_coord, int8_t no_dims); +${DTYPE} get_cube_offset_${DTYPE}(int8_t dim, ${DTYPE} *point_coord, ${DTYPE} *bbox); +${DTYPE} get_min_dist_${DTYPE}(${DTYPE} *point_coord, int8_t no_dims, ${DTYPE} *bbox); +void search_leaf_${DTYPE}(${DTYPE} *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, ${DTYPE} *restrict point_coord, + uint32_t k, uint32_t *restrict closest_idx, ${DTYPE} *restrict closest_dist); +void search_leaf_${DTYPE}_mask(${DTYPE} *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, ${DTYPE} *restrict point_coord, + uint32_t k, uint8_t *restrict mask, uint32_t *restrict closest_idx, ${DTYPE} *restrict closest_dist); +void search_splitnode_${DTYPE}(Node_${DTYPE} *root, ${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, ${DTYPE} *point_coord, + ${DTYPE} min_dist, uint32_t k, ${DTYPE} distance_upper_bound, ${DTYPE} eps_fac, uint8_t *mask, uint32_t * closest_idx, ${DTYPE} *closest_dist); +void search_tree_${DTYPE}(Tree_${DTYPE} *tree, ${DTYPE} *pa, ${DTYPE} *point_coords, + uint32_t num_points, uint32_t k, ${DTYPE} distance_upper_bound, + ${DTYPE} eps, uint8_t *mask, uint32_t *closest_idxs, ${DTYPE} *closest_dists); + +% endfor + +% for DTYPE in ['float', 'double']: + +/************************************************ +Insert point into priority queue +Params: + closest_idx : index queue + closest_dist : distance queue + pidx : permutation index of data points + cur_dist : distance to point inserted + k : number of neighbours +************************************************/ +void insert_point_${DTYPE}(uint32_t *closest_idx, ${DTYPE} *closest_dist, uint32_t pidx, ${DTYPE} cur_dist, uint32_t k) +{ + int i; + for (i = k - 1; i > 0; i--) + { + if (closest_dist[i - 1] > cur_dist) + { + closest_dist[i] = closest_dist[i - 1]; + closest_idx[i] = closest_idx[i - 1]; + } + else + { + break; + } + } + closest_idx[i] = pidx; + closest_dist[i] = cur_dist; +} + +/************************************************ +Get the bounding box of a set of points +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + n : number of points + bbox : bounding box (return) +************************************************/ +void get_bounding_box_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t n, ${DTYPE} *bbox) +{ + ${DTYPE} cur; + int8_t bbox_idx, i, j; + uint32_t i2; + + /* Use first data point to initialize */ + for (i = 0; i < no_dims; i++) + { + bbox[2 * i] = bbox[2 * i + 1] = PA(0, i); + } + + /* Update using rest of data points */ + for (i2 = 1; i2 < n; i2++) + { + for (j = 0; j < no_dims; j++) + { + bbox_idx = 2 * j; + cur = PA(i2, j); + if (cur < bbox[bbox_idx]) + { + bbox[bbox_idx] = cur; + } + else if (cur > bbox[bbox_idx + 1]) + { + bbox[bbox_idx + 1] = cur; + } + } + } +} + +/************************************************ +Partition a range of data points by manipulation the permutation index. +The sliding midpoint rule is used for the partitioning. +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + start_idx : index of first data point to use + n : number of data points + bbox : bounding box of data points + cut_dim : dimension used for partition (return) + cut_val : value of cutting point (return) + n_lo : number of point below cutting plane (return) +************************************************/ +int partition_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, ${DTYPE} *bbox, int8_t *cut_dim, ${DTYPE} *cut_val, uint32_t *n_lo) +{ + int8_t dim = 0, i; + uint32_t p, q, i2; + ${DTYPE} size = 0, min_val, max_val, split, side_len, cur_val; + uint32_t end_idx = start_idx + n - 1; + + /* Find largest bounding box side */ + for (i = 0; i < no_dims; i++) + { + side_len = bbox[2 * i + 1] - bbox[2 * i]; + if (side_len > size) + { + dim = i; + size = side_len; + } + } + + min_val = bbox[2 * dim]; + max_val = bbox[2 * dim + 1]; + + /* Check for zero length or inconsistent */ + if (min_val >= max_val) + return 1; + + /* Use middle for splitting */ + split = (min_val + max_val) / 2; + + /* Partition all data points around middle */ + p = start_idx; + q = end_idx; + while (p <= q) + { + if (PA(p, dim) < split) + { + p++; + } + else if (PA(q, dim) >= split) + { + /* Guard for underflow */ + if (q > 0) + { + q--; + } + else + { + break; + } + } + else + { + PASWAP(p, q); + p++; + q--; + } + } + + /* Check for empty splits */ + if (p == start_idx) + { + /* No points less than split. + Split at lowest point instead. + Minimum 1 point will be in lower box. + */ + + uint32_t j = start_idx; + split = PA(j, dim); + for (i2 = start_idx + 1; i2 <= end_idx; i2++) + { + /* Find lowest point */ + cur_val = PA(i2, dim); + if (cur_val < split) + { + j = i2; + split = cur_val; + } + } + PASWAP(j, start_idx); + p = start_idx + 1; + } + else if (p == end_idx + 1) + { + /* No points greater than split. + Split at highest point instead. + Minimum 1 point will be in higher box. + */ + + uint32_t j = end_idx; + split = PA(j, dim); + for (i2 = start_idx; i2 < end_idx; i2++) + { + /* Find highest point */ + cur_val = PA(i2, dim); + if (cur_val > split) + { + j = i2; + split = cur_val; + } + } + PASWAP(j, end_idx); + p = end_idx; + } + + /* Set return values */ + *cut_dim = dim; + *cut_val = split; + *n_lo = p - start_idx; + return 0; +} + +/************************************************ +Construct a sub tree over a range of data points. +Params: + pa : data points + pidx : permutation index of data points + no_dims: number of dimensions + start_idx : index of first data point to use + n : number of data points + bsp : number of points per leaf + bbox : bounding box of set of data points +************************************************/ +Node_${DTYPE}* construct_subtree_${DTYPE}(${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, uint32_t bsp, ${DTYPE} *bbox) +{ + /* Create new node */ + int is_leaf = (n <= bsp); + Node_${DTYPE} *root = create_node_${DTYPE}(start_idx, n, is_leaf); + int rval; + int8_t cut_dim; + uint32_t n_lo; + ${DTYPE} cut_val, lv, hv; + if (is_leaf) + { + /* Make leaf node */ + root->cut_dim = -1; + } + else + { + /* Make split node */ + /* Partition data set and set node info */ + rval = partition_${DTYPE}(pa, pidx, no_dims, start_idx, n, bbox, &cut_dim, &cut_val, &n_lo); + if (rval == 1) + { + root->cut_dim = -1; + return root; + } + root->cut_val = cut_val; + root->cut_dim = cut_dim; + + /* Recurse on both subsets */ + lv = bbox[2 * cut_dim]; + hv = bbox[2 * cut_dim + 1]; + + /* Set bounds for cut dimension */ + root->cut_bounds_lv = lv; + root->cut_bounds_hv = hv; + + /* Update bounding box before call to lower subset and restore after */ + bbox[2 * cut_dim + 1] = cut_val; + root->left_child = (struct Node_${DTYPE} *)construct_subtree_${DTYPE}(pa, pidx, no_dims, start_idx, n_lo, bsp, bbox); + bbox[2 * cut_dim + 1] = hv; + + /* Update bounding box before call to higher subset and restore after */ + bbox[2 * cut_dim] = cut_val; + root->right_child = (struct Node_${DTYPE} *)construct_subtree_${DTYPE}(pa, pidx, no_dims, start_idx + n_lo, n - n_lo, bsp, bbox); + bbox[2 * cut_dim] = lv; + } + return root; +} + +/************************************************ +Construct a tree over data points. +Params: + pa : data points + no_dims: number of dimensions + n : number of data points + bsp : number of points per leaf +************************************************/ +Tree_${DTYPE}* construct_tree_${DTYPE}(${DTYPE} *pa, int8_t no_dims, uint32_t n, uint32_t bsp) +{ + Tree_${DTYPE} *tree = (Tree_${DTYPE} *)malloc(sizeof(Tree_${DTYPE})); + uint32_t i; + uint32_t *pidx; + ${DTYPE} *bbox; + + tree->no_dims = no_dims; + + /* Initialize permutation array */ + pidx = (uint32_t *)malloc(sizeof(uint32_t) * n); + for (i = 0; i < n; i++) + { + pidx[i] = i; + } + + bbox = (${DTYPE} *)malloc(2 * sizeof(${DTYPE}) * no_dims); + get_bounding_box_${DTYPE}(pa, pidx, no_dims, n, bbox); + tree->bbox = bbox; + + /* Construct subtree on full dataset */ + tree->root = (struct Node_${DTYPE} *)construct_subtree_${DTYPE}(pa, pidx, no_dims, 0, n, bsp, bbox); + + tree->pidx = pidx; + return tree; +} + +/************************************************ +Create a tree node. +Params: + start_idx : index of first data point to use + n : number of data points +************************************************/ +Node_${DTYPE}* create_node_${DTYPE}(uint32_t start_idx, uint32_t n, int is_leaf) +{ + Node_${DTYPE} *new_node; + if (is_leaf) + { + /* + Allocate only the part of the struct that will be used in a leaf node. + This relies on the C99 specification of struct layout conservation and padding and + that dereferencing is never attempted for the node pointers in a leaf. + */ + new_node = (Node_${DTYPE} *)malloc(sizeof(Node_${DTYPE}) - 2 * sizeof(Node_${DTYPE} *)); + } + else + { + new_node = (Node_${DTYPE} *)malloc(sizeof(Node_${DTYPE})); + } + new_node->n = n; + new_node->start_idx = start_idx; + return new_node; +} + +/************************************************ +Delete subtree +Params: + root : root node of subtree to delete +************************************************/ +void delete_subtree_${DTYPE}(Node_${DTYPE} *root) +{ + if (root->cut_dim != -1) + { + delete_subtree_${DTYPE}((Node_${DTYPE} *)root->left_child); + delete_subtree_${DTYPE}((Node_${DTYPE} *)root->right_child); + } + free(root); +} + +/************************************************ +Delete tree +Params: + tree : Tree struct of kd tree +************************************************/ +void delete_tree_${DTYPE}(Tree_${DTYPE} *tree) +{ + delete_subtree_${DTYPE}((Node_${DTYPE} *)tree->root); + free(tree->bbox); + free(tree->pidx); + free(tree); +} + +/************************************************ +Print +************************************************/ +void print_tree_${DTYPE}(Node_${DTYPE} *root, int level) +{ + int i; + for (i = 0; i < level; i++) + { + printf(" "); + } + printf("(cut_val: %f, cut_dim: %i)\n", root->cut_val, root->cut_dim); + if (root->cut_dim != -1) + print_tree_${DTYPE}((Node_${DTYPE} *)root->left_child, level + 1); + if (root->cut_dim != -1) + print_tree_${DTYPE}((Node_${DTYPE} *)root->right_child, level + 1); +} + +/************************************************ +Calculate squared cartesian distance between points +Params: + point1_coord : point 1 + point2_coord : point 2 +************************************************/ +${DTYPE} calc_dist_${DTYPE}(${DTYPE} *point1_coord, ${DTYPE} *point2_coord, int8_t no_dims) +{ + /* Calculate squared distance */ + ${DTYPE} dist = 0, dim_dist; + int8_t i; + for (i = 0; i < no_dims; i++) + { + dim_dist = point2_coord[i] - point1_coord[i]; + dist += dim_dist * dim_dist; + } + return dist; +} + +/************************************************ +Get squared distance from point to cube in specified dimension +Params: + dim : dimension + point_coord : cartesian coordinates of point + bbox : cube +************************************************/ +${DTYPE} get_cube_offset_${DTYPE}(int8_t dim, ${DTYPE} *point_coord, ${DTYPE} *bbox) +{ + ${DTYPE} dim_coord = point_coord[dim]; + + if (dim_coord < bbox[2 * dim]) + { + /* Left of cube in dimension */ + return dim_coord - bbox[2 * dim]; + } + else if (dim_coord > bbox[2 * dim + 1]) + { + /* Right of cube in dimension */ + return dim_coord - bbox[2 * dim + 1]; + } + else + { + /* Inside cube in dimension */ + return 0.; + } +} + +/************************************************ +Get minimum squared distance between point and cube. +Params: + point_coord : cartesian coordinates of point + no_dims : number of dimensions + bbox : cube +************************************************/ +${DTYPE} get_min_dist_${DTYPE}(${DTYPE} *point_coord, int8_t no_dims, ${DTYPE} *bbox) +{ + ${DTYPE} cube_offset = 0, cube_offset_dim; + int8_t i; + + for (i = 0; i < no_dims; i++) + { + cube_offset_dim = get_cube_offset_${DTYPE}(i, point_coord, bbox); + cube_offset += cube_offset_dim * cube_offset_dim; + } + + return cube_offset; +} + +/************************************************ +Search a leaf node for closest point +Params: + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + start_idx : index of first data point to use + size : number of data points + point_coord : query point + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_leaf_${DTYPE}(${DTYPE} *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, ${DTYPE} *restrict point_coord, + uint32_t k, uint32_t *restrict closest_idx, ${DTYPE} *restrict closest_dist) +{ + ${DTYPE} cur_dist; + uint32_t i; + /* Loop through all points in leaf */ + for (i = 0; i < n; i++) + { + /* Get distance to query point */ + cur_dist = calc_dist_${DTYPE}(&PA(start_idx + i, 0), point_coord, no_dims); + /* Update closest info if new point is closest so far*/ + if (cur_dist < closest_dist[k - 1]) + { + insert_point_${DTYPE}(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k); + } + } +} + + +/************************************************ +Search a leaf node for closest point with data point mask +Params: + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + start_idx : index of first data point to use + size : number of data points + point_coord : query point + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_leaf_${DTYPE}_mask(${DTYPE} *restrict pa, uint32_t *restrict pidx, int8_t no_dims, uint32_t start_idx, uint32_t n, ${DTYPE} *restrict point_coord, + uint32_t k, uint8_t *mask, uint32_t *restrict closest_idx, ${DTYPE} *restrict closest_dist) +{ + ${DTYPE} cur_dist; + uint32_t i; + /* Loop through all points in leaf */ + for (i = 0; i < n; i++) + { + /* Is this point masked out? */ + if (mask[pidx[start_idx + i]]) + { + continue; + } + /* Get distance to query point */ + cur_dist = calc_dist_${DTYPE}(&PA(start_idx + i, 0), point_coord, no_dims); + /* Update closest info if new point is closest so far*/ + if (cur_dist < closest_dist[k - 1]) + { + insert_point_${DTYPE}(closest_idx, closest_dist, pidx[start_idx + i], cur_dist, k); + } + } +} + +/************************************************ +Search subtree for nearest to query point +Params: + root : root node of subtree + pa : data points + pidx : permutation index of data points + no_dims : number of dimensions + point_coord : query point + min_dist : minumum distance to nearest neighbour + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_splitnode_${DTYPE}(Node_${DTYPE} *root, ${DTYPE} *pa, uint32_t *pidx, int8_t no_dims, ${DTYPE} *point_coord, + ${DTYPE} min_dist, uint32_t k, ${DTYPE} distance_upper_bound, ${DTYPE} eps_fac, uint8_t *mask, + uint32_t *closest_idx, ${DTYPE} *closest_dist) +{ + int8_t dim; + ${DTYPE} dist_left, dist_right; + ${DTYPE} new_offset; + ${DTYPE} box_diff; + + /* Skip if distance bound exeeded */ + if (min_dist > distance_upper_bound) + { + return; + } + + dim = root->cut_dim; + + /* Handle leaf node */ + if (dim == -1) + { + if (mask) + { + search_leaf_${DTYPE}_mask(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, mask, closest_idx, closest_dist); + } + else + { + search_leaf_${DTYPE}(pa, pidx, no_dims, root->start_idx, root->n, point_coord, k, closest_idx, closest_dist); + } + return; + } + + /* Get distance to cutting plane */ + new_offset = point_coord[dim] - root->cut_val; + + if (new_offset < 0) + { + /* Left of cutting plane */ + dist_left = min_dist; + if (dist_left < closest_dist[k - 1] * eps_fac) + { + /* Search left subtree if minimum distance is below limit */ + search_splitnode_${DTYPE}((Node_${DTYPE} *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + + /* Right of cutting plane. Update minimum distance. + See Algorithms for Fast Vector Quantization + Sunil Arya and David M. Mount. */ + box_diff = root->cut_bounds_lv - point_coord[dim]; + if (box_diff < 0) + { + box_diff = 0; + } + dist_right = min_dist - box_diff * box_diff + new_offset * new_offset; + if (dist_right < closest_dist[k - 1] * eps_fac) + { + /* Search right subtree if minimum distance is below limit*/ + search_splitnode_${DTYPE}((Node_${DTYPE} *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + } + else + { + /* Right of cutting plane */ + dist_right = min_dist; + if (dist_right < closest_dist[k - 1] * eps_fac) + { + /* Search right subtree if minimum distance is below limit*/ + search_splitnode_${DTYPE}((Node_${DTYPE} *)root->right_child, pa, pidx, no_dims, point_coord, dist_right, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + + /* Left of cutting plane. Update minimum distance. + See Algorithms for Fast Vector Quantization + Sunil Arya and David M. Mount. */ + box_diff = point_coord[dim] - root->cut_bounds_hv; + if (box_diff < 0) + { + box_diff = 0; + } + dist_left = min_dist - box_diff * box_diff + new_offset * new_offset; + if (dist_left < closest_dist[k - 1] * eps_fac) + { + /* Search left subtree if minimum distance is below limit*/ + search_splitnode_${DTYPE}((Node_${DTYPE} *)root->left_child, pa, pidx, no_dims, point_coord, dist_left, k, distance_upper_bound, eps_fac, mask, closest_idx, closest_dist); + } + } +} + +/************************************************ +Search for nearest neighbour for a set of query points +Params: + tree : Tree struct of kd tree + pa : data points + pidx : permutation index of data points + point_coords : query points + num_points : number of query points + mask : boolean array of invalid (True) and valid (False) data points + closest_idx : index of closest data point found (return) + closest_dist : distance to closest point (return) +************************************************/ +void search_tree_${DTYPE}(Tree_${DTYPE} *tree, ${DTYPE} *pa, ${DTYPE} *point_coords, + uint32_t num_points, uint32_t k, ${DTYPE} distance_upper_bound, + ${DTYPE} eps, uint8_t *mask, uint32_t *closest_idxs, ${DTYPE} *closest_dists) +{ + ${DTYPE} min_dist; + ${DTYPE} eps_fac = 1 / ((1 + eps) * (1 + eps)); + int8_t no_dims = tree->no_dims; + ${DTYPE} *bbox = tree->bbox; + uint32_t *pidx = tree->pidx; + uint32_t j = 0; +#if defined(_MSC_VER) && defined(_OPENMP) + int32_t i = 0; + int32_t local_num_points = (int32_t) num_points; +#else + uint32_t i; + uint32_t local_num_points = num_points; +#endif + Node_${DTYPE} *root = (Node_${DTYPE} *)tree->root; + + /* Queries are OpenMP enabled */ + #pragma omp parallel + { + /* The low chunk size is important to avoid L2 cache trashing + for spatial coherent query datasets + */ + #pragma omp for private(i, j) schedule(static, 100) nowait + for (i = 0; i < local_num_points; i++) + { + for (j = 0; j < k; j++) + { + closest_idxs[i * k + j] = UINT32_MAX; + closest_dists[i * k + j] = DBL_MAX; + } + min_dist = get_min_dist_${DTYPE}(point_coords + no_dims * i, no_dims, bbox); + search_splitnode_${DTYPE}(root, pa, pidx, no_dims, point_coords + no_dims * i, min_dist, + k, distance_upper_bound, eps_fac, mask, &closest_idxs[i * k], &closest_dists[i * k]); + } + } +} +% endfor diff --git a/eval/src/utils/libkdtree/pykdtree/kdtree.c b/eval/src/utils/libkdtree/pykdtree/kdtree.c new file mode 100644 index 0000000..895c0d2 --- /dev/null +++ b/eval/src/utils/libkdtree/pykdtree/kdtree.c @@ -0,0 +1,11350 @@ +/* Generated by Cython 0.27.3 */ + +#define PY_SSIZE_T_CLEAN +#include "Python.h" +#ifndef Py_PYTHON_H + #error Python headers needed to compile C extensions, please install development version of Python. +#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) + #error Cython requires Python 2.6+ or Python 3.3+. +#else +#define CYTHON_ABI "0_27_3" +#define CYTHON_FUTURE_DIVISION 0 +#include +#ifndef offsetof + #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) +#endif +#if !defined(WIN32) && !defined(MS_WINDOWS) + #ifndef __stdcall + #define __stdcall + #endif + #ifndef __cdecl + #define __cdecl + #endif + #ifndef __fastcall + #define __fastcall + #endif +#endif +#ifndef DL_IMPORT + #define DL_IMPORT(t) t +#endif +#ifndef DL_EXPORT + #define DL_EXPORT(t) t +#endif +#define __PYX_COMMA , +#ifndef HAVE_LONG_LONG + #if PY_VERSION_HEX >= 0x02070000 + #define HAVE_LONG_LONG + #endif +#endif +#ifndef PY_LONG_LONG + #define PY_LONG_LONG LONG_LONG +#endif +#ifndef Py_HUGE_VAL + #define Py_HUGE_VAL HUGE_VAL +#endif +#ifdef PYPY_VERSION + #define CYTHON_COMPILING_IN_PYPY 1 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #undef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 0 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #if PY_VERSION_HEX < 0x03050000 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #undef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #undef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 1 + #undef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 0 + #undef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 0 + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 +#elif defined(PYSTON_VERSION) + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 1 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 +#else + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 1 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) + #define CYTHON_USE_PYTYPE_LOOKUP 1 + #endif + #if PY_MAJOR_VERSION < 3 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #elif !defined(CYTHON_USE_PYLONG_INTERNALS) + #define CYTHON_USE_PYLONG_INTERNALS 1 + #endif + #ifndef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 1 + #endif + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #if PY_VERSION_HEX < 0x030300F0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #elif !defined(CYTHON_USE_UNICODE_WRITER) + #define CYTHON_USE_UNICODE_WRITER 1 + #endif + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #ifndef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 1 + #endif + #ifndef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 1 + #endif + #ifndef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT (0 && PY_VERSION_HEX >= 0x03050000) + #endif + #ifndef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) + #endif +#endif +#if !defined(CYTHON_FAST_PYCCALL) +#define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) +#endif +#if CYTHON_USE_PYLONG_INTERNALS + #include "longintrepr.h" + #undef SHIFT + #undef BASE + #undef MASK +#endif +#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) + #define Py_OptimizeFlag 0 +#endif +#define __PYX_BUILD_PY_SSIZE_T "n" +#define CYTHON_FORMAT_SSIZE_T "z" +#if PY_MAJOR_VERSION < 3 + #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyClass_Type +#else + #define __Pyx_BUILTIN_MODULE_NAME "builtins" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyType_Type +#endif +#ifndef Py_TPFLAGS_CHECKTYPES + #define Py_TPFLAGS_CHECKTYPES 0 +#endif +#ifndef Py_TPFLAGS_HAVE_INDEX + #define Py_TPFLAGS_HAVE_INDEX 0 +#endif +#ifndef Py_TPFLAGS_HAVE_NEWBUFFER + #define Py_TPFLAGS_HAVE_NEWBUFFER 0 +#endif +#ifndef Py_TPFLAGS_HAVE_FINALIZE + #define Py_TPFLAGS_HAVE_FINALIZE 0 +#endif +#if PY_VERSION_HEX < 0x030700A0 || !defined(METH_FASTCALL) + #ifndef METH_FASTCALL + #define METH_FASTCALL 0x80 + #endif + typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject **args, Py_ssize_t nargs); + typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject **args, + Py_ssize_t nargs, PyObject *kwnames); +#else + #define __Pyx_PyCFunctionFast _PyCFunctionFast + #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords +#endif +#if CYTHON_FAST_PYCCALL +#define __Pyx_PyFastCFunction_Check(func)\ + ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS))))) +#else +#define __Pyx_PyFastCFunction_Check(func) 0 +#endif +#if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#elif PY_VERSION_HEX >= 0x03060000 + #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() +#elif PY_VERSION_HEX >= 0x03000000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#else + #define __Pyx_PyThreadState_Current _PyThreadState_Current +#endif +#if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) +#define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) +#else +#define __Pyx_PyDict_NewPresized(n) PyDict_New() +#endif +#if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION + #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) +#else + #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) +#endif +#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) + #define CYTHON_PEP393_ENABLED 1 + #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ + 0 : _PyUnicode_Ready((PyObject *)(op))) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) + #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) + #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) + #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) +#else + #define CYTHON_PEP393_ENABLED 0 + #define PyUnicode_1BYTE_KIND 1 + #define PyUnicode_2BYTE_KIND 2 + #define PyUnicode_4BYTE_KIND 4 + #define __Pyx_PyUnicode_READY(op) (0) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) + #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) + #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) + #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) +#endif +#if CYTHON_COMPILING_IN_PYPY + #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) +#else + #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ + PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) + #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) + #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) + #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) + #define PyObject_Malloc(s) PyMem_Malloc(s) + #define PyObject_Free(p) PyMem_Free(p) + #define PyObject_Realloc(p) PyMem_Realloc(p) +#endif +#if CYTHON_COMPILING_IN_PYSTON + #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) +#else + #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) +#endif +#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) +#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None)) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) +#else + #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) +#endif +#if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) + #define PyObject_ASCII(o) PyObject_Repr(o) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBaseString_Type PyUnicode_Type + #define PyStringObject PyUnicodeObject + #define PyString_Type PyUnicode_Type + #define PyString_Check PyUnicode_Check + #define PyString_CheckExact PyUnicode_CheckExact +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) + #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) +#else + #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) + #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) +#endif +#ifndef PySet_CheckExact + #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) +#endif +#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) +#if PY_MAJOR_VERSION >= 3 + #define PyIntObject PyLongObject + #define PyInt_Type PyLong_Type + #define PyInt_Check(op) PyLong_Check(op) + #define PyInt_CheckExact(op) PyLong_CheckExact(op) + #define PyInt_FromString PyLong_FromString + #define PyInt_FromUnicode PyLong_FromUnicode + #define PyInt_FromLong PyLong_FromLong + #define PyInt_FromSize_t PyLong_FromSize_t + #define PyInt_FromSsize_t PyLong_FromSsize_t + #define PyInt_AsLong PyLong_AsLong + #define PyInt_AS_LONG PyLong_AS_LONG + #define PyInt_AsSsize_t PyLong_AsSsize_t + #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask + #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask + #define PyNumber_Int PyNumber_Long +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBoolObject PyLongObject +#endif +#if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY + #ifndef PyUnicode_InternFromString + #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) + #endif +#endif +#if PY_VERSION_HEX < 0x030200A4 + typedef long Py_hash_t; + #define __Pyx_PyInt_FromHash_t PyInt_FromLong + #define __Pyx_PyInt_AsHash_t PyInt_AsLong +#else + #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t + #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func)) +#else + #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) +#endif +#ifndef __has_attribute + #define __has_attribute(x) 0 +#endif +#ifndef __has_cpp_attribute + #define __has_cpp_attribute(x) 0 +#endif +#if CYTHON_USE_ASYNC_SLOTS + #if PY_VERSION_HEX >= 0x030500B1 + #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods + #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) + #else + #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) + #endif +#else + #define __Pyx_PyType_AsAsync(obj) NULL +#endif +#ifndef __Pyx_PyAsyncMethodsStruct + typedef struct { + unaryfunc am_await; + unaryfunc am_aiter; + unaryfunc am_anext; + } __Pyx_PyAsyncMethodsStruct; +#endif +#ifndef CYTHON_RESTRICT + #if defined(__GNUC__) + #define CYTHON_RESTRICT __restrict__ + #elif defined(_MSC_VER) && _MSC_VER >= 1400 + #define CYTHON_RESTRICT __restrict + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_RESTRICT restrict + #else + #define CYTHON_RESTRICT + #endif +#endif +#ifndef CYTHON_UNUSED +# if defined(__GNUC__) +# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +#endif +#ifndef CYTHON_MAYBE_UNUSED_VAR +# if defined(__cplusplus) + template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } +# else +# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) +# endif +#endif +#ifndef CYTHON_NCP_UNUSED +# if CYTHON_COMPILING_IN_CPYTHON +# define CYTHON_NCP_UNUSED +# else +# define CYTHON_NCP_UNUSED CYTHON_UNUSED +# endif +#endif +#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) +#ifdef _MSC_VER + #ifndef _MSC_STDINT_H_ + #if _MSC_VER < 1300 + typedef unsigned char uint8_t; + typedef unsigned int uint32_t; + #else + typedef unsigned __int8 uint8_t; + typedef unsigned __int32 uint32_t; + #endif + #endif +#else + #include +#endif +#ifndef CYTHON_FALLTHROUGH + #if defined(__cplusplus) && __cplusplus >= 201103L + #if __has_cpp_attribute(fallthrough) + #define CYTHON_FALLTHROUGH [[fallthrough]] + #elif __has_cpp_attribute(clang::fallthrough) + #define CYTHON_FALLTHROUGH [[clang::fallthrough]] + #elif __has_cpp_attribute(gnu::fallthrough) + #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] + #endif + #endif + #ifndef CYTHON_FALLTHROUGH + #if __has_attribute(fallthrough) + #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) + #else + #define CYTHON_FALLTHROUGH + #endif + #endif + #if defined(__clang__ ) && defined(__apple_build_version__) + #if __apple_build_version__ < 7000000 + #undef CYTHON_FALLTHROUGH + #define CYTHON_FALLTHROUGH + #endif + #endif +#endif + +#ifndef CYTHON_INLINE + #if defined(__clang__) + #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) + #elif defined(__GNUC__) + #define CYTHON_INLINE __inline__ + #elif defined(_MSC_VER) + #define CYTHON_INLINE __inline + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_INLINE inline + #else + #define CYTHON_INLINE + #endif +#endif + +#if defined(WIN32) || defined(MS_WINDOWS) + #define _USE_MATH_DEFINES +#endif +#include +#ifdef NAN +#define __PYX_NAN() ((float) NAN) +#else +static CYTHON_INLINE float __PYX_NAN() { + float value; + memset(&value, 0xFF, sizeof(value)); + return value; +} +#endif +#if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) +#define __Pyx_truncl trunc +#else +#define __Pyx_truncl truncl +#endif + + +#define __PYX_ERR(f_index, lineno, Ln_error) \ +{ \ + __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ +} + +#ifndef __PYX_EXTERN_C + #ifdef __cplusplus + #define __PYX_EXTERN_C extern "C" + #else + #define __PYX_EXTERN_C extern + #endif +#endif + +#define __PYX_HAVE__pykdtree__kdtree +#define __PYX_HAVE_API__pykdtree__kdtree +#include +#include +#include "numpy/arrayobject.h" +#include "numpy/ufuncobject.h" +#include +#ifdef _OPENMP +#include +#endif /* _OPENMP */ + +#if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) +#define CYTHON_WITHOUT_ASSERTIONS +#endif + +typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; + const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; + +#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT 0 +#define __PYX_DEFAULT_STRING_ENCODING "" +#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString +#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#define __Pyx_uchar_cast(c) ((unsigned char)c) +#define __Pyx_long_cast(x) ((long)x) +#define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ + (sizeof(type) < sizeof(Py_ssize_t)) ||\ + (sizeof(type) > sizeof(Py_ssize_t) &&\ + likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX) &&\ + (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ + v == (type)PY_SSIZE_T_MIN))) ||\ + (sizeof(type) == sizeof(Py_ssize_t) &&\ + (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX))) ) +#if defined (__cplusplus) && __cplusplus >= 201103L + #include + #define __Pyx_sst_abs(value) std::abs(value) +#elif SIZEOF_INT >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) abs(value) +#elif SIZEOF_LONG >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) labs(value) +#elif defined (_MSC_VER) + #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) +#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define __Pyx_sst_abs(value) llabs(value) +#elif defined (__GNUC__) + #define __Pyx_sst_abs(value) __builtin_llabs(value) +#else + #define __Pyx_sst_abs(value) ((value<0) ? -value : value) +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); +#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) +#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) +#define __Pyx_PyBytes_FromString PyBytes_FromString +#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); +#if PY_MAJOR_VERSION < 3 + #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#else + #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize +#endif +#define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) +#define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) +#define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) +#define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) +#define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) +static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { + const Py_UNICODE *u_end = u; + while (*u_end++) ; + return (size_t)(u_end - u - 1); +} +#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) +#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode +#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode +#define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) +#define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) +#define __Pyx_PyBool_FromLong(b) ((b) ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False)) +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); +#define __Pyx_PySequence_Tuple(obj)\ + (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); +#if CYTHON_ASSUME_SAFE_MACROS +#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) +#else +#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) +#endif +#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) +#else +#define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) +#endif +#define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII +static int __Pyx_sys_getdefaultencoding_not_ascii; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + PyObject* ascii_chars_u = NULL; + PyObject* ascii_chars_b = NULL; + const char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + if (strcmp(default_encoding_c, "ascii") == 0) { + __Pyx_sys_getdefaultencoding_not_ascii = 0; + } else { + char ascii_chars[128]; + int c; + for (c = 0; c < 128; c++) { + ascii_chars[c] = c; + } + __Pyx_sys_getdefaultencoding_not_ascii = 1; + ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); + if (!ascii_chars_u) goto bad; + ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); + if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { + PyErr_Format( + PyExc_ValueError, + "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", + default_encoding_c); + goto bad; + } + Py_DECREF(ascii_chars_u); + Py_DECREF(ascii_chars_b); + } + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + Py_XDECREF(ascii_chars_u); + Py_XDECREF(ascii_chars_b); + return -1; +} +#endif +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) +#else +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +static char* __PYX_DEFAULT_STRING_ENCODING; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c)); + if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; + strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + return -1; +} +#endif +#endif + + +/* Test for GCC > 2.95 */ +#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) +#else /* !__GNUC__ or GCC < 2.95 */ + #define likely(x) (x) + #define unlikely(x) (x) +#endif /* __GNUC__ */ +static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } + +static PyObject *__pyx_m = NULL; +static PyObject *__pyx_d; +static PyObject *__pyx_b; +static PyObject *__pyx_cython_runtime; +static PyObject *__pyx_empty_tuple; +static PyObject *__pyx_empty_bytes; +static PyObject *__pyx_empty_unicode; +static int __pyx_lineno; +static int __pyx_clineno = 0; +static const char * __pyx_cfilenm= __FILE__; +static const char *__pyx_filename; + +/* Header.proto */ +#if !defined(CYTHON_CCOMPLEX) + #if defined(__cplusplus) + #define CYTHON_CCOMPLEX 1 + #elif defined(_Complex_I) + #define CYTHON_CCOMPLEX 1 + #else + #define CYTHON_CCOMPLEX 0 + #endif +#endif +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #include + #else + #include + #endif +#endif +#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) + #undef _Complex_I + #define _Complex_I 1.0fj +#endif + + +static const char *__pyx_f[] = { + "pykdtree/kdtree.pyx", + "stringsource", + "__init__.pxd", + "type.pxd", +}; +/* BufferFormatStructs.proto */ +#define IS_UNSIGNED(type) (((type) -1) > 0) +struct __Pyx_StructField_; +#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) +typedef struct { + const char* name; + struct __Pyx_StructField_* fields; + size_t size; + size_t arraysize[8]; + int ndim; + char typegroup; + char is_unsigned; + int flags; +} __Pyx_TypeInfo; +typedef struct __Pyx_StructField_ { + __Pyx_TypeInfo* type; + const char* name; + size_t offset; +} __Pyx_StructField; +typedef struct { + __Pyx_StructField* field; + size_t parent_offset; +} __Pyx_BufFmt_StackElem; +typedef struct { + __Pyx_StructField root; + __Pyx_BufFmt_StackElem* head; + size_t fmt_offset; + size_t new_count, enc_count; + size_t struct_alignment; + int is_complex; + char enc_type; + char new_packmode; + char enc_packmode; + char is_valid_array; +} __Pyx_BufFmt_Context; + +/* NoFastGil.proto */ +#define __Pyx_PyGILState_Ensure PyGILState_Ensure +#define __Pyx_PyGILState_Release PyGILState_Release +#define __Pyx_FastGIL_Remember() +#define __Pyx_FastGIL_Forget() +#define __Pyx_FastGilFuncInit() + +/* ForceInitThreads.proto */ +#ifndef __PYX_FORCE_INIT_THREADS + #define __PYX_FORCE_INIT_THREADS 0 +#endif + + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":743 + * # in Cython to enable them only on the right systems. + * + * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + */ +typedef npy_int8 __pyx_t_5numpy_int8_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":744 + * + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t + */ +typedef npy_int16 __pyx_t_5numpy_int16_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":745 + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< + * ctypedef npy_int64 int64_t + * #ctypedef npy_int96 int96_t + */ +typedef npy_int32 __pyx_t_5numpy_int32_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":746 + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< + * #ctypedef npy_int96 int96_t + * #ctypedef npy_int128 int128_t + */ +typedef npy_int64 __pyx_t_5numpy_int64_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":750 + * #ctypedef npy_int128 int128_t + * + * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + */ +typedef npy_uint8 __pyx_t_5numpy_uint8_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":751 + * + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t + */ +typedef npy_uint16 __pyx_t_5numpy_uint16_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":752 + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< + * ctypedef npy_uint64 uint64_t + * #ctypedef npy_uint96 uint96_t + */ +typedef npy_uint32 __pyx_t_5numpy_uint32_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":753 + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< + * #ctypedef npy_uint96 uint96_t + * #ctypedef npy_uint128 uint128_t + */ +typedef npy_uint64 __pyx_t_5numpy_uint64_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":757 + * #ctypedef npy_uint128 uint128_t + * + * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< + * ctypedef npy_float64 float64_t + * #ctypedef npy_float80 float80_t + */ +typedef npy_float32 __pyx_t_5numpy_float32_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":758 + * + * ctypedef npy_float32 float32_t + * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< + * #ctypedef npy_float80 float80_t + * #ctypedef npy_float128 float128_t + */ +typedef npy_float64 __pyx_t_5numpy_float64_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":767 + * # The int types are mapped a bit surprising -- + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t + */ +typedef npy_long __pyx_t_5numpy_int_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":768 + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong longlong_t + * + */ +typedef npy_longlong __pyx_t_5numpy_long_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":769 + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_ulong uint_t + */ +typedef npy_longlong __pyx_t_5numpy_longlong_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":771 + * ctypedef npy_longlong longlong_t + * + * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t + */ +typedef npy_ulong __pyx_t_5numpy_uint_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":772 + * + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulonglong_t + * + */ +typedef npy_ulonglong __pyx_t_5numpy_ulong_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":773 + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_intp intp_t + */ +typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":775 + * ctypedef npy_ulonglong ulonglong_t + * + * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< + * ctypedef npy_uintp uintp_t + * + */ +typedef npy_intp __pyx_t_5numpy_intp_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":776 + * + * ctypedef npy_intp intp_t + * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< + * + * ctypedef npy_double float_t + */ +typedef npy_uintp __pyx_t_5numpy_uintp_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":778 + * ctypedef npy_uintp uintp_t + * + * ctypedef npy_double float_t # <<<<<<<<<<<<<< + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t + */ +typedef npy_double __pyx_t_5numpy_float_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":779 + * + * ctypedef npy_double float_t + * ctypedef npy_double double_t # <<<<<<<<<<<<<< + * ctypedef npy_longdouble longdouble_t + * + */ +typedef npy_double __pyx_t_5numpy_double_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":780 + * ctypedef npy_double float_t + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cfloat cfloat_t + */ +typedef npy_longdouble __pyx_t_5numpy_longdouble_t; +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< float > __pyx_t_float_complex; + #else + typedef float _Complex __pyx_t_float_complex; + #endif +#else + typedef struct { float real, imag; } __pyx_t_float_complex; +#endif +static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); + +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< double > __pyx_t_double_complex; + #else + typedef double _Complex __pyx_t_double_complex; + #endif +#else + typedef struct { double real, imag; } __pyx_t_double_complex; +#endif +static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); + + +/*--- Type declarations ---*/ +struct __pyx_obj_8pykdtree_6kdtree_KDTree; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":782 + * ctypedef npy_longdouble longdouble_t + * + * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t + */ +typedef npy_cfloat __pyx_t_5numpy_cfloat_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":783 + * + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< + * ctypedef npy_clongdouble clongdouble_t + * + */ +typedef npy_cdouble __pyx_t_5numpy_cdouble_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":784 + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cdouble complex_t + */ +typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":786 + * ctypedef npy_clongdouble clongdouble_t + * + * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew1(a): + */ +typedef npy_cdouble __pyx_t_5numpy_complex_t; +struct __pyx_t_8pykdtree_6kdtree_node_float; +struct __pyx_t_8pykdtree_6kdtree_tree_float; +struct __pyx_t_8pykdtree_6kdtree_node_double; +struct __pyx_t_8pykdtree_6kdtree_tree_double; + +/* "pykdtree/kdtree.pyx":25 + * + * # Node structure + * cdef struct node_float: # <<<<<<<<<<<<<< + * float cut_val + * int8_t cut_dim + */ +struct __pyx_t_8pykdtree_6kdtree_node_float { + float cut_val; + int8_t cut_dim; + uint32_t start_idx; + uint32_t n; + float cut_bounds_lv; + float cut_bounds_hv; + struct __pyx_t_8pykdtree_6kdtree_node_float *left_child; + struct __pyx_t_8pykdtree_6kdtree_node_float *right_child; +}; + +/* "pykdtree/kdtree.pyx":35 + * node_float *right_child + * + * cdef struct tree_float: # <<<<<<<<<<<<<< + * float *bbox + * int8_t no_dims + */ +struct __pyx_t_8pykdtree_6kdtree_tree_float { + float *bbox; + int8_t no_dims; + uint32_t *pidx; + struct __pyx_t_8pykdtree_6kdtree_node_float *root; +}; + +/* "pykdtree/kdtree.pyx":41 + * node_float *root + * + * cdef struct node_double: # <<<<<<<<<<<<<< + * double cut_val + * int8_t cut_dim + */ +struct __pyx_t_8pykdtree_6kdtree_node_double { + double cut_val; + int8_t cut_dim; + uint32_t start_idx; + uint32_t n; + double cut_bounds_lv; + double cut_bounds_hv; + struct __pyx_t_8pykdtree_6kdtree_node_double *left_child; + struct __pyx_t_8pykdtree_6kdtree_node_double *right_child; +}; + +/* "pykdtree/kdtree.pyx":51 + * node_double *right_child + * + * cdef struct tree_double: # <<<<<<<<<<<<<< + * double *bbox + * int8_t no_dims + */ +struct __pyx_t_8pykdtree_6kdtree_tree_double { + double *bbox; + int8_t no_dims; + uint32_t *pidx; + struct __pyx_t_8pykdtree_6kdtree_node_double *root; +}; + +/* "pykdtree/kdtree.pyx":65 + * cdef extern void delete_tree_double(tree_double *kdtree) + * + * cdef class KDTree: # <<<<<<<<<<<<<< + * """kd-tree for fast nearest-neighbour lookup. + * The interface is made to resemble the scipy.spatial kd-tree except + */ +struct __pyx_obj_8pykdtree_6kdtree_KDTree { + PyObject_HEAD + struct __pyx_t_8pykdtree_6kdtree_tree_float *_kdtree_float; + struct __pyx_t_8pykdtree_6kdtree_tree_double *_kdtree_double; + PyArrayObject *data_pts; + PyArrayObject *data; + float *_data_pts_data_float; + double *_data_pts_data_double; + uint32_t n; + int8_t ndim; + uint32_t leafsize; +}; + + +/* --- Runtime support code (head) --- */ +/* Refnanny.proto */ +#ifndef CYTHON_REFNANNY + #define CYTHON_REFNANNY 0 +#endif +#if CYTHON_REFNANNY + typedef struct { + void (*INCREF)(void*, PyObject*, int); + void (*DECREF)(void*, PyObject*, int); + void (*GOTREF)(void*, PyObject*, int); + void (*GIVEREF)(void*, PyObject*, int); + void* (*SetupContext)(const char*, int, const char*); + void (*FinishContext)(void**); + } __Pyx_RefNannyAPIStruct; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); + #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; +#ifdef WITH_THREAD + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + if (acquire_gil) {\ + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + PyGILState_Release(__pyx_gilstate_save);\ + } else {\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + } +#else + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) +#endif + #define __Pyx_RefNannyFinishContext()\ + __Pyx_RefNanny->FinishContext(&__pyx_refnanny) + #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) + #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) + #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) + #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) +#else + #define __Pyx_RefNannyDeclarations + #define __Pyx_RefNannySetupContext(name, acquire_gil) + #define __Pyx_RefNannyFinishContext() + #define __Pyx_INCREF(r) Py_INCREF(r) + #define __Pyx_DECREF(r) Py_DECREF(r) + #define __Pyx_GOTREF(r) + #define __Pyx_GIVEREF(r) + #define __Pyx_XINCREF(r) Py_XINCREF(r) + #define __Pyx_XDECREF(r) Py_XDECREF(r) + #define __Pyx_XGOTREF(r) + #define __Pyx_XGIVEREF(r) +#endif +#define __Pyx_XDECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_XDECREF(tmp);\ + } while (0) +#define __Pyx_DECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_DECREF(tmp);\ + } while (0) +#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) +#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) + +/* PyObjectGetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_getattro)) + return tp->tp_getattro(obj, attr_name); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_getattr)) + return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); +#endif + return PyObject_GetAttr(obj, attr_name); +} +#else +#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) +#endif + +/* GetBuiltinName.proto */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name); + +/* RaiseArgTupleInvalid.proto */ +static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, + Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); + +/* KeywordStringCheck.proto */ +static int __Pyx_CheckKeywordStrings(PyObject *kwdict, const char* function_name, int kw_allowed); + +/* RaiseDoubleKeywords.proto */ +static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); + +/* ParseKeywords.proto */ +static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ + PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ + const char* function_name); + +/* ArgTypeTest.proto */ +#define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ + ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ + __Pyx__ArgTypeTest(obj, type, name, exact)) +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); + +/* PyObjectCall.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); +#else +#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) +#endif + +/* PyThreadStateGet.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; +#define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; +#define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type +#else +#define __Pyx_PyThreadState_declare +#define __Pyx_PyThreadState_assign +#define __Pyx_PyErr_Occurred() PyErr_Occurred() +#endif + +/* PyErrFetchRestore.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) +#define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) +#else +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#endif +#else +#define __Pyx_PyErr_Clear() PyErr_Clear() +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) +#endif + +/* RaiseException.proto */ +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); + +/* GetModuleGlobalName.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name); + +/* PyCFunctionFastCall.proto */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +#else +#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#endif + +/* PyFunctionFastCall.proto */ +#if CYTHON_FAST_PYCALL +#define __Pyx_PyFunction_FastCall(func, args, nargs)\ + __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs); +#else +#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) +#endif +#endif + +/* PyObjectCallMethO.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +#endif + +/* PyObjectCallOneArg.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); + +/* PyObjectCallNoArg.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func); +#else +#define __Pyx_PyObject_CallNoArg(func) __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL) +#endif + +/* ExtTypeTest.proto */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); + +/* IsLittleEndian.proto */ +static CYTHON_INLINE int __Pyx_Is_Little_Endian(void); + +/* BufferFormatCheck.proto */ +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); +static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type); + +/* BufferGetAndValidate.proto */ +#define __Pyx_GetBufferAndValidate(buf, obj, dtype, flags, nd, cast, stack)\ + ((obj == Py_None || obj == NULL) ?\ + (__Pyx_ZeroBuffer(buf), 0) :\ + __Pyx__GetBufferAndValidate(buf, obj, dtype, flags, nd, cast, stack)) +static int __Pyx__GetBufferAndValidate(Py_buffer* buf, PyObject* obj, + __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack); +static void __Pyx_ZeroBuffer(Py_buffer* buf); +static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info); +static Py_ssize_t __Pyx_minusones[] = { -1, -1, -1, -1, -1, -1, -1, -1 }; +static Py_ssize_t __Pyx_zeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; + +/* BufferFallbackError.proto */ +static void __Pyx_RaiseBufferFallbackError(void); + +/* DictGetItem.proto */ +#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY +static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key) { + PyObject *value; + value = PyDict_GetItemWithError(d, key); + if (unlikely(!value)) { + if (!PyErr_Occurred()) { + PyObject* args = PyTuple_Pack(1, key); + if (likely(args)) + PyErr_SetObject(PyExc_KeyError, args); + Py_XDECREF(args); + } + return NULL; + } + Py_INCREF(value); + return value; +} +#else + #define __Pyx_PyDict_GetItem(d, key) PyObject_GetItem(d, key) +#endif + +/* RaiseTooManyValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); + +/* RaiseNeedMoreValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); + +/* RaiseNoneIterError.proto */ +static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); + +/* SaveResetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +#else +#define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) +#define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) +#endif + +/* PyErrExceptionMatches.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); +#else +#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) +#endif + +/* GetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* SetupReduce.proto */ +static int __Pyx_setup_reduce(PyObject* type_obj); + +/* Import.proto */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); + +/* CLineInTraceback.proto */ +#ifdef CYTHON_CLINE_IN_TRACEBACK +#define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) +#else +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); +#endif + +/* CodeObjectCache.proto */ +typedef struct { + PyCodeObject* code_object; + int code_line; +} __Pyx_CodeObjectCacheEntry; +struct __Pyx_CodeObjectCache { + int count; + int max_count; + __Pyx_CodeObjectCacheEntry* entries; +}; +static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); +static PyCodeObject *__pyx_find_code_object(int code_line); +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); + +/* AddTraceback.proto */ +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename); + +/* BufferStructDeclare.proto */ +typedef struct { + Py_ssize_t shape, strides, suboffsets; +} __Pyx_Buf_DimInfo; +typedef struct { + size_t refcount; + Py_buffer pybuffer; +} __Pyx_Buffer; +typedef struct { + __Pyx_Buffer *rcbuffer; + char *data; + __Pyx_Buf_DimInfo diminfo[8]; +} __Pyx_LocalBuf_ND; + +#if PY_MAJOR_VERSION < 3 + static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); + static void __Pyx_ReleaseBuffer(Py_buffer *view); +#else + #define __Pyx_GetBuffer PyObject_GetBuffer + #define __Pyx_ReleaseBuffer PyBuffer_Release +#endif + + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_uint32_t(uint32_t value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int8_t(int8_t value); + +/* RealImag.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #define __Pyx_CREAL(z) ((z).real()) + #define __Pyx_CIMAG(z) ((z).imag()) + #else + #define __Pyx_CREAL(z) (__real__(z)) + #define __Pyx_CIMAG(z) (__imag__(z)) + #endif +#else + #define __Pyx_CREAL(z) ((z).real) + #define __Pyx_CIMAG(z) ((z).imag) +#endif +#if defined(__cplusplus) && CYTHON_CCOMPLEX\ + && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) + #define __Pyx_SET_CREAL(z,x) ((z).real(x)) + #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) +#else + #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) + #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_float(a, b) ((a)==(b)) + #define __Pyx_c_sum_float(a, b) ((a)+(b)) + #define __Pyx_c_diff_float(a, b) ((a)-(b)) + #define __Pyx_c_prod_float(a, b) ((a)*(b)) + #define __Pyx_c_quot_float(a, b) ((a)/(b)) + #define __Pyx_c_neg_float(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_float(z) ((z)==(float)0) + #define __Pyx_c_conj_float(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_float(z) (::std::abs(z)) + #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_float(z) ((z)==0) + #define __Pyx_c_conj_float(z) (conjf(z)) + #if 1 + #define __Pyx_c_abs_float(z) (cabsf(z)) + #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); + #endif +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_double(a, b) ((a)==(b)) + #define __Pyx_c_sum_double(a, b) ((a)+(b)) + #define __Pyx_c_diff_double(a, b) ((a)-(b)) + #define __Pyx_c_prod_double(a, b) ((a)*(b)) + #define __Pyx_c_quot_double(a, b) ((a)/(b)) + #define __Pyx_c_neg_double(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_double(z) ((z)==(double)0) + #define __Pyx_c_conj_double(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (::std::abs(z)) + #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_double(z) ((z)==0) + #define __Pyx_c_conj_double(z) (conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (cabs(z)) + #define __Pyx_c_pow_double(a, b) (cpow(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); + #endif +#endif + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); + +/* CIntFromPy.proto */ +static CYTHON_INLINE uint32_t __Pyx_PyInt_As_uint32_t(PyObject *); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + +/* FastTypeChecks.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); +#else +#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) +#define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) +#define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) +#endif + +/* CheckBinaryVersion.proto */ +static int __Pyx_check_binary_version(void); + +/* PyIdentifierFromString.proto */ +#if !defined(__Pyx_PyIdentifier_FromString) +#if PY_MAJOR_VERSION < 3 + #define __Pyx_PyIdentifier_FromString(s) PyString_FromString(s) +#else + #define __Pyx_PyIdentifier_FromString(s) PyUnicode_FromString(s) +#endif +#endif + +/* ModuleImport.proto */ +static PyObject *__Pyx_ImportModule(const char *name); + +/* TypeImport.proto */ +static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, size_t size, int strict); + +/* InitStrings.proto */ +static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); + + +/* Module declarations from 'cpython.buffer' */ + +/* Module declarations from 'libc.string' */ + +/* Module declarations from 'libc.stdio' */ + +/* Module declarations from '__builtin__' */ + +/* Module declarations from 'cpython.type' */ +static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; + +/* Module declarations from 'cpython' */ + +/* Module declarations from 'cpython.object' */ + +/* Module declarations from 'cpython.ref' */ + +/* Module declarations from 'cpython.mem' */ + +/* Module declarations from 'numpy' */ + +/* Module declarations from 'numpy' */ +static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; +static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; +static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; +static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; +static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; +static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/ + +/* Module declarations from 'libc.stdint' */ + +/* Module declarations from 'cython' */ + +/* Module declarations from 'pykdtree.kdtree' */ +static PyTypeObject *__pyx_ptype_8pykdtree_6kdtree_KDTree = 0; +__PYX_EXTERN_C DL_IMPORT(struct __pyx_t_8pykdtree_6kdtree_tree_float) *construct_tree_float(float *, int8_t, uint32_t, uint32_t); /*proto*/ +__PYX_EXTERN_C DL_IMPORT(void) search_tree_float(struct __pyx_t_8pykdtree_6kdtree_tree_float *, float *, float *, uint32_t, uint32_t, float, float, uint8_t *, uint32_t *, float *); /*proto*/ +__PYX_EXTERN_C DL_IMPORT(void) delete_tree_float(struct __pyx_t_8pykdtree_6kdtree_tree_float *); /*proto*/ +__PYX_EXTERN_C DL_IMPORT(struct __pyx_t_8pykdtree_6kdtree_tree_double) *construct_tree_double(double *, int8_t, uint32_t, uint32_t); /*proto*/ +__PYX_EXTERN_C DL_IMPORT(void) search_tree_double(struct __pyx_t_8pykdtree_6kdtree_tree_double *, double *, double *, uint32_t, uint32_t, double, double, uint8_t *, uint32_t *, double *); /*proto*/ +__PYX_EXTERN_C DL_IMPORT(void) delete_tree_double(struct __pyx_t_8pykdtree_6kdtree_tree_double *); /*proto*/ +static __Pyx_TypeInfo __Pyx_TypeInfo_float = { "float", NULL, sizeof(float), { 0 }, 0, 'R', 0, 0 }; +static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; +static __Pyx_TypeInfo __Pyx_TypeInfo_nn_uint32_t = { "uint32_t", NULL, sizeof(uint32_t), { 0 }, 0, IS_UNSIGNED(uint32_t) ? 'U' : 'I', IS_UNSIGNED(uint32_t), 0 }; +static __Pyx_TypeInfo __Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t = { "uint8_t", NULL, sizeof(__pyx_t_5numpy_uint8_t), { 0 }, 0, IS_UNSIGNED(__pyx_t_5numpy_uint8_t) ? 'U' : 'I', IS_UNSIGNED(__pyx_t_5numpy_uint8_t), 0 }; +#define __Pyx_MODULE_NAME "pykdtree.kdtree" +extern int __pyx_module_is_main_pykdtree__kdtree; +int __pyx_module_is_main_pykdtree__kdtree = 0; + +/* Implementation of 'pykdtree.kdtree' */ +static PyObject *__pyx_builtin_ValueError; +static PyObject *__pyx_builtin_TypeError; +static PyObject *__pyx_builtin_range; +static PyObject *__pyx_builtin_RuntimeError; +static PyObject *__pyx_builtin_ImportError; +static const char __pyx_k_k[] = "k"; +static const char __pyx_k_np[] = "np"; +static const char __pyx_k_Inf[] = "Inf"; +static const char __pyx_k_eps[] = "eps"; +static const char __pyx_k_max[] = "max"; +static const char __pyx_k_main[] = "__main__"; +static const char __pyx_k_mask[] = "mask"; +static const char __pyx_k_name[] = "__name__"; +static const char __pyx_k_size[] = "size"; +static const char __pyx_k_sqrt[] = "sqrt"; +static const char __pyx_k_test[] = "__test__"; +static const char __pyx_k_dtype[] = "dtype"; +static const char __pyx_k_empty[] = "empty"; +static const char __pyx_k_finfo[] = "finfo"; +static const char __pyx_k_numpy[] = "numpy"; +static const char __pyx_k_range[] = "range"; +static const char __pyx_k_ravel[] = "ravel"; +static const char __pyx_k_uint8[] = "uint8"; +static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_reduce[] = "__reduce__"; +static const char __pyx_k_uint32[] = "uint32"; +static const char __pyx_k_float32[] = "float32"; +static const char __pyx_k_float64[] = "float64"; +static const char __pyx_k_reshape[] = "reshape"; +static const char __pyx_k_data_pts[] = "data_pts"; +static const char __pyx_k_getstate[] = "__getstate__"; +static const char __pyx_k_leafsize[] = "leafsize"; +static const char __pyx_k_setstate[] = "__setstate__"; +static const char __pyx_k_TypeError[] = "TypeError"; +static const char __pyx_k_query_pts[] = "query_pts"; +static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; +static const char __pyx_k_sqr_dists[] = "sqr_dists"; +static const char __pyx_k_ValueError[] = "ValueError"; +static const char __pyx_k_ImportError[] = "ImportError"; +static const char __pyx_k_RuntimeError[] = "RuntimeError"; +static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; +static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; +static const char __pyx_k_ascontiguousarray[] = "ascontiguousarray"; +static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; +static const char __pyx_k_distance_upper_bound[] = "distance_upper_bound"; +static const char __pyx_k_eps_must_be_non_negative[] = "eps must be non-negative"; +static const char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous"; +static const char __pyx_k_Data_and_query_points_must_have[] = "Data and query points must have same dimensions"; +static const char __pyx_k_Mask_must_have_the_same_size_as[] = "Mask must have the same size as data points"; +static const char __pyx_k_Type_mismatch_query_points_must[] = "Type mismatch. query points must be of type float32 when data points are of type float32"; +static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; +static const char __pyx_k_unknown_dtype_code_in_numpy_pxd[] = "unknown dtype code in numpy.pxd (%d)"; +static const char __pyx_k_Format_string_allocated_too_shor[] = "Format string allocated too short, see comment in numpy.pxd"; +static const char __pyx_k_Non_native_byte_order_not_suppor[] = "Non-native byte order not supported"; +static const char __pyx_k_Number_of_neighbours_must_be_gre[] = "Number of neighbours must be greater than zero"; +static const char __pyx_k_distance_upper_bound_must_be_non[] = "distance_upper_bound must be non negative"; +static const char __pyx_k_leafsize_must_be_greater_than_ze[] = "leafsize must be greater than zero"; +static const char __pyx_k_ndarray_is_not_Fortran_contiguou[] = "ndarray is not Fortran contiguous"; +static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; +static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; +static const char __pyx_k_Format_string_allocated_too_shor_2[] = "Format string allocated too short."; +static PyObject *__pyx_kp_s_Data_and_query_points_must_have; +static PyObject *__pyx_kp_u_Format_string_allocated_too_shor; +static PyObject *__pyx_kp_u_Format_string_allocated_too_shor_2; +static PyObject *__pyx_n_s_ImportError; +static PyObject *__pyx_n_s_Inf; +static PyObject *__pyx_kp_s_Mask_must_have_the_same_size_as; +static PyObject *__pyx_kp_u_Non_native_byte_order_not_suppor; +static PyObject *__pyx_kp_s_Number_of_neighbours_must_be_gre; +static PyObject *__pyx_n_s_RuntimeError; +static PyObject *__pyx_n_s_TypeError; +static PyObject *__pyx_kp_s_Type_mismatch_query_points_must; +static PyObject *__pyx_n_s_ValueError; +static PyObject *__pyx_n_s_ascontiguousarray; +static PyObject *__pyx_n_s_cline_in_traceback; +static PyObject *__pyx_n_s_data_pts; +static PyObject *__pyx_n_s_distance_upper_bound; +static PyObject *__pyx_kp_s_distance_upper_bound_must_be_non; +static PyObject *__pyx_n_s_dtype; +static PyObject *__pyx_n_s_empty; +static PyObject *__pyx_n_s_eps; +static PyObject *__pyx_kp_s_eps_must_be_non_negative; +static PyObject *__pyx_n_s_finfo; +static PyObject *__pyx_n_s_float32; +static PyObject *__pyx_n_s_float64; +static PyObject *__pyx_n_s_getstate; +static PyObject *__pyx_n_s_import; +static PyObject *__pyx_n_s_k; +static PyObject *__pyx_n_s_leafsize; +static PyObject *__pyx_kp_s_leafsize_must_be_greater_than_ze; +static PyObject *__pyx_n_s_main; +static PyObject *__pyx_n_s_mask; +static PyObject *__pyx_n_s_max; +static PyObject *__pyx_n_s_name; +static PyObject *__pyx_kp_u_ndarray_is_not_C_contiguous; +static PyObject *__pyx_kp_u_ndarray_is_not_Fortran_contiguou; +static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; +static PyObject *__pyx_n_s_np; +static PyObject *__pyx_n_s_numpy; +static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; +static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; +static PyObject *__pyx_n_s_query_pts; +static PyObject *__pyx_n_s_range; +static PyObject *__pyx_n_s_ravel; +static PyObject *__pyx_n_s_reduce; +static PyObject *__pyx_n_s_reduce_cython; +static PyObject *__pyx_n_s_reduce_ex; +static PyObject *__pyx_n_s_reshape; +static PyObject *__pyx_n_s_setstate; +static PyObject *__pyx_n_s_setstate_cython; +static PyObject *__pyx_n_s_size; +static PyObject *__pyx_n_s_sqr_dists; +static PyObject *__pyx_n_s_sqrt; +static PyObject *__pyx_n_s_test; +static PyObject *__pyx_n_s_uint32; +static PyObject *__pyx_n_s_uint8; +static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd; +static int __pyx_pf_8pykdtree_6kdtree_6KDTree___cinit__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static int __pyx_pf_8pykdtree_6kdtree_6KDTree_2__init__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self, PyArrayObject *__pyx_v_data_pts, int __pyx_v_leafsize); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_4query(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self, PyArrayObject *__pyx_v_query_pts, PyObject *__pyx_v_k, PyObject *__pyx_v_eps, PyObject *__pyx_v_distance_upper_bound, PyObject *__pyx_v_sqr_dists, PyObject *__pyx_v_mask); /* proto */ +static void __pyx_pf_8pykdtree_6kdtree_6KDTree_6__dealloc__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_8data_pts___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_4data___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_1n___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_4ndim___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_8leafsize___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_8__reduce_cython__(CYTHON_UNUSED struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_10__setstate_cython__(CYTHON_UNUSED struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ +static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */ +static PyObject *__pyx_tp_new_8pykdtree_6kdtree_KDTree(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_int_0; +static PyObject *__pyx_int_1; +static PyObject *__pyx_tuple_; +static PyObject *__pyx_tuple__2; +static PyObject *__pyx_tuple__3; +static PyObject *__pyx_tuple__4; +static PyObject *__pyx_tuple__5; +static PyObject *__pyx_tuple__6; +static PyObject *__pyx_tuple__7; +static PyObject *__pyx_tuple__8; +static PyObject *__pyx_tuple__9; +static PyObject *__pyx_tuple__10; +static PyObject *__pyx_tuple__11; +static PyObject *__pyx_tuple__12; +static PyObject *__pyx_tuple__13; +static PyObject *__pyx_tuple__14; +static PyObject *__pyx_tuple__15; +static PyObject *__pyx_tuple__16; +static PyObject *__pyx_tuple__17; +static PyObject *__pyx_tuple__18; + +/* "pykdtree/kdtree.pyx":87 + * cdef readonly uint32_t leafsize + * + * def __cinit__(KDTree self): # <<<<<<<<<<<<<< + * self._kdtree_float = NULL + * self._kdtree_double = NULL + */ + +/* Python wrapper */ +static int __pyx_pw_8pykdtree_6kdtree_6KDTree_1__cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_pw_8pykdtree_6kdtree_6KDTree_1__cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); + if (unlikely(PyTuple_GET_SIZE(__pyx_args) > 0)) { + __Pyx_RaiseArgtupleInvalid("__cinit__", 1, 0, 0, PyTuple_GET_SIZE(__pyx_args)); return -1;} + if (unlikely(__pyx_kwds) && unlikely(PyDict_Size(__pyx_kwds) > 0) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "__cinit__", 0))) return -1; + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree___cinit__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_pf_8pykdtree_6kdtree_6KDTree___cinit__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__cinit__", 0); + + /* "pykdtree/kdtree.pyx":88 + * + * def __cinit__(KDTree self): + * self._kdtree_float = NULL # <<<<<<<<<<<<<< + * self._kdtree_double = NULL + * + */ + __pyx_v_self->_kdtree_float = NULL; + + /* "pykdtree/kdtree.pyx":89 + * def __cinit__(KDTree self): + * self._kdtree_float = NULL + * self._kdtree_double = NULL # <<<<<<<<<<<<<< + * + * def __init__(KDTree self, np.ndarray data_pts not None, int leafsize=16): + */ + __pyx_v_self->_kdtree_double = NULL; + + /* "pykdtree/kdtree.pyx":87 + * cdef readonly uint32_t leafsize + * + * def __cinit__(KDTree self): # <<<<<<<<<<<<<< + * self._kdtree_float = NULL + * self._kdtree_double = NULL + */ + + /* function exit code */ + __pyx_r = 0; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":91 + * self._kdtree_double = NULL + * + * def __init__(KDTree self, np.ndarray data_pts not None, int leafsize=16): # <<<<<<<<<<<<<< + * + * # Check arguments + */ + +/* Python wrapper */ +static int __pyx_pw_8pykdtree_6kdtree_6KDTree_3__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_pw_8pykdtree_6kdtree_6KDTree_3__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyArrayObject *__pyx_v_data_pts = 0; + int __pyx_v_leafsize; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_data_pts,&__pyx_n_s_leafsize,0}; + PyObject* values[2] = {0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_data_pts)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_leafsize); + if (value) { values[1] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(0, 91, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_data_pts = ((PyArrayObject *)values[0]); + if (values[1]) { + __pyx_v_leafsize = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_leafsize == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 91, __pyx_L3_error) + } else { + __pyx_v_leafsize = ((int)16); + } + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__init__", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 91, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_data_pts), __pyx_ptype_5numpy_ndarray, 0, "data_pts", 0))) __PYX_ERR(0, 91, __pyx_L1_error) + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_2__init__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self), __pyx_v_data_pts, __pyx_v_leafsize); + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_pf_8pykdtree_6kdtree_6KDTree_2__init__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self, PyArrayObject *__pyx_v_data_pts, int __pyx_v_leafsize) { + PyArrayObject *__pyx_v_data_array_float = 0; + PyArrayObject *__pyx_v_data_array_double = 0; + __Pyx_LocalBuf_ND __pyx_pybuffernd_data_array_double; + __Pyx_Buffer __pyx_pybuffer_data_array_double; + __Pyx_LocalBuf_ND __pyx_pybuffernd_data_array_float; + __Pyx_Buffer __pyx_pybuffer_data_array_float; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyArrayObject *__pyx_t_7 = NULL; + int __pyx_t_8; + PyObject *__pyx_t_9 = NULL; + PyObject *__pyx_t_10 = NULL; + PyObject *__pyx_t_11 = NULL; + PyArrayObject *__pyx_t_12 = NULL; + __Pyx_RefNannySetupContext("__init__", 0); + __pyx_pybuffer_data_array_float.pybuffer.buf = NULL; + __pyx_pybuffer_data_array_float.refcount = 0; + __pyx_pybuffernd_data_array_float.data = NULL; + __pyx_pybuffernd_data_array_float.rcbuffer = &__pyx_pybuffer_data_array_float; + __pyx_pybuffer_data_array_double.pybuffer.buf = NULL; + __pyx_pybuffer_data_array_double.refcount = 0; + __pyx_pybuffernd_data_array_double.data = NULL; + __pyx_pybuffernd_data_array_double.rcbuffer = &__pyx_pybuffer_data_array_double; + + /* "pykdtree/kdtree.pyx":94 + * + * # Check arguments + * if leafsize < 1: # <<<<<<<<<<<<<< + * raise ValueError('leafsize must be greater than zero') + * + */ + __pyx_t_1 = ((__pyx_v_leafsize < 1) != 0); + if (__pyx_t_1) { + + /* "pykdtree/kdtree.pyx":95 + * # Check arguments + * if leafsize < 1: + * raise ValueError('leafsize must be greater than zero') # <<<<<<<<<<<<<< + * + * # Get data content + */ + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 95, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(0, 95, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":94 + * + * # Check arguments + * if leafsize < 1: # <<<<<<<<<<<<<< + * raise ValueError('leafsize must be greater than zero') + * + */ + } + + /* "pykdtree/kdtree.pyx":101 + * cdef np.ndarray[double, ndim=1] data_array_double + * + * if data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * data_array_float = np.ascontiguousarray(data_pts.ravel(), dtype=np.float32) + * self._data_pts_data_float = data_array_float.data + */ + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 101, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 101, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float32); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 101, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = PyObject_RichCompare(__pyx_t_2, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 101, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 101, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_1) { + + /* "pykdtree/kdtree.pyx":102 + * + * if data_pts.dtype == np.float32: + * data_array_float = np.ascontiguousarray(data_pts.ravel(), dtype=np.float32) # <<<<<<<<<<<<<< + * self._data_pts_data_float = data_array_float.data + * self.data_pts = data_array_float + */ + __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_data_pts), __pyx_n_s_ravel); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_2); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_2, function); + } + } + if (__pyx_t_5) { + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_5); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + } else { + __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); + __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float32); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_6) < 0) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 102, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (!(likely(((__pyx_t_6) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_6, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 102, __pyx_L1_error) + __pyx_t_7 = ((PyArrayObject *)__pyx_t_6); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_data_array_float.rcbuffer->pybuffer); + __pyx_t_8 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_data_array_float.rcbuffer->pybuffer, (PyObject*)__pyx_t_7, &__Pyx_TypeInfo_float, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_8 < 0)) { + PyErr_Fetch(&__pyx_t_9, &__pyx_t_10, &__pyx_t_11); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_data_array_float.rcbuffer->pybuffer, (PyObject*)__pyx_v_data_array_float, &__Pyx_TypeInfo_float, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_9); Py_XDECREF(__pyx_t_10); Py_XDECREF(__pyx_t_11); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_9, __pyx_t_10, __pyx_t_11); + } + __pyx_t_9 = __pyx_t_10 = __pyx_t_11 = 0; + } + __pyx_pybuffernd_data_array_float.diminfo[0].strides = __pyx_pybuffernd_data_array_float.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_data_array_float.diminfo[0].shape = __pyx_pybuffernd_data_array_float.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_8 < 0)) __PYX_ERR(0, 102, __pyx_L1_error) + } + __pyx_t_7 = 0; + __pyx_v_data_array_float = ((PyArrayObject *)__pyx_t_6); + __pyx_t_6 = 0; + + /* "pykdtree/kdtree.pyx":103 + * if data_pts.dtype == np.float32: + * data_array_float = np.ascontiguousarray(data_pts.ravel(), dtype=np.float32) + * self._data_pts_data_float = data_array_float.data # <<<<<<<<<<<<<< + * self.data_pts = data_array_float + * else: + */ + __pyx_v_self->_data_pts_data_float = ((float *)__pyx_v_data_array_float->data); + + /* "pykdtree/kdtree.pyx":104 + * data_array_float = np.ascontiguousarray(data_pts.ravel(), dtype=np.float32) + * self._data_pts_data_float = data_array_float.data + * self.data_pts = data_array_float # <<<<<<<<<<<<<< + * else: + * data_array_double = np.ascontiguousarray(data_pts.ravel(), dtype=np.float64) + */ + __Pyx_INCREF(((PyObject *)__pyx_v_data_array_float)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_data_array_float)); + __Pyx_GOTREF(__pyx_v_self->data_pts); + __Pyx_DECREF(((PyObject *)__pyx_v_self->data_pts)); + __pyx_v_self->data_pts = ((PyArrayObject *)__pyx_v_data_array_float); + + /* "pykdtree/kdtree.pyx":101 + * cdef np.ndarray[double, ndim=1] data_array_double + * + * if data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * data_array_float = np.ascontiguousarray(data_pts.ravel(), dtype=np.float32) + * self._data_pts_data_float = data_array_float.data + */ + goto __pyx_L4; + } + + /* "pykdtree/kdtree.pyx":106 + * self.data_pts = data_array_float + * else: + * data_array_double = np.ascontiguousarray(data_pts.ravel(), dtype=np.float64) # <<<<<<<<<<<<<< + * self._data_pts_data_double = data_array_double.data + * self.data_pts = data_array_double + */ + /*else*/ { + __pyx_t_6 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_data_pts), __pyx_n_s_ravel); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { + __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2); + if (likely(__pyx_t_4)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); + __Pyx_INCREF(__pyx_t_4); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_2, function); + } + } + if (__pyx_t_4) { + __pyx_t_6 = __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } else { + __pyx_t_6 = __Pyx_PyObject_CallNoArg(__pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 106, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_6); + __pyx_t_6 = 0; + __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, __pyx_t_6); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 106, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 106, __pyx_L1_error) + __pyx_t_12 = ((PyArrayObject *)__pyx_t_5); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_data_array_double.rcbuffer->pybuffer); + __pyx_t_8 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_data_array_double.rcbuffer->pybuffer, (PyObject*)__pyx_t_12, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_8 < 0)) { + PyErr_Fetch(&__pyx_t_11, &__pyx_t_10, &__pyx_t_9); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_data_array_double.rcbuffer->pybuffer, (PyObject*)__pyx_v_data_array_double, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_11); Py_XDECREF(__pyx_t_10); Py_XDECREF(__pyx_t_9); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_11, __pyx_t_10, __pyx_t_9); + } + __pyx_t_11 = __pyx_t_10 = __pyx_t_9 = 0; + } + __pyx_pybuffernd_data_array_double.diminfo[0].strides = __pyx_pybuffernd_data_array_double.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_data_array_double.diminfo[0].shape = __pyx_pybuffernd_data_array_double.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_8 < 0)) __PYX_ERR(0, 106, __pyx_L1_error) + } + __pyx_t_12 = 0; + __pyx_v_data_array_double = ((PyArrayObject *)__pyx_t_5); + __pyx_t_5 = 0; + + /* "pykdtree/kdtree.pyx":107 + * else: + * data_array_double = np.ascontiguousarray(data_pts.ravel(), dtype=np.float64) + * self._data_pts_data_double = data_array_double.data # <<<<<<<<<<<<<< + * self.data_pts = data_array_double + * + */ + __pyx_v_self->_data_pts_data_double = ((double *)__pyx_v_data_array_double->data); + + /* "pykdtree/kdtree.pyx":108 + * data_array_double = np.ascontiguousarray(data_pts.ravel(), dtype=np.float64) + * self._data_pts_data_double = data_array_double.data + * self.data_pts = data_array_double # <<<<<<<<<<<<<< + * + * # scipy interface compatibility + */ + __Pyx_INCREF(((PyObject *)__pyx_v_data_array_double)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_data_array_double)); + __Pyx_GOTREF(__pyx_v_self->data_pts); + __Pyx_DECREF(((PyObject *)__pyx_v_self->data_pts)); + __pyx_v_self->data_pts = ((PyArrayObject *)__pyx_v_data_array_double); + } + __pyx_L4:; + + /* "pykdtree/kdtree.pyx":111 + * + * # scipy interface compatibility + * self.data = self.data_pts # <<<<<<<<<<<<<< + * + * # Get tree info + */ + __pyx_t_5 = ((PyObject *)__pyx_v_self->data_pts); + __Pyx_INCREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_v_self->data); + __Pyx_DECREF(((PyObject *)__pyx_v_self->data)); + __pyx_v_self->data = ((PyArrayObject *)__pyx_t_5); + __pyx_t_5 = 0; + + /* "pykdtree/kdtree.pyx":114 + * + * # Get tree info + * self.n = data_pts.shape[0] # <<<<<<<<<<<<<< + * self.leafsize = leafsize + * if data_pts.ndim == 1: + */ + __pyx_v_self->n = ((uint32_t)(__pyx_v_data_pts->dimensions[0])); + + /* "pykdtree/kdtree.pyx":115 + * # Get tree info + * self.n = data_pts.shape[0] + * self.leafsize = leafsize # <<<<<<<<<<<<<< + * if data_pts.ndim == 1: + * self.ndim = 1 + */ + __pyx_v_self->leafsize = ((uint32_t)__pyx_v_leafsize); + + /* "pykdtree/kdtree.pyx":116 + * self.n = data_pts.shape[0] + * self.leafsize = leafsize + * if data_pts.ndim == 1: # <<<<<<<<<<<<<< + * self.ndim = 1 + * else: + */ + __pyx_t_1 = ((__pyx_v_data_pts->nd == 1) != 0); + if (__pyx_t_1) { + + /* "pykdtree/kdtree.pyx":117 + * self.leafsize = leafsize + * if data_pts.ndim == 1: + * self.ndim = 1 # <<<<<<<<<<<<<< + * else: + * self.ndim = data_pts.shape[1] + */ + __pyx_v_self->ndim = 1; + + /* "pykdtree/kdtree.pyx":116 + * self.n = data_pts.shape[0] + * self.leafsize = leafsize + * if data_pts.ndim == 1: # <<<<<<<<<<<<<< + * self.ndim = 1 + * else: + */ + goto __pyx_L5; + } + + /* "pykdtree/kdtree.pyx":119 + * self.ndim = 1 + * else: + * self.ndim = data_pts.shape[1] # <<<<<<<<<<<<<< + * + * # Release GIL and construct tree + */ + /*else*/ { + __pyx_v_self->ndim = ((int8_t)(__pyx_v_data_pts->dimensions[1])); + } + __pyx_L5:; + + /* "pykdtree/kdtree.pyx":122 + * + * # Release GIL and construct tree + * if data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * with nogil: + * self._kdtree_float = construct_tree_float(self._data_pts_data_float, self.ndim, + */ + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 122, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_6 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 122, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_float32); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 122, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __pyx_t_6 = PyObject_RichCompare(__pyx_t_5, __pyx_t_2, Py_EQ); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 122, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 122, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (__pyx_t_1) { + + /* "pykdtree/kdtree.pyx":123 + * # Release GIL and construct tree + * if data_pts.dtype == np.float32: + * with nogil: # <<<<<<<<<<<<<< + * self._kdtree_float = construct_tree_float(self._data_pts_data_float, self.ndim, + * self.n, self.leafsize) + */ + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); + #endif + /*try:*/ { + + /* "pykdtree/kdtree.pyx":124 + * if data_pts.dtype == np.float32: + * with nogil: + * self._kdtree_float = construct_tree_float(self._data_pts_data_float, self.ndim, # <<<<<<<<<<<<<< + * self.n, self.leafsize) + * else: + */ + __pyx_v_self->_kdtree_float = construct_tree_float(__pyx_v_self->_data_pts_data_float, __pyx_v_self->ndim, __pyx_v_self->n, __pyx_v_self->leafsize); + } + + /* "pykdtree/kdtree.pyx":123 + * # Release GIL and construct tree + * if data_pts.dtype == np.float32: + * with nogil: # <<<<<<<<<<<<<< + * self._kdtree_float = construct_tree_float(self._data_pts_data_float, self.ndim, + * self.n, self.leafsize) + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); + Py_BLOCK_THREADS + #endif + goto __pyx_L9; + } + __pyx_L9:; + } + } + + /* "pykdtree/kdtree.pyx":122 + * + * # Release GIL and construct tree + * if data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * with nogil: + * self._kdtree_float = construct_tree_float(self._data_pts_data_float, self.ndim, + */ + goto __pyx_L6; + } + + /* "pykdtree/kdtree.pyx":127 + * self.n, self.leafsize) + * else: + * with nogil: # <<<<<<<<<<<<<< + * self._kdtree_double = construct_tree_double(self._data_pts_data_double, self.ndim, + * self.n, self.leafsize) + */ + /*else*/ { + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); + #endif + /*try:*/ { + + /* "pykdtree/kdtree.pyx":128 + * else: + * with nogil: + * self._kdtree_double = construct_tree_double(self._data_pts_data_double, self.ndim, # <<<<<<<<<<<<<< + * self.n, self.leafsize) + * + */ + __pyx_v_self->_kdtree_double = construct_tree_double(__pyx_v_self->_data_pts_data_double, __pyx_v_self->ndim, __pyx_v_self->n, __pyx_v_self->leafsize); + } + + /* "pykdtree/kdtree.pyx":127 + * self.n, self.leafsize) + * else: + * with nogil: # <<<<<<<<<<<<<< + * self._kdtree_double = construct_tree_double(self._data_pts_data_double, self.ndim, + * self.n, self.leafsize) + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); + Py_BLOCK_THREADS + #endif + goto __pyx_L12; + } + __pyx_L12:; + } + } + } + __pyx_L6:; + + /* "pykdtree/kdtree.pyx":91 + * self._kdtree_double = NULL + * + * def __init__(KDTree self, np.ndarray data_pts not None, int leafsize=16): # <<<<<<<<<<<<<< + * + * # Check arguments + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_data_array_double.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_data_array_float.rcbuffer->pybuffer); + __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + goto __pyx_L2; + __pyx_L0:; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_data_array_double.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_data_array_float.rcbuffer->pybuffer); + __pyx_L2:; + __Pyx_XDECREF((PyObject *)__pyx_v_data_array_float); + __Pyx_XDECREF((PyObject *)__pyx_v_data_array_double); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":132 + * + * + * def query(KDTree self, np.ndarray query_pts not None, k=1, eps=0, # <<<<<<<<<<<<<< + * distance_upper_bound=None, sqr_dists=False, mask=None): + * """Query the kd-tree for nearest neighbors + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_5query(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static char __pyx_doc_8pykdtree_6kdtree_6KDTree_4query[] = "Query the kd-tree for nearest neighbors\n\n :Parameters:\n query_pts : numpy array\n Query points with shape (n , dims)\n k : int\n The number of nearest neighbours to return\n eps : non-negative float\n Return approximate nearest neighbours; the k-th returned value\n is guaranteed to be no further than (1 + eps) times the distance\n to the real k-th nearest neighbour\n distance_upper_bound : non-negative float\n Return only neighbors within this distance.\n This is used to prune tree searches.\n sqr_dists : bool, optional\n Internally pykdtree works with squared distances.\n Determines if the squared or Euclidean distances are returned.\n mask : numpy array, optional\n Array of booleans where neighbors are considered invalid and\n should not be returned. A mask value of True represents an\n invalid pixel. Mask should have shape (n,). By default all\n points are considered valid.\n\n "; +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_5query(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyArrayObject *__pyx_v_query_pts = 0; + PyObject *__pyx_v_k = 0; + PyObject *__pyx_v_eps = 0; + PyObject *__pyx_v_distance_upper_bound = 0; + PyObject *__pyx_v_sqr_dists = 0; + PyObject *__pyx_v_mask = 0; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("query (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_query_pts,&__pyx_n_s_k,&__pyx_n_s_eps,&__pyx_n_s_distance_upper_bound,&__pyx_n_s_sqr_dists,&__pyx_n_s_mask,0}; + PyObject* values[6] = {0,0,0,0,0,0}; + values[1] = ((PyObject *)__pyx_int_1); + values[2] = ((PyObject *)__pyx_int_0); + + /* "pykdtree/kdtree.pyx":133 + * + * def query(KDTree self, np.ndarray query_pts not None, k=1, eps=0, + * distance_upper_bound=None, sqr_dists=False, mask=None): # <<<<<<<<<<<<<< + * """Query the kd-tree for nearest neighbors + * + */ + values[3] = ((PyObject *)Py_None); + values[4] = ((PyObject *)Py_False); + values[5] = ((PyObject *)Py_None); + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + CYTHON_FALLTHROUGH; + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_query_pts)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_k); + if (value) { values[1] = value; kw_args--; } + } + CYTHON_FALLTHROUGH; + case 2: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_eps); + if (value) { values[2] = value; kw_args--; } + } + CYTHON_FALLTHROUGH; + case 3: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_distance_upper_bound); + if (value) { values[3] = value; kw_args--; } + } + CYTHON_FALLTHROUGH; + case 4: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_sqr_dists); + if (value) { values[4] = value; kw_args--; } + } + CYTHON_FALLTHROUGH; + case 5: + if (kw_args > 0) { + PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s_mask); + if (value) { values[5] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "query") < 0)) __PYX_ERR(0, 132, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + CYTHON_FALLTHROUGH; + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_query_pts = ((PyArrayObject *)values[0]); + __pyx_v_k = values[1]; + __pyx_v_eps = values[2]; + __pyx_v_distance_upper_bound = values[3]; + __pyx_v_sqr_dists = values[4]; + __pyx_v_mask = values[5]; + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("query", 0, 1, 6, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 132, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.query", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_query_pts), __pyx_ptype_5numpy_ndarray, 0, "query_pts", 0))) __PYX_ERR(0, 132, __pyx_L1_error) + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_4query(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self), __pyx_v_query_pts, __pyx_v_k, __pyx_v_eps, __pyx_v_distance_upper_bound, __pyx_v_sqr_dists, __pyx_v_mask); + + /* "pykdtree/kdtree.pyx":132 + * + * + * def query(KDTree self, np.ndarray query_pts not None, k=1, eps=0, # <<<<<<<<<<<<<< + * distance_upper_bound=None, sqr_dists=False, mask=None): + * """Query the kd-tree for nearest neighbors + */ + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_4query(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self, PyArrayObject *__pyx_v_query_pts, PyObject *__pyx_v_k, PyObject *__pyx_v_eps, PyObject *__pyx_v_distance_upper_bound, PyObject *__pyx_v_sqr_dists, PyObject *__pyx_v_mask) { + long __pyx_v_q_ndim; + uint32_t __pyx_v_num_qpoints; + uint32_t __pyx_v_num_n; + PyArrayObject *__pyx_v_closest_idxs = 0; + PyArrayObject *__pyx_v_closest_dists_float = 0; + PyArrayObject *__pyx_v_closest_dists_double = 0; + uint32_t *__pyx_v_closest_idxs_data; + float *__pyx_v_closest_dists_data_float; + double *__pyx_v_closest_dists_data_double; + PyArrayObject *__pyx_v_query_array_float = 0; + PyArrayObject *__pyx_v_query_array_double = 0; + float *__pyx_v_query_array_data_float; + double *__pyx_v_query_array_data_double; + PyArrayObject *__pyx_v_query_mask = 0; + __pyx_t_5numpy_uint8_t *__pyx_v_query_mask_data; + PyObject *__pyx_v_closest_dists = NULL; + float __pyx_v_dub_float; + double __pyx_v_dub_double; + double __pyx_v_epsilon_float; + double __pyx_v_epsilon_double; + PyObject *__pyx_v_closest_dists_res = NULL; + PyObject *__pyx_v_closest_idxs_res = NULL; + PyObject *__pyx_v_idx_out = NULL; + __Pyx_LocalBuf_ND __pyx_pybuffernd_closest_dists_double; + __Pyx_Buffer __pyx_pybuffer_closest_dists_double; + __Pyx_LocalBuf_ND __pyx_pybuffernd_closest_dists_float; + __Pyx_Buffer __pyx_pybuffer_closest_dists_float; + __Pyx_LocalBuf_ND __pyx_pybuffernd_closest_idxs; + __Pyx_Buffer __pyx_pybuffer_closest_idxs; + __Pyx_LocalBuf_ND __pyx_pybuffernd_query_array_double; + __Pyx_Buffer __pyx_pybuffer_query_array_double; + __Pyx_LocalBuf_ND __pyx_pybuffernd_query_array_float; + __Pyx_Buffer __pyx_pybuffer_query_array_float; + __Pyx_LocalBuf_ND __pyx_pybuffernd_query_mask; + __Pyx_Buffer __pyx_pybuffer_query_mask; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + uint32_t __pyx_t_6; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + PyArrayObject *__pyx_t_9 = NULL; + int __pyx_t_10; + PyArrayObject *__pyx_t_11 = NULL; + int __pyx_t_12; + PyObject *__pyx_t_13 = NULL; + PyObject *__pyx_t_14 = NULL; + PyObject *__pyx_t_15 = NULL; + PyArrayObject *__pyx_t_16 = NULL; + PyArrayObject *__pyx_t_17 = NULL; + PyArrayObject *__pyx_t_18 = NULL; + PyArrayObject *__pyx_t_19 = NULL; + float __pyx_t_20; + double __pyx_t_21; + __Pyx_RefNannySetupContext("query", 0); + __pyx_pybuffer_closest_idxs.pybuffer.buf = NULL; + __pyx_pybuffer_closest_idxs.refcount = 0; + __pyx_pybuffernd_closest_idxs.data = NULL; + __pyx_pybuffernd_closest_idxs.rcbuffer = &__pyx_pybuffer_closest_idxs; + __pyx_pybuffer_closest_dists_float.pybuffer.buf = NULL; + __pyx_pybuffer_closest_dists_float.refcount = 0; + __pyx_pybuffernd_closest_dists_float.data = NULL; + __pyx_pybuffernd_closest_dists_float.rcbuffer = &__pyx_pybuffer_closest_dists_float; + __pyx_pybuffer_closest_dists_double.pybuffer.buf = NULL; + __pyx_pybuffer_closest_dists_double.refcount = 0; + __pyx_pybuffernd_closest_dists_double.data = NULL; + __pyx_pybuffernd_closest_dists_double.rcbuffer = &__pyx_pybuffer_closest_dists_double; + __pyx_pybuffer_query_array_float.pybuffer.buf = NULL; + __pyx_pybuffer_query_array_float.refcount = 0; + __pyx_pybuffernd_query_array_float.data = NULL; + __pyx_pybuffernd_query_array_float.rcbuffer = &__pyx_pybuffer_query_array_float; + __pyx_pybuffer_query_array_double.pybuffer.buf = NULL; + __pyx_pybuffer_query_array_double.refcount = 0; + __pyx_pybuffernd_query_array_double.data = NULL; + __pyx_pybuffernd_query_array_double.rcbuffer = &__pyx_pybuffer_query_array_double; + __pyx_pybuffer_query_mask.pybuffer.buf = NULL; + __pyx_pybuffer_query_mask.refcount = 0; + __pyx_pybuffernd_query_mask.data = NULL; + __pyx_pybuffernd_query_mask.rcbuffer = &__pyx_pybuffer_query_mask; + + /* "pykdtree/kdtree.pyx":160 + * + * # Check arguments + * if k < 1: # <<<<<<<<<<<<<< + * raise ValueError('Number of neighbours must be greater than zero') + * elif eps < 0: + */ + __pyx_t_1 = PyObject_RichCompare(__pyx_v_k, __pyx_int_1, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 160, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 160, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (__pyx_t_2) { + + /* "pykdtree/kdtree.pyx":161 + * # Check arguments + * if k < 1: + * raise ValueError('Number of neighbours must be greater than zero') # <<<<<<<<<<<<<< + * elif eps < 0: + * raise ValueError('eps must be non-negative') + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 161, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(0, 161, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":160 + * + * # Check arguments + * if k < 1: # <<<<<<<<<<<<<< + * raise ValueError('Number of neighbours must be greater than zero') + * elif eps < 0: + */ + } + + /* "pykdtree/kdtree.pyx":162 + * if k < 1: + * raise ValueError('Number of neighbours must be greater than zero') + * elif eps < 0: # <<<<<<<<<<<<<< + * raise ValueError('eps must be non-negative') + * elif distance_upper_bound is not None: + */ + __pyx_t_1 = PyObject_RichCompare(__pyx_v_eps, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 162, __pyx_L1_error) + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 162, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (__pyx_t_2) { + + /* "pykdtree/kdtree.pyx":163 + * raise ValueError('Number of neighbours must be greater than zero') + * elif eps < 0: + * raise ValueError('eps must be non-negative') # <<<<<<<<<<<<<< + * elif distance_upper_bound is not None: + * if distance_upper_bound < 0: + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 163, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(0, 163, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":162 + * if k < 1: + * raise ValueError('Number of neighbours must be greater than zero') + * elif eps < 0: # <<<<<<<<<<<<<< + * raise ValueError('eps must be non-negative') + * elif distance_upper_bound is not None: + */ + } + + /* "pykdtree/kdtree.pyx":164 + * elif eps < 0: + * raise ValueError('eps must be non-negative') + * elif distance_upper_bound is not None: # <<<<<<<<<<<<<< + * if distance_upper_bound < 0: + * raise ValueError('distance_upper_bound must be non negative') + */ + __pyx_t_2 = (__pyx_v_distance_upper_bound != Py_None); + __pyx_t_3 = (__pyx_t_2 != 0); + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":165 + * raise ValueError('eps must be non-negative') + * elif distance_upper_bound is not None: + * if distance_upper_bound < 0: # <<<<<<<<<<<<<< + * raise ValueError('distance_upper_bound must be non negative') + * + */ + __pyx_t_1 = PyObject_RichCompare(__pyx_v_distance_upper_bound, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 165, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 165, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":166 + * elif distance_upper_bound is not None: + * if distance_upper_bound < 0: + * raise ValueError('distance_upper_bound must be non negative') # <<<<<<<<<<<<<< + * + * # Check dimensions + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 166, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(0, 166, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":165 + * raise ValueError('eps must be non-negative') + * elif distance_upper_bound is not None: + * if distance_upper_bound < 0: # <<<<<<<<<<<<<< + * raise ValueError('distance_upper_bound must be non negative') + * + */ + } + + /* "pykdtree/kdtree.pyx":164 + * elif eps < 0: + * raise ValueError('eps must be non-negative') + * elif distance_upper_bound is not None: # <<<<<<<<<<<<<< + * if distance_upper_bound < 0: + * raise ValueError('distance_upper_bound must be non negative') + */ + } + + /* "pykdtree/kdtree.pyx":169 + * + * # Check dimensions + * if query_pts.ndim == 1: # <<<<<<<<<<<<<< + * q_ndim = 1 + * else: + */ + __pyx_t_3 = ((__pyx_v_query_pts->nd == 1) != 0); + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":170 + * # Check dimensions + * if query_pts.ndim == 1: + * q_ndim = 1 # <<<<<<<<<<<<<< + * else: + * q_ndim = query_pts.shape[1] + */ + __pyx_v_q_ndim = 1; + + /* "pykdtree/kdtree.pyx":169 + * + * # Check dimensions + * if query_pts.ndim == 1: # <<<<<<<<<<<<<< + * q_ndim = 1 + * else: + */ + goto __pyx_L5; + } + + /* "pykdtree/kdtree.pyx":172 + * q_ndim = 1 + * else: + * q_ndim = query_pts.shape[1] # <<<<<<<<<<<<<< + * + * if self.ndim != q_ndim: + */ + /*else*/ { + __pyx_v_q_ndim = (__pyx_v_query_pts->dimensions[1]); + } + __pyx_L5:; + + /* "pykdtree/kdtree.pyx":174 + * q_ndim = query_pts.shape[1] + * + * if self.ndim != q_ndim: # <<<<<<<<<<<<<< + * raise ValueError('Data and query points must have same dimensions') + * + */ + __pyx_t_3 = ((__pyx_v_self->ndim != __pyx_v_q_ndim) != 0); + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":175 + * + * if self.ndim != q_ndim: + * raise ValueError('Data and query points must have same dimensions') # <<<<<<<<<<<<<< + * + * if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 175, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(0, 175, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":174 + * q_ndim = query_pts.shape[1] + * + * if self.ndim != q_ndim: # <<<<<<<<<<<<<< + * raise ValueError('Data and query points must have same dimensions') + * + */ + } + + /* "pykdtree/kdtree.pyx":177 + * raise ValueError('Data and query points must have same dimensions') + * + * if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: # <<<<<<<<<<<<<< + * raise TypeError('Type mismatch. query points must be of type float32 when data points are of type float32') + * + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self->data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float32); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = PyObject_RichCompare(__pyx_t_1, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_2) { + } else { + __pyx_t_3 = __pyx_t_2; + goto __pyx_L8_bool_binop_done; + } + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_query_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float32); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_1, Py_NE); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 177, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_3 = __pyx_t_2; + __pyx_L8_bool_binop_done:; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":178 + * + * if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: + * raise TypeError('Type mismatch. query points must be of type float32 when data points are of type float32') # <<<<<<<<<<<<<< + * + * # Get query info + */ + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 178, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(0, 178, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":177 + * raise ValueError('Data and query points must have same dimensions') + * + * if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: # <<<<<<<<<<<<<< + * raise TypeError('Type mismatch. query points must be of type float32 when data points are of type float32') + * + */ + } + + /* "pykdtree/kdtree.pyx":181 + * + * # Get query info + * cdef uint32_t num_qpoints = query_pts.shape[0] # <<<<<<<<<<<<<< + * cdef uint32_t num_n = k + * cdef np.ndarray[uint32_t, ndim=1] closest_idxs = np.empty(num_qpoints * k, dtype=np.uint32) + */ + __pyx_v_num_qpoints = (__pyx_v_query_pts->dimensions[0]); + + /* "pykdtree/kdtree.pyx":182 + * # Get query info + * cdef uint32_t num_qpoints = query_pts.shape[0] + * cdef uint32_t num_n = k # <<<<<<<<<<<<<< + * cdef np.ndarray[uint32_t, ndim=1] closest_idxs = np.empty(num_qpoints * k, dtype=np.uint32) + * cdef np.ndarray[float, ndim=1] closest_dists_float + */ + __pyx_t_6 = __Pyx_PyInt_As_uint32_t(__pyx_v_k); if (unlikely((__pyx_t_6 == ((uint32_t)-1)) && PyErr_Occurred())) __PYX_ERR(0, 182, __pyx_L1_error) + __pyx_v_num_n = __pyx_t_6; + + /* "pykdtree/kdtree.pyx":183 + * cdef uint32_t num_qpoints = query_pts.shape[0] + * cdef uint32_t num_n = k + * cdef np.ndarray[uint32_t, ndim=1] closest_idxs = np.empty(num_qpoints * k, dtype=np.uint32) # <<<<<<<<<<<<<< + * cdef np.ndarray[float, ndim=1] closest_dists_float + * cdef np.ndarray[double, ndim=1] closest_dists_double + */ + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_empty); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyInt_From_uint32_t(__pyx_v_num_qpoints); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_4 = PyNumber_Multiply(__pyx_t_5, __pyx_v_k); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); + __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_7 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_uint32); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_8) < 0) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 183, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (!(likely(((__pyx_t_8) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_8, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 183, __pyx_L1_error) + __pyx_t_9 = ((PyArrayObject *)__pyx_t_8); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_closest_idxs.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn_uint32_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + __pyx_v_closest_idxs = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_closest_idxs.rcbuffer->pybuffer.buf = NULL; + __PYX_ERR(0, 183, __pyx_L1_error) + } else {__pyx_pybuffernd_closest_idxs.diminfo[0].strides = __pyx_pybuffernd_closest_idxs.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_closest_idxs.diminfo[0].shape = __pyx_pybuffernd_closest_idxs.rcbuffer->pybuffer.shape[0]; + } + } + __pyx_t_9 = 0; + __pyx_v_closest_idxs = ((PyArrayObject *)__pyx_t_8); + __pyx_t_8 = 0; + + /* "pykdtree/kdtree.pyx":189 + * + * # Set up return arrays + * cdef uint32_t *closest_idxs_data = closest_idxs.data # <<<<<<<<<<<<<< + * cdef float *closest_dists_data_float + * cdef double *closest_dists_data_double + */ + __pyx_v_closest_idxs_data = ((uint32_t *)__pyx_v_closest_idxs->data); + + /* "pykdtree/kdtree.pyx":201 + * cdef np.uint8_t *query_mask_data + * + * if mask is not None and mask.size != self.n: # <<<<<<<<<<<<<< + * raise ValueError('Mask must have the same size as data points') + * elif mask is not None: + */ + __pyx_t_2 = (__pyx_v_mask != Py_None); + __pyx_t_10 = (__pyx_t_2 != 0); + if (__pyx_t_10) { + } else { + __pyx_t_3 = __pyx_t_10; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_mask, __pyx_n_s_size); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 201, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_4 = __Pyx_PyInt_From_uint32_t(__pyx_v_self->n); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 201, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PyObject_RichCompare(__pyx_t_8, __pyx_t_4, Py_NE); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 201, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_10 < 0)) __PYX_ERR(0, 201, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_3 = __pyx_t_10; + __pyx_L11_bool_binop_done:; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":202 + * + * if mask is not None and mask.size != self.n: + * raise ValueError('Mask must have the same size as data points') # <<<<<<<<<<<<<< + * elif mask is not None: + * query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) + */ + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 202, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(0, 202, __pyx_L1_error) + + /* "pykdtree/kdtree.pyx":201 + * cdef np.uint8_t *query_mask_data + * + * if mask is not None and mask.size != self.n: # <<<<<<<<<<<<<< + * raise ValueError('Mask must have the same size as data points') + * elif mask is not None: + */ + } + + /* "pykdtree/kdtree.pyx":203 + * if mask is not None and mask.size != self.n: + * raise ValueError('Mask must have the same size as data points') + * elif mask is not None: # <<<<<<<<<<<<<< + * query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) + * query_mask_data = query_mask.data + */ + __pyx_t_3 = (__pyx_v_mask != Py_None); + __pyx_t_10 = (__pyx_t_3 != 0); + if (__pyx_t_10) { + + /* "pykdtree/kdtree.pyx":204 + * raise ValueError('Mask must have the same size as data points') + * elif mask is not None: + * query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) # <<<<<<<<<<<<<< + * query_mask_data = query_mask.data + * else: + */ + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_mask, __pyx_n_s_ravel); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_1 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { + __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_8); + if (likely(__pyx_t_1)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); + __Pyx_INCREF(__pyx_t_1); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_8, function); + } + } + if (__pyx_t_1) { + __pyx_t_5 = __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + __pyx_t_5 = __Pyx_PyObject_CallNoArg(__pyx_t_8); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 204, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_8 = PyTuple_New(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); + __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_uint8); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_7) < 0) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_8, __pyx_t_5); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 204, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if (!(likely(((__pyx_t_7) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_7, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 204, __pyx_L1_error) + __pyx_t_11 = ((PyArrayObject *)__pyx_t_7); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_mask.rcbuffer->pybuffer); + __pyx_t_12 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_query_mask.rcbuffer->pybuffer, (PyObject*)__pyx_t_11, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_12 < 0)) { + PyErr_Fetch(&__pyx_t_13, &__pyx_t_14, &__pyx_t_15); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_query_mask.rcbuffer->pybuffer, (PyObject*)__pyx_v_query_mask, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_13); Py_XDECREF(__pyx_t_14); Py_XDECREF(__pyx_t_15); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_13, __pyx_t_14, __pyx_t_15); + } + __pyx_t_13 = __pyx_t_14 = __pyx_t_15 = 0; + } + __pyx_pybuffernd_query_mask.diminfo[0].strides = __pyx_pybuffernd_query_mask.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_query_mask.diminfo[0].shape = __pyx_pybuffernd_query_mask.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 204, __pyx_L1_error) + } + __pyx_t_11 = 0; + __pyx_v_query_mask = ((PyArrayObject *)__pyx_t_7); + __pyx_t_7 = 0; + + /* "pykdtree/kdtree.pyx":205 + * elif mask is not None: + * query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) + * query_mask_data = query_mask.data # <<<<<<<<<<<<<< + * else: + * query_mask_data = NULL + */ + __pyx_v_query_mask_data = ((uint8_t *)__pyx_v_query_mask->data); + + /* "pykdtree/kdtree.pyx":203 + * if mask is not None and mask.size != self.n: + * raise ValueError('Mask must have the same size as data points') + * elif mask is not None: # <<<<<<<<<<<<<< + * query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) + * query_mask_data = query_mask.data + */ + goto __pyx_L10; + } + + /* "pykdtree/kdtree.pyx":207 + * query_mask_data = query_mask.data + * else: + * query_mask_data = NULL # <<<<<<<<<<<<<< + * + * + */ + /*else*/ { + __pyx_v_query_mask_data = NULL; + } + __pyx_L10:; + + /* "pykdtree/kdtree.pyx":210 + * + * + * if query_pts.dtype == np.float32 and self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * closest_dists_float = np.empty(num_qpoints * k, dtype=np.float32) + * closest_dists = closest_dists_float + */ + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_query_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float32); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = PyObject_RichCompare(__pyx_t_7, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if (__pyx_t_3) { + } else { + __pyx_t_10 = __pyx_t_3; + goto __pyx_L14_bool_binop_done; + } + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self->data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_8 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_float32); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_8 = PyObject_RichCompare(__pyx_t_5, __pyx_t_7, Py_EQ); __Pyx_XGOTREF(__pyx_t_8); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_8); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 210, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_10 = __pyx_t_3; + __pyx_L14_bool_binop_done:; + if (__pyx_t_10) { + + /* "pykdtree/kdtree.pyx":211 + * + * if query_pts.dtype == np.float32 and self.data_pts.dtype == np.float32: + * closest_dists_float = np.empty(num_qpoints * k, dtype=np.float32) # <<<<<<<<<<<<<< + * closest_dists = closest_dists_float + * closest_dists_data_float = closest_dists_float.data + */ + __pyx_t_8 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_empty); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_8 = __Pyx_PyInt_From_uint32_t(__pyx_v_num_qpoints); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_5 = PyNumber_Multiply(__pyx_t_8, __pyx_v_k); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_8 = PyTuple_New(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); + __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float32); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_1) < 0) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_8, __pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 211, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 211, __pyx_L1_error) + __pyx_t_16 = ((PyArrayObject *)__pyx_t_1); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer); + __pyx_t_12 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer, (PyObject*)__pyx_t_16, &__Pyx_TypeInfo_float, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_12 < 0)) { + PyErr_Fetch(&__pyx_t_15, &__pyx_t_14, &__pyx_t_13); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer, (PyObject*)__pyx_v_closest_dists_float, &__Pyx_TypeInfo_float, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_15); Py_XDECREF(__pyx_t_14); Py_XDECREF(__pyx_t_13); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_15, __pyx_t_14, __pyx_t_13); + } + __pyx_t_15 = __pyx_t_14 = __pyx_t_13 = 0; + } + __pyx_pybuffernd_closest_dists_float.diminfo[0].strides = __pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_closest_dists_float.diminfo[0].shape = __pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 211, __pyx_L1_error) + } + __pyx_t_16 = 0; + __pyx_v_closest_dists_float = ((PyArrayObject *)__pyx_t_1); + __pyx_t_1 = 0; + + /* "pykdtree/kdtree.pyx":212 + * if query_pts.dtype == np.float32 and self.data_pts.dtype == np.float32: + * closest_dists_float = np.empty(num_qpoints * k, dtype=np.float32) + * closest_dists = closest_dists_float # <<<<<<<<<<<<<< + * closest_dists_data_float = closest_dists_float.data + * query_array_float = np.ascontiguousarray(query_pts.ravel(), dtype=np.float32) + */ + __Pyx_INCREF(((PyObject *)__pyx_v_closest_dists_float)); + __pyx_v_closest_dists = ((PyObject *)__pyx_v_closest_dists_float); + + /* "pykdtree/kdtree.pyx":213 + * closest_dists_float = np.empty(num_qpoints * k, dtype=np.float32) + * closest_dists = closest_dists_float + * closest_dists_data_float = closest_dists_float.data # <<<<<<<<<<<<<< + * query_array_float = np.ascontiguousarray(query_pts.ravel(), dtype=np.float32) + * query_array_data_float = query_array_float.data + */ + __pyx_v_closest_dists_data_float = ((float *)__pyx_v_closest_dists_float->data); + + /* "pykdtree/kdtree.pyx":214 + * closest_dists = closest_dists_float + * closest_dists_data_float = closest_dists_float.data + * query_array_float = np.ascontiguousarray(query_pts.ravel(), dtype=np.float32) # <<<<<<<<<<<<<< + * query_array_data_float = query_array_float.data + * else: + */ + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_query_pts), __pyx_n_s_ravel); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_7 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { + __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_8); + if (likely(__pyx_t_7)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); + __Pyx_INCREF(__pyx_t_7); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_8, function); + } + } + if (__pyx_t_7) { + __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_7); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + } else { + __pyx_t_1 = __Pyx_PyObject_CallNoArg(__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 214, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_8 = PyTuple_New(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_1); + __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_7 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_float32); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_8, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 214, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (!(likely(((__pyx_t_4) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_4, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 214, __pyx_L1_error) + __pyx_t_17 = ((PyArrayObject *)__pyx_t_4); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_array_float.rcbuffer->pybuffer); + __pyx_t_12 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_query_array_float.rcbuffer->pybuffer, (PyObject*)__pyx_t_17, &__Pyx_TypeInfo_float, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_12 < 0)) { + PyErr_Fetch(&__pyx_t_13, &__pyx_t_14, &__pyx_t_15); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_query_array_float.rcbuffer->pybuffer, (PyObject*)__pyx_v_query_array_float, &__Pyx_TypeInfo_float, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_13); Py_XDECREF(__pyx_t_14); Py_XDECREF(__pyx_t_15); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_13, __pyx_t_14, __pyx_t_15); + } + __pyx_t_13 = __pyx_t_14 = __pyx_t_15 = 0; + } + __pyx_pybuffernd_query_array_float.diminfo[0].strides = __pyx_pybuffernd_query_array_float.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_query_array_float.diminfo[0].shape = __pyx_pybuffernd_query_array_float.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 214, __pyx_L1_error) + } + __pyx_t_17 = 0; + __pyx_v_query_array_float = ((PyArrayObject *)__pyx_t_4); + __pyx_t_4 = 0; + + /* "pykdtree/kdtree.pyx":215 + * closest_dists_data_float = closest_dists_float.data + * query_array_float = np.ascontiguousarray(query_pts.ravel(), dtype=np.float32) + * query_array_data_float = query_array_float.data # <<<<<<<<<<<<<< + * else: + * closest_dists_double = np.empty(num_qpoints * k, dtype=np.float64) + */ + __pyx_v_query_array_data_float = ((float *)__pyx_v_query_array_float->data); + + /* "pykdtree/kdtree.pyx":210 + * + * + * if query_pts.dtype == np.float32 and self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * closest_dists_float = np.empty(num_qpoints * k, dtype=np.float32) + * closest_dists = closest_dists_float + */ + goto __pyx_L13; + } + + /* "pykdtree/kdtree.pyx":217 + * query_array_data_float = query_array_float.data + * else: + * closest_dists_double = np.empty(num_qpoints * k, dtype=np.float64) # <<<<<<<<<<<<<< + * closest_dists = closest_dists_double + * closest_dists_data_double = closest_dists_double.data + */ + /*else*/ { + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_empty); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyInt_From_uint32_t(__pyx_v_num_qpoints); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_8 = PyNumber_Multiply(__pyx_t_4, __pyx_v_k); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_8); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_8); + __pyx_t_8 = 0; + __pyx_t_8 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float64); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if (PyDict_SetItem(__pyx_t_8, __pyx_n_s_dtype, __pyx_t_7) < 0) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_8); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 217, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + if (!(likely(((__pyx_t_7) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_7, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 217, __pyx_L1_error) + __pyx_t_18 = ((PyArrayObject *)__pyx_t_7); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer); + __pyx_t_12 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer, (PyObject*)__pyx_t_18, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_12 < 0)) { + PyErr_Fetch(&__pyx_t_15, &__pyx_t_14, &__pyx_t_13); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer, (PyObject*)__pyx_v_closest_dists_double, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_15); Py_XDECREF(__pyx_t_14); Py_XDECREF(__pyx_t_13); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_15, __pyx_t_14, __pyx_t_13); + } + __pyx_t_15 = __pyx_t_14 = __pyx_t_13 = 0; + } + __pyx_pybuffernd_closest_dists_double.diminfo[0].strides = __pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_closest_dists_double.diminfo[0].shape = __pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 217, __pyx_L1_error) + } + __pyx_t_18 = 0; + __pyx_v_closest_dists_double = ((PyArrayObject *)__pyx_t_7); + __pyx_t_7 = 0; + + /* "pykdtree/kdtree.pyx":218 + * else: + * closest_dists_double = np.empty(num_qpoints * k, dtype=np.float64) + * closest_dists = closest_dists_double # <<<<<<<<<<<<<< + * closest_dists_data_double = closest_dists_double.data + * query_array_double = np.ascontiguousarray(query_pts.ravel(), dtype=np.float64) + */ + __Pyx_INCREF(((PyObject *)__pyx_v_closest_dists_double)); + __pyx_v_closest_dists = ((PyObject *)__pyx_v_closest_dists_double); + + /* "pykdtree/kdtree.pyx":219 + * closest_dists_double = np.empty(num_qpoints * k, dtype=np.float64) + * closest_dists = closest_dists_double + * closest_dists_data_double = closest_dists_double.data # <<<<<<<<<<<<<< + * query_array_double = np.ascontiguousarray(query_pts.ravel(), dtype=np.float64) + * query_array_data_double = query_array_double.data + */ + __pyx_v_closest_dists_data_double = ((double *)__pyx_v_closest_dists_double->data); + + /* "pykdtree/kdtree.pyx":220 + * closest_dists = closest_dists_double + * closest_dists_data_double = closest_dists_double.data + * query_array_double = np.ascontiguousarray(query_pts.ravel(), dtype=np.float64) # <<<<<<<<<<<<<< + * query_array_data_double = query_array_double.data + * + */ + __pyx_t_7 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_query_pts), __pyx_n_s_ravel); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_1)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_1); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_4, function); + } + } + if (__pyx_t_1) { + __pyx_t_7 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + __pyx_t_7 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 220, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_7); + __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (PyDict_SetItem(__pyx_t_7, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_8, __pyx_t_4, __pyx_t_7); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 220, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 220, __pyx_L1_error) + __pyx_t_19 = ((PyArrayObject *)__pyx_t_5); + { + __Pyx_BufFmt_StackElem __pyx_stack[1]; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_array_double.rcbuffer->pybuffer); + __pyx_t_12 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_query_array_double.rcbuffer->pybuffer, (PyObject*)__pyx_t_19, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack); + if (unlikely(__pyx_t_12 < 0)) { + PyErr_Fetch(&__pyx_t_13, &__pyx_t_14, &__pyx_t_15); + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_query_array_double.rcbuffer->pybuffer, (PyObject*)__pyx_v_query_array_double, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { + Py_XDECREF(__pyx_t_13); Py_XDECREF(__pyx_t_14); Py_XDECREF(__pyx_t_15); + __Pyx_RaiseBufferFallbackError(); + } else { + PyErr_Restore(__pyx_t_13, __pyx_t_14, __pyx_t_15); + } + __pyx_t_13 = __pyx_t_14 = __pyx_t_15 = 0; + } + __pyx_pybuffernd_query_array_double.diminfo[0].strides = __pyx_pybuffernd_query_array_double.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_query_array_double.diminfo[0].shape = __pyx_pybuffernd_query_array_double.rcbuffer->pybuffer.shape[0]; + if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 220, __pyx_L1_error) + } + __pyx_t_19 = 0; + __pyx_v_query_array_double = ((PyArrayObject *)__pyx_t_5); + __pyx_t_5 = 0; + + /* "pykdtree/kdtree.pyx":221 + * closest_dists_data_double = closest_dists_double.data + * query_array_double = np.ascontiguousarray(query_pts.ravel(), dtype=np.float64) + * query_array_data_double = query_array_double.data # <<<<<<<<<<<<<< + * + * # Setup distance_upper_bound + */ + __pyx_v_query_array_data_double = ((double *)__pyx_v_query_array_double->data); + } + __pyx_L13:; + + /* "pykdtree/kdtree.pyx":226 + * cdef float dub_float + * cdef double dub_double + * if distance_upper_bound is None: # <<<<<<<<<<<<<< + * if self.data_pts.dtype == np.float32: + * dub_float = np.finfo(np.float32).max + */ + __pyx_t_10 = (__pyx_v_distance_upper_bound == Py_None); + __pyx_t_3 = (__pyx_t_10 != 0); + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":227 + * cdef double dub_double + * if distance_upper_bound is None: + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * dub_float = np.finfo(np.float32).max + * else: + */ + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self->data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 227, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_7 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 227, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_float32); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 227, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_7 = PyObject_RichCompare(__pyx_t_5, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_7); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 227, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 227, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":228 + * if distance_upper_bound is None: + * if self.data_pts.dtype == np.float32: + * dub_float = np.finfo(np.float32).max # <<<<<<<<<<<<<< + * else: + * dub_double = np.finfo(np.float64).max + */ + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_finfo); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float32); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { + __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_5); + if (likely(__pyx_t_4)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); + __Pyx_INCREF(__pyx_t_4); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_5, function); + } + } + if (!__pyx_t_4) { + __pyx_t_7 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_8); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_GOTREF(__pyx_t_7); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_5)) { + PyObject *__pyx_temp[2] = {__pyx_t_4, __pyx_t_8}; + __pyx_t_7 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { + PyObject *__pyx_temp[2] = {__pyx_t_4, __pyx_t_8}; + __pyx_t_7 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } else + #endif + { + __pyx_t_1 = PyTuple_New(1+1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_4); __pyx_t_4 = NULL; + __Pyx_GIVEREF(__pyx_t_8); + PyTuple_SET_ITEM(__pyx_t_1, 0+1, __pyx_t_8); + __pyx_t_8 = 0; + __pyx_t_7 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_1, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } + } + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_max); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_20 = __pyx_PyFloat_AsFloat(__pyx_t_5); if (unlikely((__pyx_t_20 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 228, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_dub_float = ((float)__pyx_t_20); + + /* "pykdtree/kdtree.pyx":227 + * cdef double dub_double + * if distance_upper_bound is None: + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * dub_float = np.finfo(np.float32).max + * else: + */ + goto __pyx_L17; + } + + /* "pykdtree/kdtree.pyx":230 + * dub_float = np.finfo(np.float32).max + * else: + * dub_double = np.finfo(np.float64).max # <<<<<<<<<<<<<< + * else: + * if self.data_pts.dtype == np.float32: + */ + /*else*/ { + __pyx_t_7 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_finfo); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_float64); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __pyx_t_7 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { + __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_1); + if (likely(__pyx_t_7)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); + __Pyx_INCREF(__pyx_t_7); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_1, function); + } + } + if (!__pyx_t_7) { + __pyx_t_5 = __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_8); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_GOTREF(__pyx_t_5); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_1)) { + PyObject *__pyx_temp[2] = {__pyx_t_7, __pyx_t_8}; + __pyx_t_5 = __Pyx_PyFunction_FastCall(__pyx_t_1, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_1)) { + PyObject *__pyx_temp[2] = {__pyx_t_7, __pyx_t_8}; + __pyx_t_5 = __Pyx_PyCFunction_FastCall(__pyx_t_1, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } else + #endif + { + __pyx_t_4 = PyTuple_New(1+1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_7); __pyx_t_7 = NULL; + __Pyx_GIVEREF(__pyx_t_8); + PyTuple_SET_ITEM(__pyx_t_4, 0+1, __pyx_t_8); + __pyx_t_8 = 0; + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + } + } + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_max); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_21 = __pyx_PyFloat_AsDouble(__pyx_t_1); if (unlikely((__pyx_t_21 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 230, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_dub_double = ((double)__pyx_t_21); + } + __pyx_L17:; + + /* "pykdtree/kdtree.pyx":226 + * cdef float dub_float + * cdef double dub_double + * if distance_upper_bound is None: # <<<<<<<<<<<<<< + * if self.data_pts.dtype == np.float32: + * dub_float = np.finfo(np.float32).max + */ + goto __pyx_L16; + } + + /* "pykdtree/kdtree.pyx":232 + * dub_double = np.finfo(np.float64).max + * else: + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * dub_float = (distance_upper_bound * distance_upper_bound) + * else: + */ + /*else*/ { + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self->data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 232, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 232, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float32); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 232, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_5 = PyObject_RichCompare(__pyx_t_1, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 232, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 232, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":233 + * else: + * if self.data_pts.dtype == np.float32: + * dub_float = (distance_upper_bound * distance_upper_bound) # <<<<<<<<<<<<<< + * else: + * dub_double = (distance_upper_bound * distance_upper_bound) + */ + __pyx_t_5 = PyNumber_Multiply(__pyx_v_distance_upper_bound, __pyx_v_distance_upper_bound); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 233, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_20 = __pyx_PyFloat_AsFloat(__pyx_t_5); if (unlikely((__pyx_t_20 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 233, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_dub_float = ((float)__pyx_t_20); + + /* "pykdtree/kdtree.pyx":232 + * dub_double = np.finfo(np.float64).max + * else: + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * dub_float = (distance_upper_bound * distance_upper_bound) + * else: + */ + goto __pyx_L18; + } + + /* "pykdtree/kdtree.pyx":235 + * dub_float = (distance_upper_bound * distance_upper_bound) + * else: + * dub_double = (distance_upper_bound * distance_upper_bound) # <<<<<<<<<<<<<< + * + * # Set epsilon + */ + /*else*/ { + __pyx_t_5 = PyNumber_Multiply(__pyx_v_distance_upper_bound, __pyx_v_distance_upper_bound); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 235, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_21 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_21 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 235, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_dub_double = ((double)__pyx_t_21); + } + __pyx_L18:; + } + __pyx_L16:; + + /* "pykdtree/kdtree.pyx":238 + * + * # Set epsilon + * cdef double epsilon_float = eps # <<<<<<<<<<<<<< + * cdef double epsilon_double = eps + * + */ + __pyx_t_20 = __pyx_PyFloat_AsFloat(__pyx_v_eps); if (unlikely((__pyx_t_20 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 238, __pyx_L1_error) + __pyx_v_epsilon_float = ((float)__pyx_t_20); + + /* "pykdtree/kdtree.pyx":239 + * # Set epsilon + * cdef double epsilon_float = eps + * cdef double epsilon_double = eps # <<<<<<<<<<<<<< + * + * # Release GIL and query tree + */ + __pyx_t_21 = __pyx_PyFloat_AsDouble(__pyx_v_eps); if (unlikely((__pyx_t_21 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 239, __pyx_L1_error) + __pyx_v_epsilon_double = ((double)__pyx_t_21); + + /* "pykdtree/kdtree.pyx":242 + * + * # Release GIL and query tree + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * with nogil: + * search_tree_float(self._kdtree_float, self._data_pts_data_float, + */ + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self->data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float32); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 242, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = PyObject_RichCompare(__pyx_t_5, __pyx_t_1, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 242, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 242, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":243 + * # Release GIL and query tree + * if self.data_pts.dtype == np.float32: + * with nogil: # <<<<<<<<<<<<<< + * search_tree_float(self._kdtree_float, self._data_pts_data_float, + * query_array_data_float, num_qpoints, num_n, dub_float, epsilon_float, + */ + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); + #endif + /*try:*/ { + + /* "pykdtree/kdtree.pyx":244 + * if self.data_pts.dtype == np.float32: + * with nogil: + * search_tree_float(self._kdtree_float, self._data_pts_data_float, # <<<<<<<<<<<<<< + * query_array_data_float, num_qpoints, num_n, dub_float, epsilon_float, + * query_mask_data, closest_idxs_data, closest_dists_data_float) + */ + search_tree_float(__pyx_v_self->_kdtree_float, __pyx_v_self->_data_pts_data_float, __pyx_v_query_array_data_float, __pyx_v_num_qpoints, __pyx_v_num_n, __pyx_v_dub_float, __pyx_v_epsilon_float, __pyx_v_query_mask_data, __pyx_v_closest_idxs_data, __pyx_v_closest_dists_data_float); + } + + /* "pykdtree/kdtree.pyx":243 + * # Release GIL and query tree + * if self.data_pts.dtype == np.float32: + * with nogil: # <<<<<<<<<<<<<< + * search_tree_float(self._kdtree_float, self._data_pts_data_float, + * query_array_data_float, num_qpoints, num_n, dub_float, epsilon_float, + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); + Py_BLOCK_THREADS + #endif + goto __pyx_L22; + } + __pyx_L22:; + } + } + + /* "pykdtree/kdtree.pyx":242 + * + * # Release GIL and query tree + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * with nogil: + * search_tree_float(self._kdtree_float, self._data_pts_data_float, + */ + goto __pyx_L19; + } + + /* "pykdtree/kdtree.pyx":249 + * + * else: + * with nogil: # <<<<<<<<<<<<<< + * search_tree_double(self._kdtree_double, self._data_pts_data_double, + * query_array_data_double, num_qpoints, num_n, dub_double, epsilon_double, + */ + /*else*/ { + { + #ifdef WITH_THREAD + PyThreadState *_save; + Py_UNBLOCK_THREADS + __Pyx_FastGIL_Remember(); + #endif + /*try:*/ { + + /* "pykdtree/kdtree.pyx":250 + * else: + * with nogil: + * search_tree_double(self._kdtree_double, self._data_pts_data_double, # <<<<<<<<<<<<<< + * query_array_data_double, num_qpoints, num_n, dub_double, epsilon_double, + * query_mask_data, closest_idxs_data, closest_dists_data_double) + */ + search_tree_double(__pyx_v_self->_kdtree_double, __pyx_v_self->_data_pts_data_double, __pyx_v_query_array_data_double, __pyx_v_num_qpoints, __pyx_v_num_n, __pyx_v_dub_double, __pyx_v_epsilon_double, __pyx_v_query_mask_data, __pyx_v_closest_idxs_data, __pyx_v_closest_dists_data_double); + } + + /* "pykdtree/kdtree.pyx":249 + * + * else: + * with nogil: # <<<<<<<<<<<<<< + * search_tree_double(self._kdtree_double, self._data_pts_data_double, + * query_array_data_double, num_qpoints, num_n, dub_double, epsilon_double, + */ + /*finally:*/ { + /*normal exit:*/{ + #ifdef WITH_THREAD + __Pyx_FastGIL_Forget(); + Py_BLOCK_THREADS + #endif + goto __pyx_L25; + } + __pyx_L25:; + } + } + } + __pyx_L19:; + + /* "pykdtree/kdtree.pyx":255 + * + * # Shape result + * if k > 1: # <<<<<<<<<<<<<< + * closest_dists_res = closest_dists.reshape(num_qpoints, k) + * closest_idxs_res = closest_idxs.reshape(num_qpoints, k) + */ + __pyx_t_4 = PyObject_RichCompare(__pyx_v_k, __pyx_int_1, Py_GT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 255, __pyx_L1_error) + __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 255, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":256 + * # Shape result + * if k > 1: + * closest_dists_res = closest_dists.reshape(num_qpoints, k) # <<<<<<<<<<<<<< + * closest_idxs_res = closest_idxs.reshape(num_qpoints, k) + * else: + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_closest_dists, __pyx_n_s_reshape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 256, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = __Pyx_PyInt_From_uint32_t(__pyx_v_num_qpoints); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 256, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_8 = NULL; + __pyx_t_12 = 0; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { + __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_1); + if (likely(__pyx_t_8)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); + __Pyx_INCREF(__pyx_t_8); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_1, function); + __pyx_t_12 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_1)) { + PyObject *__pyx_temp[3] = {__pyx_t_8, __pyx_t_5, __pyx_v_k}; + __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_1, __pyx_temp+1-__pyx_t_12, 2+__pyx_t_12); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 256, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_1)) { + PyObject *__pyx_temp[3] = {__pyx_t_8, __pyx_t_5, __pyx_v_k}; + __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_1, __pyx_temp+1-__pyx_t_12, 2+__pyx_t_12); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 256, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + } else + #endif + { + __pyx_t_7 = PyTuple_New(2+__pyx_t_12); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 256, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + if (__pyx_t_8) { + __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_8); __pyx_t_8 = NULL; + } + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_7, 0+__pyx_t_12, __pyx_t_5); + __Pyx_INCREF(__pyx_v_k); + __Pyx_GIVEREF(__pyx_v_k); + PyTuple_SET_ITEM(__pyx_t_7, 1+__pyx_t_12, __pyx_v_k); + __pyx_t_5 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_7, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 256, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + } + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_closest_dists_res = __pyx_t_4; + __pyx_t_4 = 0; + + /* "pykdtree/kdtree.pyx":257 + * if k > 1: + * closest_dists_res = closest_dists.reshape(num_qpoints, k) + * closest_idxs_res = closest_idxs.reshape(num_qpoints, k) # <<<<<<<<<<<<<< + * else: + * closest_dists_res = closest_dists + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_closest_idxs), __pyx_n_s_reshape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 257, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_7 = __Pyx_PyInt_From_uint32_t(__pyx_v_num_qpoints); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 257, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_5 = NULL; + __pyx_t_12 = 0; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_1, function); + __pyx_t_12 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_1)) { + PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_7, __pyx_v_k}; + __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_1, __pyx_temp+1-__pyx_t_12, 2+__pyx_t_12); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 257, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_1)) { + PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_7, __pyx_v_k}; + __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_1, __pyx_temp+1-__pyx_t_12, 2+__pyx_t_12); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 257, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + } else + #endif + { + __pyx_t_8 = PyTuple_New(2+__pyx_t_12); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 257, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + if (__pyx_t_5) { + __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; + } + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_12, __pyx_t_7); + __Pyx_INCREF(__pyx_v_k); + __Pyx_GIVEREF(__pyx_v_k); + PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_12, __pyx_v_k); + __pyx_t_7 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 257, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_closest_idxs_res = __pyx_t_4; + __pyx_t_4 = 0; + + /* "pykdtree/kdtree.pyx":255 + * + * # Shape result + * if k > 1: # <<<<<<<<<<<<<< + * closest_dists_res = closest_dists.reshape(num_qpoints, k) + * closest_idxs_res = closest_idxs.reshape(num_qpoints, k) + */ + goto __pyx_L26; + } + + /* "pykdtree/kdtree.pyx":259 + * closest_idxs_res = closest_idxs.reshape(num_qpoints, k) + * else: + * closest_dists_res = closest_dists # <<<<<<<<<<<<<< + * closest_idxs_res = closest_idxs + * + */ + /*else*/ { + __Pyx_INCREF(__pyx_v_closest_dists); + __pyx_v_closest_dists_res = __pyx_v_closest_dists; + + /* "pykdtree/kdtree.pyx":260 + * else: + * closest_dists_res = closest_dists + * closest_idxs_res = closest_idxs # <<<<<<<<<<<<<< + * + * if distance_upper_bound is not None: # Mark out of bounds results + */ + __Pyx_INCREF(((PyObject *)__pyx_v_closest_idxs)); + __pyx_v_closest_idxs_res = ((PyObject *)__pyx_v_closest_idxs); + } + __pyx_L26:; + + /* "pykdtree/kdtree.pyx":262 + * closest_idxs_res = closest_idxs + * + * if distance_upper_bound is not None: # Mark out of bounds results # <<<<<<<<<<<<<< + * if self.data_pts.dtype == np.float32: + * idx_out = (closest_dists_res >= dub_float) + */ + __pyx_t_3 = (__pyx_v_distance_upper_bound != Py_None); + __pyx_t_10 = (__pyx_t_3 != 0); + if (__pyx_t_10) { + + /* "pykdtree/kdtree.pyx":263 + * + * if distance_upper_bound is not None: # Mark out of bounds results + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * idx_out = (closest_dists_res >= dub_float) + * else: + */ + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self->data_pts), __pyx_n_s_dtype); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 263, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 263, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float32); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 263, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 263, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_10 < 0)) __PYX_ERR(0, 263, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (__pyx_t_10) { + + /* "pykdtree/kdtree.pyx":264 + * if distance_upper_bound is not None: # Mark out of bounds results + * if self.data_pts.dtype == np.float32: + * idx_out = (closest_dists_res >= dub_float) # <<<<<<<<<<<<<< + * else: + * idx_out = (closest_dists_res >= dub_double) + */ + __pyx_t_1 = PyFloat_FromDouble(__pyx_v_dub_float); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 264, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_8 = PyObject_RichCompare(__pyx_v_closest_dists_res, __pyx_t_1, Py_GE); __Pyx_XGOTREF(__pyx_t_8); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 264, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_v_idx_out = __pyx_t_8; + __pyx_t_8 = 0; + + /* "pykdtree/kdtree.pyx":263 + * + * if distance_upper_bound is not None: # Mark out of bounds results + * if self.data_pts.dtype == np.float32: # <<<<<<<<<<<<<< + * idx_out = (closest_dists_res >= dub_float) + * else: + */ + goto __pyx_L28; + } + + /* "pykdtree/kdtree.pyx":266 + * idx_out = (closest_dists_res >= dub_float) + * else: + * idx_out = (closest_dists_res >= dub_double) # <<<<<<<<<<<<<< + * + * closest_dists_res[idx_out] = np.Inf + */ + /*else*/ { + __pyx_t_8 = PyFloat_FromDouble(__pyx_v_dub_double); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 266, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __pyx_t_1 = PyObject_RichCompare(__pyx_v_closest_dists_res, __pyx_t_8, Py_GE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 266, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __pyx_v_idx_out = __pyx_t_1; + __pyx_t_1 = 0; + } + __pyx_L28:; + + /* "pykdtree/kdtree.pyx":268 + * idx_out = (closest_dists_res >= dub_double) + * + * closest_dists_res[idx_out] = np.Inf # <<<<<<<<<<<<<< + * closest_idxs_res[idx_out] = self.n + * + */ + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 268, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_Inf); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 268, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + if (unlikely(PyObject_SetItem(__pyx_v_closest_dists_res, __pyx_v_idx_out, __pyx_t_8) < 0)) __PYX_ERR(0, 268, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + + /* "pykdtree/kdtree.pyx":269 + * + * closest_dists_res[idx_out] = np.Inf + * closest_idxs_res[idx_out] = self.n # <<<<<<<<<<<<<< + * + * if not sqr_dists: # Return actual cartesian distances + */ + __pyx_t_8 = __Pyx_PyInt_From_uint32_t(__pyx_v_self->n); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 269, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + if (unlikely(PyObject_SetItem(__pyx_v_closest_idxs_res, __pyx_v_idx_out, __pyx_t_8) < 0)) __PYX_ERR(0, 269, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + + /* "pykdtree/kdtree.pyx":262 + * closest_idxs_res = closest_idxs + * + * if distance_upper_bound is not None: # Mark out of bounds results # <<<<<<<<<<<<<< + * if self.data_pts.dtype == np.float32: + * idx_out = (closest_dists_res >= dub_float) + */ + } + + /* "pykdtree/kdtree.pyx":271 + * closest_idxs_res[idx_out] = self.n + * + * if not sqr_dists: # Return actual cartesian distances # <<<<<<<<<<<<<< + * closest_dists_res = np.sqrt(closest_dists_res) + * + */ + __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_v_sqr_dists); if (unlikely(__pyx_t_10 < 0)) __PYX_ERR(0, 271, __pyx_L1_error) + __pyx_t_3 = ((!__pyx_t_10) != 0); + if (__pyx_t_3) { + + /* "pykdtree/kdtree.pyx":272 + * + * if not sqr_dists: # Return actual cartesian distances + * closest_dists_res = np.sqrt(closest_dists_res) # <<<<<<<<<<<<<< + * + * return closest_dists_res, closest_idxs_res + */ + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_1)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_1); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_4, function); + } + } + if (!__pyx_t_1) { + __pyx_t_8 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_closest_dists_res); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + } else { + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_4)) { + PyObject *__pyx_temp[2] = {__pyx_t_1, __pyx_v_closest_dists_res}; + __pyx_t_8 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_GOTREF(__pyx_t_8); + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { + PyObject *__pyx_temp[2] = {__pyx_t_1, __pyx_v_closest_dists_res}; + __pyx_t_8 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-1, 1+1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_GOTREF(__pyx_t_8); + } else + #endif + { + __pyx_t_7 = PyTuple_New(1+1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_1); __pyx_t_1 = NULL; + __Pyx_INCREF(__pyx_v_closest_dists_res); + __Pyx_GIVEREF(__pyx_v_closest_dists_res); + PyTuple_SET_ITEM(__pyx_t_7, 0+1, __pyx_v_closest_dists_res); + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_7, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + } + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF_SET(__pyx_v_closest_dists_res, __pyx_t_8); + __pyx_t_8 = 0; + + /* "pykdtree/kdtree.pyx":271 + * closest_idxs_res[idx_out] = self.n + * + * if not sqr_dists: # Return actual cartesian distances # <<<<<<<<<<<<<< + * closest_dists_res = np.sqrt(closest_dists_res) + * + */ + } + + /* "pykdtree/kdtree.pyx":274 + * closest_dists_res = np.sqrt(closest_dists_res) + * + * return closest_dists_res, closest_idxs_res # <<<<<<<<<<<<<< + * + * def __dealloc__(KDTree self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_8 = PyTuple_New(2); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 274, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_INCREF(__pyx_v_closest_dists_res); + __Pyx_GIVEREF(__pyx_v_closest_dists_res); + PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_closest_dists_res); + __Pyx_INCREF(__pyx_v_closest_idxs_res); + __Pyx_GIVEREF(__pyx_v_closest_idxs_res); + PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_v_closest_idxs_res); + __pyx_r = __pyx_t_8; + __pyx_t_8 = 0; + goto __pyx_L0; + + /* "pykdtree/kdtree.pyx":132 + * + * + * def query(KDTree self, np.ndarray query_pts not None, k=1, eps=0, # <<<<<<<<<<<<<< + * distance_upper_bound=None, sqr_dists=False, mask=None): + * """Query the kd-tree for nearest neighbors + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_idxs.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_array_double.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_array_float.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_mask.rcbuffer->pybuffer); + __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.query", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + goto __pyx_L2; + __pyx_L0:; + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_dists_double.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_dists_float.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_closest_idxs.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_array_double.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_array_float.rcbuffer->pybuffer); + __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_query_mask.rcbuffer->pybuffer); + __pyx_L2:; + __Pyx_XDECREF((PyObject *)__pyx_v_closest_idxs); + __Pyx_XDECREF((PyObject *)__pyx_v_closest_dists_float); + __Pyx_XDECREF((PyObject *)__pyx_v_closest_dists_double); + __Pyx_XDECREF((PyObject *)__pyx_v_query_array_float); + __Pyx_XDECREF((PyObject *)__pyx_v_query_array_double); + __Pyx_XDECREF((PyObject *)__pyx_v_query_mask); + __Pyx_XDECREF(__pyx_v_closest_dists); + __Pyx_XDECREF(__pyx_v_closest_dists_res); + __Pyx_XDECREF(__pyx_v_closest_idxs_res); + __Pyx_XDECREF(__pyx_v_idx_out); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":276 + * return closest_dists_res, closest_idxs_res + * + * def __dealloc__(KDTree self): # <<<<<<<<<<<<<< + * if self._kdtree_float != NULL: + * delete_tree_float(self._kdtree_float) + */ + +/* Python wrapper */ +static void __pyx_pw_8pykdtree_6kdtree_6KDTree_7__dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_pw_8pykdtree_6kdtree_6KDTree_7__dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_pf_8pykdtree_6kdtree_6KDTree_6__dealloc__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_pf_8pykdtree_6kdtree_6KDTree_6__dealloc__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "pykdtree/kdtree.pyx":277 + * + * def __dealloc__(KDTree self): + * if self._kdtree_float != NULL: # <<<<<<<<<<<<<< + * delete_tree_float(self._kdtree_float) + * elif self._kdtree_double != NULL: + */ + __pyx_t_1 = ((__pyx_v_self->_kdtree_float != NULL) != 0); + if (__pyx_t_1) { + + /* "pykdtree/kdtree.pyx":278 + * def __dealloc__(KDTree self): + * if self._kdtree_float != NULL: + * delete_tree_float(self._kdtree_float) # <<<<<<<<<<<<<< + * elif self._kdtree_double != NULL: + * delete_tree_double(self._kdtree_double) + */ + delete_tree_float(__pyx_v_self->_kdtree_float); + + /* "pykdtree/kdtree.pyx":277 + * + * def __dealloc__(KDTree self): + * if self._kdtree_float != NULL: # <<<<<<<<<<<<<< + * delete_tree_float(self._kdtree_float) + * elif self._kdtree_double != NULL: + */ + goto __pyx_L3; + } + + /* "pykdtree/kdtree.pyx":279 + * if self._kdtree_float != NULL: + * delete_tree_float(self._kdtree_float) + * elif self._kdtree_double != NULL: # <<<<<<<<<<<<<< + * delete_tree_double(self._kdtree_double) + */ + __pyx_t_1 = ((__pyx_v_self->_kdtree_double != NULL) != 0); + if (__pyx_t_1) { + + /* "pykdtree/kdtree.pyx":280 + * delete_tree_float(self._kdtree_float) + * elif self._kdtree_double != NULL: + * delete_tree_double(self._kdtree_double) # <<<<<<<<<<<<<< + */ + delete_tree_double(__pyx_v_self->_kdtree_double); + + /* "pykdtree/kdtree.pyx":279 + * if self._kdtree_float != NULL: + * delete_tree_float(self._kdtree_float) + * elif self._kdtree_double != NULL: # <<<<<<<<<<<<<< + * delete_tree_double(self._kdtree_double) + */ + } + __pyx_L3:; + + /* "pykdtree/kdtree.pyx":276 + * return closest_dists_res, closest_idxs_res + * + * def __dealloc__(KDTree self): # <<<<<<<<<<<<<< + * if self._kdtree_float != NULL: + * delete_tree_float(self._kdtree_float) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "pykdtree/kdtree.pyx":79 + * cdef tree_float *_kdtree_float + * cdef tree_double *_kdtree_double + * cdef readonly np.ndarray data_pts # <<<<<<<<<<<<<< + * cdef readonly np.ndarray data + * cdef float *_data_pts_data_float + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_8data_pts_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_8data_pts_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_8data_pts___get__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_8data_pts___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__", 0); + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_self->data_pts)); + __pyx_r = ((PyObject *)__pyx_v_self->data_pts); + goto __pyx_L0; + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":80 + * cdef tree_double *_kdtree_double + * cdef readonly np.ndarray data_pts + * cdef readonly np.ndarray data # <<<<<<<<<<<<<< + * cdef float *_data_pts_data_float + * cdef double *_data_pts_data_double + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_4data_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_4data_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_4data___get__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_4data___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__", 0); + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_self->data)); + __pyx_r = ((PyObject *)__pyx_v_self->data); + goto __pyx_L0; + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":83 + * cdef float *_data_pts_data_float + * cdef double *_data_pts_data_double + * cdef readonly uint32_t n # <<<<<<<<<<<<<< + * cdef readonly int8_t ndim + * cdef readonly uint32_t leafsize + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_1n_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_1n_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_1n___get__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_1n___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_uint32_t(__pyx_v_self->n); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 83, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.n.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":84 + * cdef double *_data_pts_data_double + * cdef readonly uint32_t n + * cdef readonly int8_t ndim # <<<<<<<<<<<<<< + * cdef readonly uint32_t leafsize + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_4ndim_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_4ndim_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_4ndim___get__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_4ndim___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_int8_t(__pyx_v_self->ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 84, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "pykdtree/kdtree.pyx":85 + * cdef readonly uint32_t n + * cdef readonly int8_t ndim + * cdef readonly uint32_t leafsize # <<<<<<<<<<<<<< + * + * def __cinit__(KDTree self): + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_8leafsize_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_8leafsize_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_8leafsize___get__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_8leafsize___get__(struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_uint32_t(__pyx_v_self->leafsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 85, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.leafsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_9__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_9__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_8__reduce_cython__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_8__reduce_cython__(CYTHON_UNUSED struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 2, __pyx_L1_error) + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_11__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw_8pykdtree_6kdtree_6KDTree_11__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf_8pykdtree_6kdtree_6KDTree_10__setstate_cython__(((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_8pykdtree_6kdtree_6KDTree_10__setstate_cython__(CYTHON_UNUSED struct __pyx_obj_8pykdtree_6kdtree_KDTree *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(1, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("pykdtree.kdtree.KDTree.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":214 + * # experimental exception made for __getbuffer__ and __releasebuffer__ + * # -- the details of this may change. + * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< + * # This implementation of getbuffer is geared towards Cython + * # requirements, and does not yet fullfill the PEP. + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_v_copy_shape; + int __pyx_v_i; + int __pyx_v_ndim; + int __pyx_v_endian_detector; + int __pyx_v_little_endian; + int __pyx_v_t; + char *__pyx_v_f; + PyArray_Descr *__pyx_v_descr = 0; + int __pyx_v_offset; + int __pyx_v_hasfields; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + int __pyx_t_5; + PyObject *__pyx_t_6 = NULL; + char *__pyx_t_7; + __Pyx_RefNannySetupContext("__getbuffer__", 0); + if (__pyx_v_info != NULL) { + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":220 + * # of flags + * + * if info == NULL: return # <<<<<<<<<<<<<< + * + * cdef int copy_shape, i, ndim + */ + __pyx_t_1 = ((__pyx_v_info == NULL) != 0); + if (__pyx_t_1) { + __pyx_r = 0; + goto __pyx_L0; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":223 + * + * cdef int copy_shape, i, ndim + * cdef int endian_detector = 1 # <<<<<<<<<<<<<< + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * + */ + __pyx_v_endian_detector = 1; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":224 + * cdef int copy_shape, i, ndim + * cdef int endian_detector = 1 + * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< + * + * ndim = PyArray_NDIM(self) + */ + __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":226 + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * + * ndim = PyArray_NDIM(self) # <<<<<<<<<<<<<< + * + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + __pyx_v_ndim = PyArray_NDIM(__pyx_v_self); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":228 + * ndim = PyArray_NDIM(self) + * + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * copy_shape = 1 + * else: + */ + __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":229 + * + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * copy_shape = 1 # <<<<<<<<<<<<<< + * else: + * copy_shape = 0 + */ + __pyx_v_copy_shape = 1; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":228 + * ndim = PyArray_NDIM(self) + * + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * copy_shape = 1 + * else: + */ + goto __pyx_L4; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":231 + * copy_shape = 1 + * else: + * copy_shape = 0 # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + */ + /*else*/ { + __pyx_v_copy_shape = 0; + } + __pyx_L4:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":233 + * copy_shape = 0 + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + __pyx_t_2 = (((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L6_bool_binop_done; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":234 + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): # <<<<<<<<<<<<<< + * raise ValueError(u"ndarray is not C contiguous") + * + */ + __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_C_CONTIGUOUS) != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L6_bool_binop_done:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":233 + * copy_shape = 0 + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":235 + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 235, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 235, __pyx_L1_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":233 + * copy_shape = 0 + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":237 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + __pyx_t_2 = (((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L9_bool_binop_done; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":238 + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): # <<<<<<<<<<<<<< + * raise ValueError(u"ndarray is not Fortran contiguous") + * + */ + __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_F_CONTIGUOUS) != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L9_bool_binop_done:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":237 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":239 + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< + * + * info.buf = PyArray_DATA(self) + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 239, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 239, __pyx_L1_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":237 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":241 + * raise ValueError(u"ndarray is not Fortran contiguous") + * + * info.buf = PyArray_DATA(self) # <<<<<<<<<<<<<< + * info.ndim = ndim + * if copy_shape: + */ + __pyx_v_info->buf = PyArray_DATA(__pyx_v_self); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":242 + * + * info.buf = PyArray_DATA(self) + * info.ndim = ndim # <<<<<<<<<<<<<< + * if copy_shape: + * # Allocate new buffer for strides and shape info. + */ + __pyx_v_info->ndim = __pyx_v_ndim; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":243 + * info.buf = PyArray_DATA(self) + * info.ndim = ndim + * if copy_shape: # <<<<<<<<<<<<<< + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + */ + __pyx_t_1 = (__pyx_v_copy_shape != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":246 + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) # <<<<<<<<<<<<<< + * info.shape = info.strides + ndim + * for i in range(ndim): + */ + __pyx_v_info->strides = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * 2) * ((size_t)__pyx_v_ndim)))); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":247 + * # This is allocated as one block, strides first. + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) + * info.shape = info.strides + ndim # <<<<<<<<<<<<<< + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] + */ + __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":248 + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) + * info.shape = info.strides + ndim + * for i in range(ndim): # <<<<<<<<<<<<<< + * info.strides[i] = PyArray_STRIDES(self)[i] + * info.shape[i] = PyArray_DIMS(self)[i] + */ + __pyx_t_4 = __pyx_v_ndim; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":249 + * info.shape = info.strides + ndim + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] # <<<<<<<<<<<<<< + * info.shape[i] = PyArray_DIMS(self)[i] + * else: + */ + (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":250 + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] + * info.shape[i] = PyArray_DIMS(self)[i] # <<<<<<<<<<<<<< + * else: + * info.strides = PyArray_STRIDES(self) + */ + (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]); + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":243 + * info.buf = PyArray_DATA(self) + * info.ndim = ndim + * if copy_shape: # <<<<<<<<<<<<<< + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + */ + goto __pyx_L11; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":252 + * info.shape[i] = PyArray_DIMS(self)[i] + * else: + * info.strides = PyArray_STRIDES(self) # <<<<<<<<<<<<<< + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL + */ + /*else*/ { + __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self)); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":253 + * else: + * info.strides = PyArray_STRIDES(self) + * info.shape = PyArray_DIMS(self) # <<<<<<<<<<<<<< + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) + */ + __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self)); + } + __pyx_L11:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":254 + * info.strides = PyArray_STRIDES(self) + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * info.itemsize = PyArray_ITEMSIZE(self) + * info.readonly = not PyArray_ISWRITEABLE(self) + */ + __pyx_v_info->suboffsets = NULL; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":255 + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) # <<<<<<<<<<<<<< + * info.readonly = not PyArray_ISWRITEABLE(self) + * + */ + __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":256 + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) + * info.readonly = not PyArray_ISWRITEABLE(self) # <<<<<<<<<<<<<< + * + * cdef int t + */ + __pyx_v_info->readonly = (!(PyArray_ISWRITEABLE(__pyx_v_self) != 0)); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":259 + * + * cdef int t + * cdef char* f = NULL # <<<<<<<<<<<<<< + * cdef dtype descr = self.descr + * cdef int offset + */ + __pyx_v_f = NULL; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":260 + * cdef int t + * cdef char* f = NULL + * cdef dtype descr = self.descr # <<<<<<<<<<<<<< + * cdef int offset + * + */ + __pyx_t_3 = ((PyObject *)__pyx_v_self->descr); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_descr = ((PyArray_Descr *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":263 + * cdef int offset + * + * cdef bint hasfields = PyDataType_HASFIELDS(descr) # <<<<<<<<<<<<<< + * + * if not hasfields and not copy_shape: + */ + __pyx_v_hasfields = PyDataType_HASFIELDS(__pyx_v_descr); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":265 + * cdef bint hasfields = PyDataType_HASFIELDS(descr) + * + * if not hasfields and not copy_shape: # <<<<<<<<<<<<<< + * # do not call releasebuffer + * info.obj = None + */ + __pyx_t_2 = ((!(__pyx_v_hasfields != 0)) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L15_bool_binop_done; + } + __pyx_t_2 = ((!(__pyx_v_copy_shape != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L15_bool_binop_done:; + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":267 + * if not hasfields and not copy_shape: + * # do not call releasebuffer + * info.obj = None # <<<<<<<<<<<<<< + * else: + * # need to call releasebuffer + */ + __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(Py_None); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = Py_None; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":265 + * cdef bint hasfields = PyDataType_HASFIELDS(descr) + * + * if not hasfields and not copy_shape: # <<<<<<<<<<<<<< + * # do not call releasebuffer + * info.obj = None + */ + goto __pyx_L14; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * else: + * # need to call releasebuffer + * info.obj = self # <<<<<<<<<<<<<< + * + * if not hasfields: + */ + /*else*/ { + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + } + __pyx_L14:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":272 + * info.obj = self + * + * if not hasfields: # <<<<<<<<<<<<<< + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + */ + __pyx_t_1 = ((!(__pyx_v_hasfields != 0)) != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":273 + * + * if not hasfields: + * t = descr.type_num # <<<<<<<<<<<<<< + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + */ + __pyx_t_4 = __pyx_v_descr->type_num; + __pyx_v_t = __pyx_t_4; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * if not hasfields: + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + __pyx_t_2 = ((__pyx_v_descr->byteorder == '>') != 0); + if (!__pyx_t_2) { + goto __pyx_L20_next_or; + } else { + } + __pyx_t_2 = (__pyx_v_little_endian != 0); + if (!__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L19_bool_binop_done; + } + __pyx_L20_next_or:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":275 + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" + */ + __pyx_t_2 = ((__pyx_v_descr->byteorder == '<') != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L19_bool_binop_done; + } + __pyx_t_2 = ((!(__pyx_v_little_endian != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L19_bool_binop_done:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * if not hasfields: + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":276 + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 276, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 276, __pyx_L1_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * if not hasfields: + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":277 + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" # <<<<<<<<<<<<<< + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" + */ + switch (__pyx_v_t) { + case NPY_BYTE: + __pyx_v_f = ((char *)"b"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":278 + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" # <<<<<<<<<<<<<< + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" + */ + case NPY_UBYTE: + __pyx_v_f = ((char *)"B"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":279 + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" # <<<<<<<<<<<<<< + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" + */ + case NPY_SHORT: + __pyx_v_f = ((char *)"h"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":280 + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" # <<<<<<<<<<<<<< + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" + */ + case NPY_USHORT: + __pyx_v_f = ((char *)"H"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":281 + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" # <<<<<<<<<<<<<< + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" + */ + case NPY_INT: + __pyx_v_f = ((char *)"i"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":282 + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" # <<<<<<<<<<<<<< + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" + */ + case NPY_UINT: + __pyx_v_f = ((char *)"I"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":283 + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" # <<<<<<<<<<<<<< + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" + */ + case NPY_LONG: + __pyx_v_f = ((char *)"l"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":284 + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" # <<<<<<<<<<<<<< + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" + */ + case NPY_ULONG: + __pyx_v_f = ((char *)"L"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":285 + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" # <<<<<<<<<<<<<< + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" + */ + case NPY_LONGLONG: + __pyx_v_f = ((char *)"q"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":286 + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" # <<<<<<<<<<<<<< + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" + */ + case NPY_ULONGLONG: + __pyx_v_f = ((char *)"Q"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":287 + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" # <<<<<<<<<<<<<< + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" + */ + case NPY_FLOAT: + __pyx_v_f = ((char *)"f"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":288 + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" # <<<<<<<<<<<<<< + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" + */ + case NPY_DOUBLE: + __pyx_v_f = ((char *)"d"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":289 + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" # <<<<<<<<<<<<<< + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" + */ + case NPY_LONGDOUBLE: + __pyx_v_f = ((char *)"g"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":290 + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" # <<<<<<<<<<<<<< + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" + */ + case NPY_CFLOAT: + __pyx_v_f = ((char *)"Zf"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":291 + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" # <<<<<<<<<<<<<< + * elif t == NPY_CLONGDOUBLE: f = "Zg" + * elif t == NPY_OBJECT: f = "O" + */ + case NPY_CDOUBLE: + __pyx_v_f = ((char *)"Zd"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":292 + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" # <<<<<<<<<<<<<< + * elif t == NPY_OBJECT: f = "O" + * else: + */ + case NPY_CLONGDOUBLE: + __pyx_v_f = ((char *)"Zg"); + break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":293 + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" + * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<< + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + */ + case NPY_OBJECT: + __pyx_v_f = ((char *)"O"); + break; + default: + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":295 + * elif t == NPY_OBJECT: f = "O" + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< + * info.format = f + * return + */ + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 295, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_6 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_t_3); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 295, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 295, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); + __pyx_t_6 = 0; + __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_3, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 295, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_6, 0, 0, 0); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __PYX_ERR(2, 295, __pyx_L1_error) + break; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":296 + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * info.format = f # <<<<<<<<<<<<<< + * return + * else: + */ + __pyx_v_info->format = __pyx_v_f; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":297 + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * info.format = f + * return # <<<<<<<<<<<<<< + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":272 + * info.obj = self + * + * if not hasfields: # <<<<<<<<<<<<<< + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":299 + * return + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) # <<<<<<<<<<<<<< + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 + */ + /*else*/ { + __pyx_v_info->format = ((char *)PyObject_Malloc(0xFF)); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":300 + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) + * info.format[0] = c'^' # Native data types, manual alignment # <<<<<<<<<<<<<< + * offset = 0 + * f = _util_dtypestring(descr, info.format + 1, + */ + (__pyx_v_info->format[0]) = '^'; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":301 + * info.format = PyObject_Malloc(_buffer_format_string_len) + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 # <<<<<<<<<<<<<< + * f = _util_dtypestring(descr, info.format + 1, + * info.format + _buffer_format_string_len, + */ + __pyx_v_offset = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":302 + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 + * f = _util_dtypestring(descr, info.format + 1, # <<<<<<<<<<<<<< + * info.format + _buffer_format_string_len, + * &offset) + */ + __pyx_t_7 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 0xFF), (&__pyx_v_offset)); if (unlikely(__pyx_t_7 == ((char *)NULL))) __PYX_ERR(2, 302, __pyx_L1_error) + __pyx_v_f = __pyx_t_7; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":305 + * info.format + _buffer_format_string_len, + * &offset) + * f[0] = c'\0' # Terminate format string # <<<<<<<<<<<<<< + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + */ + (__pyx_v_f[0]) = '\x00'; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":214 + * # experimental exception made for __getbuffer__ and __releasebuffer__ + * # -- the details of this may change. + * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< + * # This implementation of getbuffer is geared towards Cython + * # requirements, and does not yet fullfill the PEP. + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(Py_None); + __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL; + } + __pyx_L2:; + __Pyx_XDECREF((PyObject *)__pyx_v_descr); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":307 + * f[0] = c'\0' # Terminate format string + * + * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + */ + +/* Python wrapper */ +static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/ +static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0); + __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) { + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__releasebuffer__", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":308 + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + __pyx_t_1 = (PyArray_HASFIELDS(__pyx_v_self) != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":309 + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) # <<<<<<<<<<<<<< + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * PyObject_Free(info.strides) + */ + PyObject_Free(__pyx_v_info->format); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":308 + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":310 + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * PyObject_Free(info.strides) + * # info.shape was stored after info.strides in the same block + */ + __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":311 + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * PyObject_Free(info.strides) # <<<<<<<<<<<<<< + * # info.shape was stored after info.strides in the same block + * + */ + PyObject_Free(__pyx_v_info->strides); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":310 + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * PyObject_Free(info.strides) + * # info.shape was stored after info.strides in the same block + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":307 + * f[0] = c'\0' # Terminate format string + * + * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":788 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":789 + * + * cdef inline object PyArray_MultiIterNew1(a): + * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew2(a, b): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 789, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":788 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":791 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":792 + * + * cdef inline object PyArray_MultiIterNew2(a, b): + * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 792, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":791 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":794 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":795 + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 795, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":794 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":797 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":798 + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 798, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":797 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":800 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":801 + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 801, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":800 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":803 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":804 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":805 + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape # <<<<<<<<<<<<<< + * else: + * return () + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); + __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":804 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":807 + * return d.subarray.shape + * else: + * return () # <<<<<<<<<<<<<< + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_empty_tuple); + __pyx_r = __pyx_empty_tuple; + goto __pyx_L0; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":803 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":809 + * return () + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< + * # Recursive utility function used in __getbuffer__ to get format + * # string. The new location in the format string is returned. + */ + +static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx_v_descr, char *__pyx_v_f, char *__pyx_v_end, int *__pyx_v_offset) { + PyArray_Descr *__pyx_v_child = 0; + int __pyx_v_endian_detector; + int __pyx_v_little_endian; + PyObject *__pyx_v_fields = 0; + PyObject *__pyx_v_childname = NULL; + PyObject *__pyx_v_new_offset = NULL; + PyObject *__pyx_v_t = NULL; + char *__pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + int __pyx_t_5; + int __pyx_t_6; + int __pyx_t_7; + long __pyx_t_8; + char *__pyx_t_9; + __Pyx_RefNannySetupContext("_util_dtypestring", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":814 + * + * cdef dtype child + * cdef int endian_detector = 1 # <<<<<<<<<<<<<< + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * cdef tuple fields + */ + __pyx_v_endian_detector = 1; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":815 + * cdef dtype child + * cdef int endian_detector = 1 + * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< + * cdef tuple fields + * + */ + __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":818 + * cdef tuple fields + * + * for childname in descr.names: # <<<<<<<<<<<<<< + * fields = descr.fields[childname] + * child, new_offset = fields + */ + if (unlikely(__pyx_v_descr->names == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); + __PYX_ERR(2, 818, __pyx_L1_error) + } + __pyx_t_1 = __pyx_v_descr->names; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; + for (;;) { + if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(2, 818, __pyx_L1_error) + #else + __pyx_t_3 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 818, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_XDECREF_SET(__pyx_v_childname, __pyx_t_3); + __pyx_t_3 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":819 + * + * for childname in descr.names: + * fields = descr.fields[childname] # <<<<<<<<<<<<<< + * child, new_offset = fields + * + */ + if (unlikely(__pyx_v_descr->fields == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(2, 819, __pyx_L1_error) + } + __pyx_t_3 = __Pyx_PyDict_GetItem(__pyx_v_descr->fields, __pyx_v_childname); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 819, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(PyTuple_CheckExact(__pyx_t_3))||((__pyx_t_3) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_t_3)->tp_name), 0))) __PYX_ERR(2, 819, __pyx_L1_error) + __Pyx_XDECREF_SET(__pyx_v_fields, ((PyObject*)__pyx_t_3)); + __pyx_t_3 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":820 + * for childname in descr.names: + * fields = descr.fields[childname] + * child, new_offset = fields # <<<<<<<<<<<<<< + * + * if (end - f) - (new_offset - offset[0]) < 15: + */ + if (likely(__pyx_v_fields != Py_None)) { + PyObject* sequence = __pyx_v_fields; + #if !CYTHON_COMPILING_IN_PYPY + Py_ssize_t size = Py_SIZE(sequence); + #else + Py_ssize_t size = PySequence_Size(sequence); + #endif + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(2, 820, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_3); + __Pyx_INCREF(__pyx_t_4); + #else + __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 820, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 820, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 820, __pyx_L1_error) + } + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_dtype))))) __PYX_ERR(2, 820, __pyx_L1_error) + __Pyx_XDECREF_SET(__pyx_v_child, ((PyArray_Descr *)__pyx_t_3)); + __pyx_t_3 = 0; + __Pyx_XDECREF_SET(__pyx_v_new_offset, __pyx_t_4); + __pyx_t_4 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":822 + * child, new_offset = fields + * + * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + */ + __pyx_t_4 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 822, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyNumber_Subtract(__pyx_v_new_offset, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 822, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 822, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = ((((__pyx_v_end - __pyx_v_f) - ((int)__pyx_t_5)) < 15) != 0); + if (__pyx_t_6) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":823 + * + * if (end - f) - (new_offset - offset[0]) < 15: + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< + * + * if ((child.byteorder == c'>' and little_endian) or + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 823, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 823, __pyx_L1_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":822 + * child, new_offset = fields + * + * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":825 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + __pyx_t_7 = ((__pyx_v_child->byteorder == '>') != 0); + if (!__pyx_t_7) { + goto __pyx_L8_next_or; + } else { + } + __pyx_t_7 = (__pyx_v_little_endian != 0); + if (!__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L7_bool_binop_done; + } + __pyx_L8_next_or:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":826 + * + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< + * raise ValueError(u"Non-native byte order not supported") + * # One could encode it in the format string and have Cython + */ + __pyx_t_7 = ((__pyx_v_child->byteorder == '<') != 0); + if (__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L7_bool_binop_done; + } + __pyx_t_7 = ((!(__pyx_v_little_endian != 0)) != 0); + __pyx_t_6 = __pyx_t_7; + __pyx_L7_bool_binop_done:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":825 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + if (__pyx_t_6) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":827 + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * # One could encode it in the format string and have Cython + * # complain instead, BUT: < and > in format strings also imply + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 827, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 827, __pyx_L1_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":825 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":837 + * + * # Output padding bytes + * while offset[0] < new_offset: # <<<<<<<<<<<<<< + * f[0] = 120 # "x"; pad byte + * f += 1 + */ + while (1) { + __pyx_t_3 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 837, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_v_new_offset, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 837, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 837, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (!__pyx_t_6) break; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":838 + * # Output padding bytes + * while offset[0] < new_offset: + * f[0] = 120 # "x"; pad byte # <<<<<<<<<<<<<< + * f += 1 + * offset[0] += 1 + */ + (__pyx_v_f[0]) = 0x78; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":839 + * while offset[0] < new_offset: + * f[0] = 120 # "x"; pad byte + * f += 1 # <<<<<<<<<<<<<< + * offset[0] += 1 + * + */ + __pyx_v_f = (__pyx_v_f + 1); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":840 + * f[0] = 120 # "x"; pad byte + * f += 1 + * offset[0] += 1 # <<<<<<<<<<<<<< + * + * offset[0] += child.itemsize + */ + __pyx_t_8 = 0; + (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + 1); + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":842 + * offset[0] += 1 + * + * offset[0] += child.itemsize # <<<<<<<<<<<<<< + * + * if not PyDataType_HASFIELDS(child): + */ + __pyx_t_8 = 0; + (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + __pyx_v_child->elsize); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":844 + * offset[0] += child.itemsize + * + * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< + * t = child.type_num + * if end - f < 5: + */ + __pyx_t_6 = ((!(PyDataType_HASFIELDS(__pyx_v_child) != 0)) != 0); + if (__pyx_t_6) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":845 + * + * if not PyDataType_HASFIELDS(child): + * t = child.type_num # <<<<<<<<<<<<<< + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") + */ + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_child->type_num); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 845, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); + __pyx_t_4 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":846 + * if not PyDataType_HASFIELDS(child): + * t = child.type_num + * if end - f < 5: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short.") + * + */ + __pyx_t_6 = (((__pyx_v_end - __pyx_v_f) < 5) != 0); + if (__pyx_t_6) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":847 + * t = child.type_num + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< + * + * # Until ticket #99 is fixed, use integers to avoid warnings + */ + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 847, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(2, 847, __pyx_L1_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":846 + * if not PyDataType_HASFIELDS(child): + * t = child.type_num + * if end - f < 5: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short.") + * + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":850 + * + * # Until ticket #99 is fixed, use integers to avoid warnings + * if t == NPY_BYTE: f[0] = 98 #"b" # <<<<<<<<<<<<<< + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_BYTE); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 850, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 850, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 850, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 98; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":851 + * # Until ticket #99 is fixed, use integers to avoid warnings + * if t == NPY_BYTE: f[0] = 98 #"b" + * elif t == NPY_UBYTE: f[0] = 66 #"B" # <<<<<<<<<<<<<< + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UBYTE); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 851, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 851, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 851, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 66; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":852 + * if t == NPY_BYTE: f[0] = 98 #"b" + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" # <<<<<<<<<<<<<< + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_SHORT); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 852, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 852, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 852, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x68; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":853 + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" # <<<<<<<<<<<<<< + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_USHORT); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 853, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 853, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 853, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 72; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":854 + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" # <<<<<<<<<<<<<< + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_INT); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 854, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 854, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 854, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x69; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":855 + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" # <<<<<<<<<<<<<< + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UINT); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 855, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 855, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 855, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 73; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":856 + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" # <<<<<<<<<<<<<< + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 856, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 856, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 856, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x6C; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":857 + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" # <<<<<<<<<<<<<< + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 857, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 857, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 857, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 76; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" # <<<<<<<<<<<<<< + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGLONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 858, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 858, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 858, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x71; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":859 + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" # <<<<<<<<<<<<<< + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONGLONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 859, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 859, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 859, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 81; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":860 + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" # <<<<<<<<<<<<<< + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_FLOAT); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 860, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 860, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 860, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x66; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":861 + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" # <<<<<<<<<<<<<< + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_DOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 861, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 861, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 861, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x64; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":862 + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" # <<<<<<<<<<<<<< + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 862, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 862, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 862, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x67; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":863 + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf # <<<<<<<<<<<<<< + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CFLOAT); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 863, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 863, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 863, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x66; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":864 + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd # <<<<<<<<<<<<<< + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + * elif t == NPY_OBJECT: f[0] = 79 #"O" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 864, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 864, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 864, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x64; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":865 + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg # <<<<<<<<<<<<<< + * elif t == NPY_OBJECT: f[0] = 79 #"O" + * else: + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CLONGDOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 865, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 865, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 865, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x67; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":866 + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + * elif t == NPY_OBJECT: f[0] = 79 #"O" # <<<<<<<<<<<<<< + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_OBJECT); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 866, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 866, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(2, 866, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 79; + goto __pyx_L15; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":868 + * elif t == NPY_OBJECT: f[0] = 79 #"O" + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< + * f += 1 + * else: + */ + /*else*/ { + __pyx_t_3 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 868, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 868, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); + __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 868, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 868, __pyx_L1_error) + } + __pyx_L15:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":869 + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * f += 1 # <<<<<<<<<<<<<< + * else: + * # Cython ignores struct boundary information ("T{...}"), + */ + __pyx_v_f = (__pyx_v_f + 1); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":844 + * offset[0] += child.itemsize + * + * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< + * t = child.type_num + * if end - f < 5: + */ + goto __pyx_L13; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":873 + * # Cython ignores struct boundary information ("T{...}"), + * # so don't output it + * f = _util_dtypestring(child, f, end, offset) # <<<<<<<<<<<<<< + * return f + * + */ + /*else*/ { + __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_child, __pyx_v_f, __pyx_v_end, __pyx_v_offset); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(2, 873, __pyx_L1_error) + __pyx_v_f = __pyx_t_9; + } + __pyx_L13:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":818 + * cdef tuple fields + * + * for childname in descr.names: # <<<<<<<<<<<<<< + * fields = descr.fields[childname] + * child, new_offset = fields + */ + } + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":874 + * # so don't output it + * f = _util_dtypestring(child, f, end, offset) + * return f # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_f; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":809 + * return () + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< + * # Recursive utility function used in __getbuffer__ to get format + * # string. The new location in the format string is returned. + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("numpy._util_dtypestring", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_child); + __Pyx_XDECREF(__pyx_v_fields); + __Pyx_XDECREF(__pyx_v_childname); + __Pyx_XDECREF(__pyx_v_new_offset); + __Pyx_XDECREF(__pyx_v_t); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":990 + * + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * cdef PyObject* baseptr + * if base is None: + */ + +static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { + PyObject *__pyx_v_baseptr; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + __Pyx_RefNannySetupContext("set_array_base", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":992 + * cdef inline void set_array_base(ndarray arr, object base): + * cdef PyObject* baseptr + * if base is None: # <<<<<<<<<<<<<< + * baseptr = NULL + * else: + */ + __pyx_t_1 = (__pyx_v_base == Py_None); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":993 + * cdef PyObject* baseptr + * if base is None: + * baseptr = NULL # <<<<<<<<<<<<<< + * else: + * Py_INCREF(base) # important to do this before decref below! + */ + __pyx_v_baseptr = NULL; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":992 + * cdef inline void set_array_base(ndarray arr, object base): + * cdef PyObject* baseptr + * if base is None: # <<<<<<<<<<<<<< + * baseptr = NULL + * else: + */ + goto __pyx_L3; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":995 + * baseptr = NULL + * else: + * Py_INCREF(base) # important to do this before decref below! # <<<<<<<<<<<<<< + * baseptr = base + * Py_XDECREF(arr.base) + */ + /*else*/ { + Py_INCREF(__pyx_v_base); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":996 + * else: + * Py_INCREF(base) # important to do this before decref below! + * baseptr = base # <<<<<<<<<<<<<< + * Py_XDECREF(arr.base) + * arr.base = baseptr + */ + __pyx_v_baseptr = ((PyObject *)__pyx_v_base); + } + __pyx_L3:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":997 + * Py_INCREF(base) # important to do this before decref below! + * baseptr = base + * Py_XDECREF(arr.base) # <<<<<<<<<<<<<< + * arr.base = baseptr + * + */ + Py_XDECREF(__pyx_v_arr->base); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":998 + * baseptr = base + * Py_XDECREF(arr.base) + * arr.base = baseptr # <<<<<<<<<<<<<< + * + * cdef inline object get_array_base(ndarray arr): + */ + __pyx_v_arr->base = __pyx_v_baseptr; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":990 + * + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * cdef PyObject* baseptr + * if base is None: + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1000 + * arr.base = baseptr + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * if arr.base is NULL: + * return None + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("get_array_base", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1001 + * + * cdef inline object get_array_base(ndarray arr): + * if arr.base is NULL: # <<<<<<<<<<<<<< + * return None + * else: + */ + __pyx_t_1 = ((__pyx_v_arr->base == NULL) != 0); + if (__pyx_t_1) { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1002 + * cdef inline object get_array_base(ndarray arr): + * if arr.base is NULL: + * return None # <<<<<<<<<<<<<< + * else: + * return arr.base + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(Py_None); + __pyx_r = Py_None; + goto __pyx_L0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1001 + * + * cdef inline object get_array_base(ndarray arr): + * if arr.base is NULL: # <<<<<<<<<<<<<< + * return None + * else: + */ + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1004 + * return None + * else: + * return arr.base # <<<<<<<<<<<<<< + * + * + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_arr->base)); + __pyx_r = ((PyObject *)__pyx_v_arr->base); + goto __pyx_L0; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1000 + * arr.base = baseptr + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * if arr.base is NULL: + * return None + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1009 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * _import_array() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_array", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1010 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1011 + * cdef inline int import_array() except -1: + * try: + * _import_array() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") + */ + __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 1011, __pyx_L3_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1010 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1012 + * try: + * _import_array() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.multiarray failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(2, 1012, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1013 + * _import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 1013, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(2, 1013, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1010 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1009 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * _import_array() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1015 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_umath", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1016 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1017 + * cdef inline int import_umath() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 1017, __pyx_L3_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1016 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1018 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(2, 1018, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1019 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 1019, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(2, 1019, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1016 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1015 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1021 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_ufunc", 0); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1023 + * cdef inline int import_ufunc() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 1023, __pyx_L3_error) + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1024 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(2, 1024, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1025 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 1025, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(2, 1025, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1021 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_tp_new_8pykdtree_6kdtree_KDTree(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { + struct __pyx_obj_8pykdtree_6kdtree_KDTree *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_obj_8pykdtree_6kdtree_KDTree *)o); + p->data_pts = ((PyArrayObject *)Py_None); Py_INCREF(Py_None); + p->data = ((PyArrayObject *)Py_None); Py_INCREF(Py_None); + if (unlikely(__pyx_pw_8pykdtree_6kdtree_6KDTree_1__cinit__(o, __pyx_empty_tuple, NULL) < 0)) goto bad; + return o; + bad: + Py_DECREF(o); o = 0; + return NULL; +} + +static void __pyx_tp_dealloc_8pykdtree_6kdtree_KDTree(PyObject *o) { + struct __pyx_obj_8pykdtree_6kdtree_KDTree *p = (struct __pyx_obj_8pykdtree_6kdtree_KDTree *)o; + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_pw_8pykdtree_6kdtree_6KDTree_7__dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->data_pts); + Py_CLEAR(p->data); + (*Py_TYPE(o)->tp_free)(o); +} + +static int __pyx_tp_traverse_8pykdtree_6kdtree_KDTree(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_obj_8pykdtree_6kdtree_KDTree *p = (struct __pyx_obj_8pykdtree_6kdtree_KDTree *)o; + if (p->data_pts) { + e = (*v)(((PyObject *)p->data_pts), a); if (e) return e; + } + if (p->data) { + e = (*v)(((PyObject *)p->data), a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear_8pykdtree_6kdtree_KDTree(PyObject *o) { + PyObject* tmp; + struct __pyx_obj_8pykdtree_6kdtree_KDTree *p = (struct __pyx_obj_8pykdtree_6kdtree_KDTree *)o; + tmp = ((PyObject*)p->data_pts); + p->data_pts = ((PyArrayObject *)Py_None); Py_INCREF(Py_None); + Py_XDECREF(tmp); + tmp = ((PyObject*)p->data); + p->data = ((PyArrayObject *)Py_None); Py_INCREF(Py_None); + Py_XDECREF(tmp); + return 0; +} + +static PyObject *__pyx_getprop_8pykdtree_6kdtree_6KDTree_data_pts(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_8pykdtree_6kdtree_6KDTree_8data_pts_1__get__(o); +} + +static PyObject *__pyx_getprop_8pykdtree_6kdtree_6KDTree_data(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_8pykdtree_6kdtree_6KDTree_4data_1__get__(o); +} + +static PyObject *__pyx_getprop_8pykdtree_6kdtree_6KDTree_n(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_8pykdtree_6kdtree_6KDTree_1n_1__get__(o); +} + +static PyObject *__pyx_getprop_8pykdtree_6kdtree_6KDTree_ndim(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_8pykdtree_6kdtree_6KDTree_4ndim_1__get__(o); +} + +static PyObject *__pyx_getprop_8pykdtree_6kdtree_6KDTree_leafsize(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_8pykdtree_6kdtree_6KDTree_8leafsize_1__get__(o); +} + +static PyMethodDef __pyx_methods_8pykdtree_6kdtree_KDTree[] = { + {"query", (PyCFunction)__pyx_pw_8pykdtree_6kdtree_6KDTree_5query, METH_VARARGS|METH_KEYWORDS, __pyx_doc_8pykdtree_6kdtree_6KDTree_4query}, + {"__reduce_cython__", (PyCFunction)__pyx_pw_8pykdtree_6kdtree_6KDTree_9__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw_8pykdtree_6kdtree_6KDTree_11__setstate_cython__, METH_O, 0}, + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets_8pykdtree_6kdtree_KDTree[] = { + {(char *)"data_pts", __pyx_getprop_8pykdtree_6kdtree_6KDTree_data_pts, 0, (char *)0, 0}, + {(char *)"data", __pyx_getprop_8pykdtree_6kdtree_6KDTree_data, 0, (char *)0, 0}, + {(char *)"n", __pyx_getprop_8pykdtree_6kdtree_6KDTree_n, 0, (char *)0, 0}, + {(char *)"ndim", __pyx_getprop_8pykdtree_6kdtree_6KDTree_ndim, 0, (char *)0, 0}, + {(char *)"leafsize", __pyx_getprop_8pykdtree_6kdtree_6KDTree_leafsize, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PyTypeObject __pyx_type_8pykdtree_6kdtree_KDTree = { + PyVarObject_HEAD_INIT(0, 0) + "pykdtree.kdtree.KDTree", /*tp_name*/ + sizeof(struct __pyx_obj_8pykdtree_6kdtree_KDTree), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_8pykdtree_6kdtree_KDTree, /*tp_dealloc*/ + 0, /*tp_print*/ + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + 0, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + "kd-tree for fast nearest-neighbour lookup.\n The interface is made to resemble the scipy.spatial kd-tree except\n only Euclidean distance measure is supported.\n\n :Parameters:\n data_pts : numpy array\n Data points with shape (n , dims)\n leafsize : int, optional\n Maximum number of data points in tree leaf\n ", /*tp_doc*/ + __pyx_tp_traverse_8pykdtree_6kdtree_KDTree, /*tp_traverse*/ + __pyx_tp_clear_8pykdtree_6kdtree_KDTree, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_8pykdtree_6kdtree_KDTree, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets_8pykdtree_6kdtree_KDTree, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + __pyx_pw_8pykdtree_6kdtree_6KDTree_3__init__, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_8pykdtree_6kdtree_KDTree, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif +}; + +static PyMethodDef __pyx_methods[] = { + {0, 0, 0, 0} +}; + +#if PY_MAJOR_VERSION >= 3 +#if CYTHON_PEP489_MULTI_PHASE_INIT +static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ +static int __pyx_pymod_exec_kdtree(PyObject* module); /*proto*/ +static PyModuleDef_Slot __pyx_moduledef_slots[] = { + {Py_mod_create, (void*)__pyx_pymod_create}, + {Py_mod_exec, (void*)__pyx_pymod_exec_kdtree}, + {0, NULL} +}; +#endif + +static struct PyModuleDef __pyx_moduledef = { + PyModuleDef_HEAD_INIT, + "kdtree", + 0, /* m_doc */ + #if CYTHON_PEP489_MULTI_PHASE_INIT + 0, /* m_size */ + #else + -1, /* m_size */ + #endif + __pyx_methods /* m_methods */, + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_moduledef_slots, /* m_slots */ + #else + NULL, /* m_reload */ + #endif + NULL, /* m_traverse */ + NULL, /* m_clear */ + NULL /* m_free */ +}; +#endif + +static __Pyx_StringTabEntry __pyx_string_tab[] = { + {&__pyx_kp_s_Data_and_query_points_must_have, __pyx_k_Data_and_query_points_must_have, sizeof(__pyx_k_Data_and_query_points_must_have), 0, 0, 1, 0}, + {&__pyx_kp_u_Format_string_allocated_too_shor, __pyx_k_Format_string_allocated_too_shor, sizeof(__pyx_k_Format_string_allocated_too_shor), 0, 1, 0, 0}, + {&__pyx_kp_u_Format_string_allocated_too_shor_2, __pyx_k_Format_string_allocated_too_shor_2, sizeof(__pyx_k_Format_string_allocated_too_shor_2), 0, 1, 0, 0}, + {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, + {&__pyx_n_s_Inf, __pyx_k_Inf, sizeof(__pyx_k_Inf), 0, 0, 1, 1}, + {&__pyx_kp_s_Mask_must_have_the_same_size_as, __pyx_k_Mask_must_have_the_same_size_as, sizeof(__pyx_k_Mask_must_have_the_same_size_as), 0, 0, 1, 0}, + {&__pyx_kp_u_Non_native_byte_order_not_suppor, __pyx_k_Non_native_byte_order_not_suppor, sizeof(__pyx_k_Non_native_byte_order_not_suppor), 0, 1, 0, 0}, + {&__pyx_kp_s_Number_of_neighbours_must_be_gre, __pyx_k_Number_of_neighbours_must_be_gre, sizeof(__pyx_k_Number_of_neighbours_must_be_gre), 0, 0, 1, 0}, + {&__pyx_n_s_RuntimeError, __pyx_k_RuntimeError, sizeof(__pyx_k_RuntimeError), 0, 0, 1, 1}, + {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, + {&__pyx_kp_s_Type_mismatch_query_points_must, __pyx_k_Type_mismatch_query_points_must, sizeof(__pyx_k_Type_mismatch_query_points_must), 0, 0, 1, 0}, + {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, + {&__pyx_n_s_ascontiguousarray, __pyx_k_ascontiguousarray, sizeof(__pyx_k_ascontiguousarray), 0, 0, 1, 1}, + {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, + {&__pyx_n_s_data_pts, __pyx_k_data_pts, sizeof(__pyx_k_data_pts), 0, 0, 1, 1}, + {&__pyx_n_s_distance_upper_bound, __pyx_k_distance_upper_bound, sizeof(__pyx_k_distance_upper_bound), 0, 0, 1, 1}, + {&__pyx_kp_s_distance_upper_bound_must_be_non, __pyx_k_distance_upper_bound_must_be_non, sizeof(__pyx_k_distance_upper_bound_must_be_non), 0, 0, 1, 0}, + {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, + {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, + {&__pyx_n_s_eps, __pyx_k_eps, sizeof(__pyx_k_eps), 0, 0, 1, 1}, + {&__pyx_kp_s_eps_must_be_non_negative, __pyx_k_eps_must_be_non_negative, sizeof(__pyx_k_eps_must_be_non_negative), 0, 0, 1, 0}, + {&__pyx_n_s_finfo, __pyx_k_finfo, sizeof(__pyx_k_finfo), 0, 0, 1, 1}, + {&__pyx_n_s_float32, __pyx_k_float32, sizeof(__pyx_k_float32), 0, 0, 1, 1}, + {&__pyx_n_s_float64, __pyx_k_float64, sizeof(__pyx_k_float64), 0, 0, 1, 1}, + {&__pyx_n_s_getstate, __pyx_k_getstate, sizeof(__pyx_k_getstate), 0, 0, 1, 1}, + {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, + {&__pyx_n_s_k, __pyx_k_k, sizeof(__pyx_k_k), 0, 0, 1, 1}, + {&__pyx_n_s_leafsize, __pyx_k_leafsize, sizeof(__pyx_k_leafsize), 0, 0, 1, 1}, + {&__pyx_kp_s_leafsize_must_be_greater_than_ze, __pyx_k_leafsize_must_be_greater_than_ze, sizeof(__pyx_k_leafsize_must_be_greater_than_ze), 0, 0, 1, 0}, + {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, + {&__pyx_n_s_mask, __pyx_k_mask, sizeof(__pyx_k_mask), 0, 0, 1, 1}, + {&__pyx_n_s_max, __pyx_k_max, sizeof(__pyx_k_max), 0, 0, 1, 1}, + {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, + {&__pyx_kp_u_ndarray_is_not_C_contiguous, __pyx_k_ndarray_is_not_C_contiguous, sizeof(__pyx_k_ndarray_is_not_C_contiguous), 0, 1, 0, 0}, + {&__pyx_kp_u_ndarray_is_not_Fortran_contiguou, __pyx_k_ndarray_is_not_Fortran_contiguou, sizeof(__pyx_k_ndarray_is_not_Fortran_contiguou), 0, 1, 0, 0}, + {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, + {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, + {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, + {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, + {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, + {&__pyx_n_s_query_pts, __pyx_k_query_pts, sizeof(__pyx_k_query_pts), 0, 0, 1, 1}, + {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, + {&__pyx_n_s_ravel, __pyx_k_ravel, sizeof(__pyx_k_ravel), 0, 0, 1, 1}, + {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, + {&__pyx_n_s_reduce_cython, __pyx_k_reduce_cython, sizeof(__pyx_k_reduce_cython), 0, 0, 1, 1}, + {&__pyx_n_s_reduce_ex, __pyx_k_reduce_ex, sizeof(__pyx_k_reduce_ex), 0, 0, 1, 1}, + {&__pyx_n_s_reshape, __pyx_k_reshape, sizeof(__pyx_k_reshape), 0, 0, 1, 1}, + {&__pyx_n_s_setstate, __pyx_k_setstate, sizeof(__pyx_k_setstate), 0, 0, 1, 1}, + {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, + {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, + {&__pyx_n_s_sqr_dists, __pyx_k_sqr_dists, sizeof(__pyx_k_sqr_dists), 0, 0, 1, 1}, + {&__pyx_n_s_sqrt, __pyx_k_sqrt, sizeof(__pyx_k_sqrt), 0, 0, 1, 1}, + {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, + {&__pyx_n_s_uint32, __pyx_k_uint32, sizeof(__pyx_k_uint32), 0, 0, 1, 1}, + {&__pyx_n_s_uint8, __pyx_k_uint8, sizeof(__pyx_k_uint8), 0, 0, 1, 1}, + {&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0}, + {0, 0, 0, 0, 0, 0, 0} +}; +static int __Pyx_InitCachedBuiltins(void) { + __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(0, 95, __pyx_L1_error) + __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(0, 178, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(2, 248, __pyx_L1_error) + __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) __PYX_ERR(2, 823, __pyx_L1_error) + __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(2, 1013, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static int __Pyx_InitCachedConstants(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); + + /* "pykdtree/kdtree.pyx":95 + * # Check arguments + * if leafsize < 1: + * raise ValueError('leafsize must be greater than zero') # <<<<<<<<<<<<<< + * + * # Get data content + */ + __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_s_leafsize_must_be_greater_than_ze); if (unlikely(!__pyx_tuple_)) __PYX_ERR(0, 95, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple_); + __Pyx_GIVEREF(__pyx_tuple_); + + /* "pykdtree/kdtree.pyx":161 + * # Check arguments + * if k < 1: + * raise ValueError('Number of neighbours must be greater than zero') # <<<<<<<<<<<<<< + * elif eps < 0: + * raise ValueError('eps must be non-negative') + */ + __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_s_Number_of_neighbours_must_be_gre); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(0, 161, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__2); + __Pyx_GIVEREF(__pyx_tuple__2); + + /* "pykdtree/kdtree.pyx":163 + * raise ValueError('Number of neighbours must be greater than zero') + * elif eps < 0: + * raise ValueError('eps must be non-negative') # <<<<<<<<<<<<<< + * elif distance_upper_bound is not None: + * if distance_upper_bound < 0: + */ + __pyx_tuple__3 = PyTuple_Pack(1, __pyx_kp_s_eps_must_be_non_negative); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(0, 163, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__3); + __Pyx_GIVEREF(__pyx_tuple__3); + + /* "pykdtree/kdtree.pyx":166 + * elif distance_upper_bound is not None: + * if distance_upper_bound < 0: + * raise ValueError('distance_upper_bound must be non negative') # <<<<<<<<<<<<<< + * + * # Check dimensions + */ + __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_s_distance_upper_bound_must_be_non); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(0, 166, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__4); + __Pyx_GIVEREF(__pyx_tuple__4); + + /* "pykdtree/kdtree.pyx":175 + * + * if self.ndim != q_ndim: + * raise ValueError('Data and query points must have same dimensions') # <<<<<<<<<<<<<< + * + * if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: + */ + __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_Data_and_query_points_must_have); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(0, 175, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__5); + __Pyx_GIVEREF(__pyx_tuple__5); + + /* "pykdtree/kdtree.pyx":178 + * + * if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: + * raise TypeError('Type mismatch. query points must be of type float32 when data points are of type float32') # <<<<<<<<<<<<<< + * + * # Get query info + */ + __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_Type_mismatch_query_points_must); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(0, 178, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__6); + __Pyx_GIVEREF(__pyx_tuple__6); + + /* "pykdtree/kdtree.pyx":202 + * + * if mask is not None and mask.size != self.n: + * raise ValueError('Mask must have the same size as data points') # <<<<<<<<<<<<<< + * elif mask is not None: + * query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) + */ + __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_Mask_must_have_the_same_size_as); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(0, 202, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__7); + __Pyx_GIVEREF(__pyx_tuple__7); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(1, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__8); + __Pyx_GIVEREF(__pyx_tuple__8); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(1, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__9); + __Pyx_GIVEREF(__pyx_tuple__9); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":235 + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + */ + __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_C_contiguous); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(2, 235, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__10); + __Pyx_GIVEREF(__pyx_tuple__10); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":239 + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< + * + * info.buf = PyArray_DATA(self) + */ + __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_Fortran_contiguou); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(2, 239, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__11); + __Pyx_GIVEREF(__pyx_tuple__11); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":276 + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + */ + __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__12)) __PYX_ERR(2, 276, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__12); + __Pyx_GIVEREF(__pyx_tuple__12); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":823 + * + * if (end - f) - (new_offset - offset[0]) < 15: + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< + * + * if ((child.byteorder == c'>' and little_endian) or + */ + __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(2, 823, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__13); + __Pyx_GIVEREF(__pyx_tuple__13); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":827 + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * # One could encode it in the format string and have Cython + * # complain instead, BUT: < and > in format strings also imply + */ + __pyx_tuple__14 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(2, 827, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__14); + __Pyx_GIVEREF(__pyx_tuple__14); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":847 + * t = child.type_num + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< + * + * # Until ticket #99 is fixed, use integers to avoid warnings + */ + __pyx_tuple__15 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor_2); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(2, 847, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__15); + __Pyx_GIVEREF(__pyx_tuple__15); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1013 + * _import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(2, 1013, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__16); + __Pyx_GIVEREF(__pyx_tuple__16); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1019 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(2, 1019, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__17); + __Pyx_GIVEREF(__pyx_tuple__17); + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1025 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + */ + __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(2, 1025, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__18); + __Pyx_GIVEREF(__pyx_tuple__18); + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_InitGlobals(void) { + if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +#if PY_MAJOR_VERSION < 3 +PyMODINIT_FUNC initkdtree(void); /*proto*/ +PyMODINIT_FUNC initkdtree(void) +#else +PyMODINIT_FUNC PyInit_kdtree(void); /*proto*/ +PyMODINIT_FUNC PyInit_kdtree(void) +#if CYTHON_PEP489_MULTI_PHASE_INIT +{ + return PyModuleDef_Init(&__pyx_moduledef); +} +static int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name) { + PyObject *value = PyObject_GetAttrString(spec, from_name); + int result = 0; + if (likely(value)) { + result = PyDict_SetItemString(moddict, to_name, value); + Py_DECREF(value); + } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + } else { + result = -1; + } + return result; +} +static PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { + PyObject *module = NULL, *moddict, *modname; + if (__pyx_m) + return __Pyx_NewRef(__pyx_m); + modname = PyObject_GetAttrString(spec, "name"); + if (unlikely(!modname)) goto bad; + module = PyModule_NewObject(modname); + Py_DECREF(modname); + if (unlikely(!module)) goto bad; + moddict = PyModule_GetDict(module); + if (unlikely(!moddict)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__") < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__") < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__") < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__") < 0)) goto bad; + return module; +bad: + Py_XDECREF(module); + return NULL; +} + + +static int __pyx_pymod_exec_kdtree(PyObject *__pyx_pyinit_module) +#endif +#endif +{ + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannyDeclarations + #if CYTHON_PEP489_MULTI_PHASE_INIT + if (__pyx_m && __pyx_m == __pyx_pyinit_module) return 0; + #endif + #if CYTHON_REFNANNY + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); + if (!__Pyx_RefNanny) { + PyErr_Clear(); + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); + if (!__Pyx_RefNanny) + Py_FatalError("failed to import 'refnanny' module"); + } + #endif + __Pyx_RefNannySetupContext("PyMODINIT_FUNC PyInit_kdtree(void)", 0); + if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) + #ifdef __Pyx_CyFunction_USED + if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_FusedFunction_USED + if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Coroutine_USED + if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Generator_USED + if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_AsyncGen_USED + if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_StopAsyncIteration_USED + if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + /*--- Library function declarations ---*/ + /*--- Threads initialization code ---*/ + #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS + #ifdef WITH_THREAD /* Python build with threading support? */ + PyEval_InitThreads(); + #endif + #endif + /*--- Module creation code ---*/ + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_m = __pyx_pyinit_module; + Py_INCREF(__pyx_m); + #else + #if PY_MAJOR_VERSION < 3 + __pyx_m = Py_InitModule4("kdtree", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); + #else + __pyx_m = PyModule_Create(&__pyx_moduledef); + #endif + if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_d); + __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) + #if CYTHON_COMPILING_IN_PYPY + Py_INCREF(__pyx_b); + #endif + if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + /*--- Initialize various global constants etc. ---*/ + if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) + if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + if (__pyx_module_is_main_pykdtree__kdtree) { + if (PyObject_SetAttrString(__pyx_m, "__name__", __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + } + #if PY_MAJOR_VERSION >= 3 + { + PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) + if (!PyDict_GetItemString(modules, "pykdtree.kdtree")) { + if (unlikely(PyDict_SetItemString(modules, "pykdtree.kdtree", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) + } + } + #endif + /*--- Builtin init code ---*/ + if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + /*--- Constants init code ---*/ + if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + /*--- Global init code ---*/ + /*--- Variable export code ---*/ + /*--- Function export code ---*/ + /*--- Type init code ---*/ + if (PyType_Ready(&__pyx_type_8pykdtree_6kdtree_KDTree) < 0) __PYX_ERR(0, 65, __pyx_L1_error) + __pyx_type_8pykdtree_6kdtree_KDTree.tp_print = 0; + if (PyObject_SetAttrString(__pyx_m, "KDTree", (PyObject *)&__pyx_type_8pykdtree_6kdtree_KDTree) < 0) __PYX_ERR(0, 65, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type_8pykdtree_6kdtree_KDTree) < 0) __PYX_ERR(0, 65, __pyx_L1_error) + __pyx_ptype_8pykdtree_6kdtree_KDTree = &__pyx_type_8pykdtree_6kdtree_KDTree; + /*--- Type import code ---*/ + __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__Pyx_BUILTIN_MODULE_NAME, "type", + #if CYTHON_COMPILING_IN_PYPY + sizeof(PyTypeObject), + #else + sizeof(PyHeapTypeObject), + #endif + 0); if (unlikely(!__pyx_ptype_7cpython_4type_type)) __PYX_ERR(3, 9, __pyx_L1_error) + __pyx_ptype_5numpy_dtype = __Pyx_ImportType("numpy", "dtype", sizeof(PyArray_Descr), 0); if (unlikely(!__pyx_ptype_5numpy_dtype)) __PYX_ERR(2, 163, __pyx_L1_error) + __pyx_ptype_5numpy_flatiter = __Pyx_ImportType("numpy", "flatiter", sizeof(PyArrayIterObject), 0); if (unlikely(!__pyx_ptype_5numpy_flatiter)) __PYX_ERR(2, 185, __pyx_L1_error) + __pyx_ptype_5numpy_broadcast = __Pyx_ImportType("numpy", "broadcast", sizeof(PyArrayMultiIterObject), 0); if (unlikely(!__pyx_ptype_5numpy_broadcast)) __PYX_ERR(2, 189, __pyx_L1_error) + __pyx_ptype_5numpy_ndarray = __Pyx_ImportType("numpy", "ndarray", sizeof(PyArrayObject), 0); if (unlikely(!__pyx_ptype_5numpy_ndarray)) __PYX_ERR(2, 198, __pyx_L1_error) + __pyx_ptype_5numpy_ufunc = __Pyx_ImportType("numpy", "ufunc", sizeof(PyUFuncObject), 0); if (unlikely(!__pyx_ptype_5numpy_ufunc)) __PYX_ERR(2, 885, __pyx_L1_error) + /*--- Variable import code ---*/ + /*--- Function import code ---*/ + /*--- Execution code ---*/ + #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) + if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + + /* "pykdtree/kdtree.pyx":18 + * # with this program. If not, see . + * + * import numpy as np # <<<<<<<<<<<<<< + * cimport numpy as np + * from libc.stdint cimport uint32_t, int8_t, uint8_t + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 18, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "pykdtree/kdtree.pyx":1 + * #pykdtree, Fast kd-tree implementation with OpenMP-enabled queries # <<<<<<<<<<<<<< + * # + * #Copyright (C) 2013 - present Esben S. Nielsen + */ + __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "../../../anaconda/envs/polar2grid_py36/lib/python3.6/site-packages/Cython/Includes/numpy/__init__.pxd":1021 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /*--- Wrapped vars code ---*/ + + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + if (__pyx_m) { + if (__pyx_d) { + __Pyx_AddTraceback("init pykdtree.kdtree", 0, __pyx_lineno, __pyx_filename); + } + Py_DECREF(__pyx_m); __pyx_m = 0; + } else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_ImportError, "init pykdtree.kdtree"); + } + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + #if CYTHON_PEP489_MULTI_PHASE_INIT + return (__pyx_m != NULL) ? 0 : -1; + #elif PY_MAJOR_VERSION >= 3 + return __pyx_m; + #else + return; + #endif +} + +/* --- Runtime support code --- */ +/* Refnanny */ +#if CYTHON_REFNANNY +static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { + PyObject *m = NULL, *p = NULL; + void *r = NULL; + m = PyImport_ImportModule((char *)modname); + if (!m) goto end; + p = PyObject_GetAttrString(m, (char *)"RefNannyAPI"); + if (!p) goto end; + r = PyLong_AsVoidPtr(p); +end: + Py_XDECREF(p); + Py_XDECREF(m); + return (__Pyx_RefNannyAPIStruct *)r; +} +#endif + +/* GetBuiltinName */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name) { + PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); + if (unlikely(!result)) { + PyErr_Format(PyExc_NameError, +#if PY_MAJOR_VERSION >= 3 + "name '%U' is not defined", name); +#else + "name '%.200s' is not defined", PyString_AS_STRING(name)); +#endif + } + return result; +} + +/* RaiseArgTupleInvalid */ +static void __Pyx_RaiseArgtupleInvalid( + const char* func_name, + int exact, + Py_ssize_t num_min, + Py_ssize_t num_max, + Py_ssize_t num_found) +{ + Py_ssize_t num_expected; + const char *more_or_less; + if (num_found < num_min) { + num_expected = num_min; + more_or_less = "at least"; + } else { + num_expected = num_max; + more_or_less = "at most"; + } + if (exact) { + more_or_less = "exactly"; + } + PyErr_Format(PyExc_TypeError, + "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", + func_name, more_or_less, num_expected, + (num_expected == 1) ? "" : "s", num_found); +} + +/* KeywordStringCheck */ +static int __Pyx_CheckKeywordStrings( + PyObject *kwdict, + const char* function_name, + int kw_allowed) +{ + PyObject* key = 0; + Py_ssize_t pos = 0; +#if CYTHON_COMPILING_IN_PYPY + if (!kw_allowed && PyDict_Next(kwdict, &pos, &key, 0)) + goto invalid_keyword; + return 1; +#else + while (PyDict_Next(kwdict, &pos, &key, 0)) { + #if PY_MAJOR_VERSION < 3 + if (unlikely(!PyString_Check(key))) + #endif + if (unlikely(!PyUnicode_Check(key))) + goto invalid_keyword_type; + } + if ((!kw_allowed) && unlikely(key)) + goto invalid_keyword; + return 1; +invalid_keyword_type: + PyErr_Format(PyExc_TypeError, + "%.200s() keywords must be strings", function_name); + return 0; +#endif +invalid_keyword: + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION < 3 + "%.200s() got an unexpected keyword argument '%.200s'", + function_name, PyString_AsString(key)); + #else + "%s() got an unexpected keyword argument '%U'", + function_name, key); + #endif + return 0; +} + +/* RaiseDoubleKeywords */ +static void __Pyx_RaiseDoubleKeywordsError( + const char* func_name, + PyObject* kw_name) +{ + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION >= 3 + "%s() got multiple values for keyword argument '%U'", func_name, kw_name); + #else + "%s() got multiple values for keyword argument '%s'", func_name, + PyString_AsString(kw_name)); + #endif +} + +/* ParseKeywords */ +static int __Pyx_ParseOptionalKeywords( + PyObject *kwds, + PyObject **argnames[], + PyObject *kwds2, + PyObject *values[], + Py_ssize_t num_pos_args, + const char* function_name) +{ + PyObject *key = 0, *value = 0; + Py_ssize_t pos = 0; + PyObject*** name; + PyObject*** first_kw_arg = argnames + num_pos_args; + while (PyDict_Next(kwds, &pos, &key, &value)) { + name = first_kw_arg; + while (*name && (**name != key)) name++; + if (*name) { + values[name-argnames] = value; + continue; + } + name = first_kw_arg; + #if PY_MAJOR_VERSION < 3 + if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { + while (*name) { + if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) + && _PyString_Eq(**name, key)) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + if ((**argname == key) || ( + (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) + && _PyString_Eq(**argname, key))) { + goto arg_passed_twice; + } + argname++; + } + } + } else + #endif + if (likely(PyUnicode_Check(key))) { + while (*name) { + int cmp = (**name == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**name, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + int cmp = (**argname == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**argname, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) goto arg_passed_twice; + argname++; + } + } + } else + goto invalid_keyword_type; + if (kwds2) { + if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; + } else { + goto invalid_keyword; + } + } + return 0; +arg_passed_twice: + __Pyx_RaiseDoubleKeywordsError(function_name, key); + goto bad; +invalid_keyword_type: + PyErr_Format(PyExc_TypeError, + "%.200s() keywords must be strings", function_name); + goto bad; +invalid_keyword: + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION < 3 + "%.200s() got an unexpected keyword argument '%.200s'", + function_name, PyString_AsString(key)); + #else + "%s() got an unexpected keyword argument '%U'", + function_name, key); + #endif +bad: + return -1; +} + +/* ArgTypeTest */ +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) +{ + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + else if (exact) { + #if PY_MAJOR_VERSION == 2 + if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; + #endif + } + else { + if (likely(__Pyx_TypeCheck(obj, type))) return 1; + } + PyErr_Format(PyExc_TypeError, + "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", + name, type->tp_name, Py_TYPE(obj)->tp_name); + return 0; +} + +/* PyObjectCall */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyErrFetchRestore */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->curexc_type; + tmp_value = tstate->curexc_value; + tmp_tb = tstate->curexc_traceback; + tstate->curexc_type = type; + tstate->curexc_value = value; + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->curexc_type; + *value = tstate->curexc_value; + *tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +} +#endif + +/* RaiseException */ +#if PY_MAJOR_VERSION < 3 +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, + CYTHON_UNUSED PyObject *cause) { + __Pyx_PyThreadState_declare + Py_XINCREF(type); + if (!value || value == Py_None) + value = NULL; + else + Py_INCREF(value); + if (!tb || tb == Py_None) + tb = NULL; + else { + Py_INCREF(tb); + if (!PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto raise_error; + } + } + if (PyType_Check(type)) { +#if CYTHON_COMPILING_IN_PYPY + if (!value) { + Py_INCREF(Py_None); + value = Py_None; + } +#endif + PyErr_NormalizeException(&type, &value, &tb); + } else { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto raise_error; + } + value = type; + type = (PyObject*) Py_TYPE(type); + Py_INCREF(type); + if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto raise_error; + } + } + __Pyx_PyThreadState_assign + __Pyx_ErrRestore(type, value, tb); + return; +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(tb); + return; +} +#else +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { + PyObject* owned_instance = NULL; + if (tb == Py_None) { + tb = 0; + } else if (tb && !PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto bad; + } + if (value == Py_None) + value = 0; + if (PyExceptionInstance_Check(type)) { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto bad; + } + value = type; + type = (PyObject*) Py_TYPE(value); + } else if (PyExceptionClass_Check(type)) { + PyObject *instance_class = NULL; + if (value && PyExceptionInstance_Check(value)) { + instance_class = (PyObject*) Py_TYPE(value); + if (instance_class != type) { + int is_subclass = PyObject_IsSubclass(instance_class, type); + if (!is_subclass) { + instance_class = NULL; + } else if (unlikely(is_subclass == -1)) { + goto bad; + } else { + type = instance_class; + } + } + } + if (!instance_class) { + PyObject *args; + if (!value) + args = PyTuple_New(0); + else if (PyTuple_Check(value)) { + Py_INCREF(value); + args = value; + } else + args = PyTuple_Pack(1, value); + if (!args) + goto bad; + owned_instance = PyObject_Call(type, args, NULL); + Py_DECREF(args); + if (!owned_instance) + goto bad; + value = owned_instance; + if (!PyExceptionInstance_Check(value)) { + PyErr_Format(PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto bad; + } + } + } else { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto bad; + } + if (cause) { + PyObject *fixed_cause; + if (cause == Py_None) { + fixed_cause = NULL; + } else if (PyExceptionClass_Check(cause)) { + fixed_cause = PyObject_CallObject(cause, NULL); + if (fixed_cause == NULL) + goto bad; + } else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + Py_INCREF(fixed_cause); + } else { + PyErr_SetString(PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto bad; + } + PyException_SetCause(value, fixed_cause); + } + PyErr_SetObject(type, value); + if (tb) { +#if CYTHON_COMPILING_IN_PYPY + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); + Py_INCREF(tb); + PyErr_Restore(tmp_type, tmp_value, tb); + Py_XDECREF(tmp_tb); +#else + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* tmp_tb = tstate->curexc_traceback; + if (tb != tmp_tb) { + Py_INCREF(tb); + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_tb); + } +#endif + } +bad: + Py_XDECREF(owned_instance); + return; +} +#endif + +/* GetModuleGlobalName */ +static CYTHON_INLINE PyObject *__Pyx_GetModuleGlobalName(PyObject *name) { + PyObject *result; +#if !CYTHON_AVOID_BORROWED_REFS + result = PyDict_GetItem(__pyx_d, name); + if (likely(result)) { + Py_INCREF(result); + } else { +#else + result = PyObject_GetItem(__pyx_d, name); + if (!result) { + PyErr_Clear(); +#endif + result = __Pyx_GetBuiltinName(name); + } + return result; +} + +/* PyCFunctionFastCall */ + #if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { + PyCFunctionObject *func = (PyCFunctionObject*)func_obj; + PyCFunction meth = PyCFunction_GET_FUNCTION(func); + PyObject *self = PyCFunction_GET_SELF(func); + int flags = PyCFunction_GET_FLAGS(func); + assert(PyCFunction_Check(func)); + assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS))); + assert(nargs >= 0); + assert(nargs == 0 || args != NULL); + /* _PyCFunction_FastCallDict() must not be called with an exception set, + because it may clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!PyErr_Occurred()); + if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { + return (*((__Pyx_PyCFunctionFastWithKeywords)meth)) (self, args, nargs, NULL); + } else { + return (*((__Pyx_PyCFunctionFast)meth)) (self, args, nargs); + } +} +#endif + +/* PyFunctionFastCall */ + #if CYTHON_FAST_PYCALL +#include "frameobject.h" +static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, + PyObject *globals) { + PyFrameObject *f; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject **fastlocals; + Py_ssize_t i; + PyObject *result; + assert(globals != NULL); + /* XXX Perhaps we should create a specialized + PyFrame_New() that doesn't take locals, but does + take builtins without sanity checking them. + */ + assert(tstate != NULL); + f = PyFrame_New(tstate, co, globals, NULL); + if (f == NULL) { + return NULL; + } + fastlocals = f->f_localsplus; + for (i = 0; i < na; i++) { + Py_INCREF(*args); + fastlocals[i] = *args++; + } + result = PyEval_EvalFrameEx(f,0); + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + return result; +} +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, int nargs, PyObject *kwargs) { + PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); + PyObject *globals = PyFunction_GET_GLOBALS(func); + PyObject *argdefs = PyFunction_GET_DEFAULTS(func); + PyObject *closure; +#if PY_MAJOR_VERSION >= 3 + PyObject *kwdefs; +#endif + PyObject *kwtuple, **k; + PyObject **d; + Py_ssize_t nd; + Py_ssize_t nk; + PyObject *result; + assert(kwargs == NULL || PyDict_Check(kwargs)); + nk = kwargs ? PyDict_Size(kwargs) : 0; + if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { + return NULL; + } + if ( +#if PY_MAJOR_VERSION >= 3 + co->co_kwonlyargcount == 0 && +#endif + likely(kwargs == NULL || nk == 0) && + co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { + if (argdefs == NULL && co->co_argcount == nargs) { + result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); + goto done; + } + else if (nargs == 0 && argdefs != NULL + && co->co_argcount == Py_SIZE(argdefs)) { + /* function called with no arguments, but all parameters have + a default value: use default values as arguments .*/ + args = &PyTuple_GET_ITEM(argdefs, 0); + result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); + goto done; + } + } + if (kwargs != NULL) { + Py_ssize_t pos, i; + kwtuple = PyTuple_New(2 * nk); + if (kwtuple == NULL) { + result = NULL; + goto done; + } + k = &PyTuple_GET_ITEM(kwtuple, 0); + pos = i = 0; + while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { + Py_INCREF(k[i]); + Py_INCREF(k[i+1]); + i += 2; + } + nk = i / 2; + } + else { + kwtuple = NULL; + k = NULL; + } + closure = PyFunction_GET_CLOSURE(func); +#if PY_MAJOR_VERSION >= 3 + kwdefs = PyFunction_GET_KW_DEFAULTS(func); +#endif + if (argdefs != NULL) { + d = &PyTuple_GET_ITEM(argdefs, 0); + nd = Py_SIZE(argdefs); + } + else { + d = NULL; + nd = 0; + } +#if PY_MAJOR_VERSION >= 3 + result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, + args, nargs, + k, (int)nk, + d, (int)nd, kwdefs, closure); +#else + result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, + args, nargs, + k, (int)nk, + d, (int)nd, closure); +#endif + Py_XDECREF(kwtuple); +done: + Py_LeaveRecursiveCall(); + return result; +} +#endif +#endif + +/* PyObjectCallMethO */ + #if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { + PyObject *self, *result; + PyCFunction cfunc; + cfunc = PyCFunction_GET_FUNCTION(func); + self = PyCFunction_GET_SELF(func); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = cfunc(self, arg); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyObjectCallOneArg */ + #if CYTHON_COMPILING_IN_CPYTHON +static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_New(1); + if (unlikely(!args)) return NULL; + Py_INCREF(arg); + PyTuple_SET_ITEM(args, 0, arg); + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, &arg, 1); + } +#endif + if (likely(PyCFunction_Check(func))) { + if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { + return __Pyx_PyObject_CallMethO(func, arg); +#if CYTHON_FAST_PYCCALL + } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { + return __Pyx_PyCFunction_FastCall(func, &arg, 1); +#endif + } + } + return __Pyx__PyObject_CallOneArg(func, arg); +} +#else +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_Pack(1, arg); + if (unlikely(!args)) return NULL; + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +#endif + +/* PyObjectCallNoArg */ + #if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, NULL, 0); + } +#endif +#ifdef __Pyx_CyFunction_USED + if (likely(PyCFunction_Check(func) || __Pyx_TypeCheck(func, __pyx_CyFunctionType))) { +#else + if (likely(PyCFunction_Check(func))) { +#endif + if (likely(PyCFunction_GET_FLAGS(func) & METH_NOARGS)) { + return __Pyx_PyObject_CallMethO(func, NULL); + } + } + return __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL); +} +#endif + +/* ExtTypeTest */ + static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + if (likely(__Pyx_TypeCheck(obj, type))) + return 1; + PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", + Py_TYPE(obj)->tp_name, type->tp_name); + return 0; +} + +/* IsLittleEndian */ + static CYTHON_INLINE int __Pyx_Is_Little_Endian(void) +{ + union { + uint32_t u32; + uint8_t u8[4]; + } S; + S.u32 = 0x01020304; + return S.u8[0] == 4; +} + +/* BufferFormatCheck */ + static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type) { + stack[0].field = &ctx->root; + stack[0].parent_offset = 0; + ctx->root.type = type; + ctx->root.name = "buffer dtype"; + ctx->root.offset = 0; + ctx->head = stack; + ctx->head->field = &ctx->root; + ctx->fmt_offset = 0; + ctx->head->parent_offset = 0; + ctx->new_packmode = '@'; + ctx->enc_packmode = '@'; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->is_complex = 0; + ctx->is_valid_array = 0; + ctx->struct_alignment = 0; + while (type->typegroup == 'S') { + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = 0; + type = type->fields->type; + } +} +static int __Pyx_BufFmt_ParseNumber(const char** ts) { + int count; + const char* t = *ts; + if (*t < '0' || *t > '9') { + return -1; + } else { + count = *t++ - '0'; + while (*t >= '0' && *t < '9') { + count *= 10; + count += *t++ - '0'; + } + } + *ts = t; + return count; +} +static int __Pyx_BufFmt_ExpectNumber(const char **ts) { + int number = __Pyx_BufFmt_ParseNumber(ts); + if (number == -1) + PyErr_Format(PyExc_ValueError,\ + "Does not understand character buffer dtype format string ('%c')", **ts); + return number; +} +static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { + PyErr_Format(PyExc_ValueError, + "Unexpected format string character: '%c'", ch); +} +static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { + switch (ch) { + case 'c': return "'char'"; + case 'b': return "'signed char'"; + case 'B': return "'unsigned char'"; + case 'h': return "'short'"; + case 'H': return "'unsigned short'"; + case 'i': return "'int'"; + case 'I': return "'unsigned int'"; + case 'l': return "'long'"; + case 'L': return "'unsigned long'"; + case 'q': return "'long long'"; + case 'Q': return "'unsigned long long'"; + case 'f': return (is_complex ? "'complex float'" : "'float'"); + case 'd': return (is_complex ? "'complex double'" : "'double'"); + case 'g': return (is_complex ? "'complex long double'" : "'long double'"); + case 'T': return "a struct"; + case 'O': return "Python object"; + case 'P': return "a pointer"; + case 's': case 'p': return "a string"; + case 0: return "end"; + default: return "unparseable format string"; + } +} +static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return 2; + case 'i': case 'I': case 'l': case 'L': return 4; + case 'q': case 'Q': return 8; + case 'f': return (is_complex ? 8 : 4); + case 'd': return (is_complex ? 16 : 8); + case 'g': { + PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); + return 0; + } + case 'O': case 'P': return sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { + switch (ch) { + case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(short); + case 'i': case 'I': return sizeof(int); + case 'l': case 'L': return sizeof(long); + #ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(PY_LONG_LONG); + #endif + case 'f': return sizeof(float) * (is_complex ? 2 : 1); + case 'd': return sizeof(double) * (is_complex ? 2 : 1); + case 'g': return sizeof(long double) * (is_complex ? 2 : 1); + case 'O': case 'P': return sizeof(void*); + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +typedef struct { char c; short x; } __Pyx_st_short; +typedef struct { char c; int x; } __Pyx_st_int; +typedef struct { char c; long x; } __Pyx_st_long; +typedef struct { char c; float x; } __Pyx_st_float; +typedef struct { char c; double x; } __Pyx_st_double; +typedef struct { char c; long double x; } __Pyx_st_longdouble; +typedef struct { char c; void *x; } __Pyx_st_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_st_float) - sizeof(float); + case 'd': return sizeof(__Pyx_st_double) - sizeof(double); + case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +/* These are for computing the padding at the end of the struct to align + on the first member of the struct. This will probably the same as above, + but we don't have any guarantees. + */ +typedef struct { short x; char c; } __Pyx_pad_short; +typedef struct { int x; char c; } __Pyx_pad_int; +typedef struct { long x; char c; } __Pyx_pad_long; +typedef struct { float x; char c; } __Pyx_pad_float; +typedef struct { double x; char c; } __Pyx_pad_double; +typedef struct { long double x; char c; } __Pyx_pad_longdouble; +typedef struct { void *x; char c; } __Pyx_pad_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); + case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); + case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { + switch (ch) { + case 'c': + return 'H'; + case 'b': case 'h': case 'i': + case 'l': case 'q': case 's': case 'p': + return 'I'; + case 'B': case 'H': case 'I': case 'L': case 'Q': + return 'U'; + case 'f': case 'd': case 'g': + return (is_complex ? 'C' : 'R'); + case 'O': + return 'O'; + case 'P': + return 'P'; + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { + if (ctx->head == NULL || ctx->head->field == &ctx->root) { + const char* expected; + const char* quote; + if (ctx->head == NULL) { + expected = "end"; + quote = ""; + } else { + expected = ctx->head->field->type->name; + quote = "'"; + } + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected %s%s%s but got %s", + quote, expected, quote, + __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); + } else { + __Pyx_StructField* field = ctx->head->field; + __Pyx_StructField* parent = (ctx->head - 1)->field; + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", + field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), + parent->type->name, field->name); + } +} +static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { + char group; + size_t size, offset, arraysize = 1; + if (ctx->enc_type == 0) return 0; + if (ctx->head->field->type->arraysize[0]) { + int i, ndim = 0; + if (ctx->enc_type == 's' || ctx->enc_type == 'p') { + ctx->is_valid_array = ctx->head->field->type->ndim == 1; + ndim = 1; + if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { + PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %zu", + ctx->head->field->type->arraysize[0], ctx->enc_count); + return -1; + } + } + if (!ctx->is_valid_array) { + PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", + ctx->head->field->type->ndim, ndim); + return -1; + } + for (i = 0; i < ctx->head->field->type->ndim; i++) { + arraysize *= ctx->head->field->type->arraysize[i]; + } + ctx->is_valid_array = 0; + ctx->enc_count = 1; + } + group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); + do { + __Pyx_StructField* field = ctx->head->field; + __Pyx_TypeInfo* type = field->type; + if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { + size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); + } else { + size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); + } + if (ctx->enc_packmode == '@') { + size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); + size_t align_mod_offset; + if (align_at == 0) return -1; + align_mod_offset = ctx->fmt_offset % align_at; + if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; + if (ctx->struct_alignment == 0) + ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, + ctx->is_complex); + } + if (type->size != size || type->typegroup != group) { + if (type->typegroup == 'C' && type->fields != NULL) { + size_t parent_offset = ctx->head->parent_offset + field->offset; + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = parent_offset; + continue; + } + if ((type->typegroup == 'H' || group == 'H') && type->size == size) { + } else { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + } + offset = ctx->head->parent_offset + field->offset; + if (ctx->fmt_offset != offset) { + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", + (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); + return -1; + } + ctx->fmt_offset += size; + if (arraysize) + ctx->fmt_offset += (arraysize - 1) * size; + --ctx->enc_count; + while (1) { + if (field == &ctx->root) { + ctx->head = NULL; + if (ctx->enc_count != 0) { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + break; + } + ctx->head->field = ++field; + if (field->type == NULL) { + --ctx->head; + field = ctx->head->field; + continue; + } else if (field->type->typegroup == 'S') { + size_t parent_offset = ctx->head->parent_offset + field->offset; + if (field->type->fields->type == NULL) continue; + field = field->type->fields; + ++ctx->head; + ctx->head->field = field; + ctx->head->parent_offset = parent_offset; + break; + } else { + break; + } + } + } while (ctx->enc_count); + ctx->enc_type = 0; + ctx->is_complex = 0; + return 0; +} +static PyObject * +__pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) +{ + const char *ts = *tsp; + int i = 0, number; + int ndim = ctx->head->field->type->ndim; +; + ++ts; + if (ctx->new_count != 1) { + PyErr_SetString(PyExc_ValueError, + "Cannot handle repeated arrays in format string"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + while (*ts && *ts != ')') { + switch (*ts) { + case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; + default: break; + } + number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) + return PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %d", + ctx->head->field->type->arraysize[i], number); + if (*ts != ',' && *ts != ')') + return PyErr_Format(PyExc_ValueError, + "Expected a comma in format string, got '%c'", *ts); + if (*ts == ',') ts++; + i++; + } + if (i != ndim) + return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", + ctx->head->field->type->ndim, i); + if (!*ts) { + PyErr_SetString(PyExc_ValueError, + "Unexpected end of format string, expected ')'"); + return NULL; + } + ctx->is_valid_array = 1; + ctx->new_count = 1; + *tsp = ++ts; + return Py_None; +} +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { + int got_Z = 0; + while (1) { + switch(*ts) { + case 0: + if (ctx->enc_type != 0 && ctx->head == NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + if (ctx->head != NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + return ts; + case ' ': + case '\r': + case '\n': + ++ts; + break; + case '<': + if (!__Pyx_Is_Little_Endian()) { + PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '>': + case '!': + if (__Pyx_Is_Little_Endian()) { + PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '=': + case '@': + case '^': + ctx->new_packmode = *ts++; + break; + case 'T': + { + const char* ts_after_sub; + size_t i, struct_count = ctx->new_count; + size_t struct_alignment = ctx->struct_alignment; + ctx->new_count = 1; + ++ts; + if (*ts != '{') { + PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + ctx->enc_count = 0; + ctx->struct_alignment = 0; + ++ts; + ts_after_sub = ts; + for (i = 0; i != struct_count; ++i) { + ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); + if (!ts_after_sub) return NULL; + } + ts = ts_after_sub; + if (struct_alignment) ctx->struct_alignment = struct_alignment; + } + break; + case '}': + { + size_t alignment = ctx->struct_alignment; + ++ts; + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + if (alignment && ctx->fmt_offset % alignment) { + ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); + } + } + return ts; + case 'x': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->fmt_offset += ctx->new_count; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->enc_packmode = ctx->new_packmode; + ++ts; + break; + case 'Z': + got_Z = 1; + ++ts; + if (*ts != 'f' && *ts != 'd' && *ts != 'g') { + __Pyx_BufFmt_RaiseUnexpectedChar('Z'); + return NULL; + } + case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': + case 'l': case 'L': case 'q': case 'Q': + case 'f': case 'd': case 'g': + case 'O': case 'p': + if (ctx->enc_type == *ts && got_Z == ctx->is_complex && + ctx->enc_packmode == ctx->new_packmode) { + ctx->enc_count += ctx->new_count; + ctx->new_count = 1; + got_Z = 0; + ++ts; + break; + } + case 's': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_count = ctx->new_count; + ctx->enc_packmode = ctx->new_packmode; + ctx->enc_type = *ts; + ctx->is_complex = got_Z; + ++ts; + ctx->new_count = 1; + got_Z = 0; + break; + case ':': + ++ts; + while(*ts != ':') ++ts; + ++ts; + break; + case '(': + if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; + break; + default: + { + int number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + ctx->new_count = (size_t)number; + } + } + } +} + +/* BufferGetAndValidate */ + static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) { + if (unlikely(info->buf == NULL)) return; + if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL; + __Pyx_ReleaseBuffer(info); +} +static void __Pyx_ZeroBuffer(Py_buffer* buf) { + buf->buf = NULL; + buf->obj = NULL; + buf->strides = __Pyx_zeros; + buf->shape = __Pyx_zeros; + buf->suboffsets = __Pyx_minusones; +} +static int __Pyx__GetBufferAndValidate( + Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, + int nd, int cast, __Pyx_BufFmt_StackElem* stack) +{ + buf->buf = NULL; + if (unlikely(__Pyx_GetBuffer(obj, buf, flags) == -1)) { + __Pyx_ZeroBuffer(buf); + return -1; + } + if (unlikely(buf->ndim != nd)) { + PyErr_Format(PyExc_ValueError, + "Buffer has wrong number of dimensions (expected %d, got %d)", + nd, buf->ndim); + goto fail; + } + if (!cast) { + __Pyx_BufFmt_Context ctx; + __Pyx_BufFmt_Init(&ctx, stack, dtype); + if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; + } + if (unlikely((unsigned)buf->itemsize != dtype->size)) { + PyErr_Format(PyExc_ValueError, + "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)", + buf->itemsize, (buf->itemsize > 1) ? "s" : "", + dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : ""); + goto fail; + } + if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones; + return 0; +fail:; + __Pyx_SafeReleaseBuffer(buf); + return -1; +} + +/* BufferFallbackError */ + static void __Pyx_RaiseBufferFallbackError(void) { + PyErr_SetString(PyExc_ValueError, + "Buffer acquisition failed on assignment; and then reacquiring the old buffer failed too!"); +} + +/* RaiseTooManyValuesToUnpack */ + static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + PyErr_Format(PyExc_ValueError, + "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +} + +/* RaiseNeedMoreValuesToUnpack */ + static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + PyErr_Format(PyExc_ValueError, + "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", + index, (index == 1) ? "" : "s"); +} + +/* RaiseNoneIterError */ + static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); +} + +/* SaveResetException */ + #if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + #if PY_VERSION_HEX >= 0x030700A2 + *type = tstate->exc_state.exc_type; + *value = tstate->exc_state.exc_value; + *tb = tstate->exc_state.exc_traceback; + #else + *type = tstate->exc_type; + *value = tstate->exc_value; + *tb = tstate->exc_traceback; + #endif + Py_XINCREF(*type); + Py_XINCREF(*value); + Py_XINCREF(*tb); +} +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + #if PY_VERSION_HEX >= 0x030700A2 + tmp_type = tstate->exc_state.exc_type; + tmp_value = tstate->exc_state.exc_value; + tmp_tb = tstate->exc_state.exc_traceback; + tstate->exc_state.exc_type = type; + tstate->exc_state.exc_value = value; + tstate->exc_state.exc_traceback = tb; + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = type; + tstate->exc_value = value; + tstate->exc_traceback = tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +#endif + +/* PyErrExceptionMatches */ + #if CYTHON_FAST_THREAD_STATE +static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; icurexc_type; + if (exc_type == err) return 1; + if (unlikely(!exc_type)) return 0; + if (unlikely(PyTuple_Check(err))) + return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); + return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); +} +#endif + +/* GetException */ + #if CYTHON_FAST_THREAD_STATE +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { +#endif + PyObject *local_type, *local_value, *local_tb; +#if CYTHON_FAST_THREAD_STATE + PyObject *tmp_type, *tmp_value, *tmp_tb; + local_type = tstate->curexc_type; + local_value = tstate->curexc_value; + local_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +#else + PyErr_Fetch(&local_type, &local_value, &local_tb); +#endif + PyErr_NormalizeException(&local_type, &local_value, &local_tb); +#if CYTHON_FAST_THREAD_STATE + if (unlikely(tstate->curexc_type)) +#else + if (unlikely(PyErr_Occurred())) +#endif + goto bad; + #if PY_MAJOR_VERSION >= 3 + if (local_tb) { + if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) + goto bad; + } + #endif + Py_XINCREF(local_tb); + Py_XINCREF(local_type); + Py_XINCREF(local_value); + *type = local_type; + *value = local_value; + *tb = local_tb; +#if CYTHON_FAST_THREAD_STATE + #if PY_VERSION_HEX >= 0x030700A2 + tmp_type = tstate->exc_state.exc_type; + tmp_value = tstate->exc_state.exc_value; + tmp_tb = tstate->exc_state.exc_traceback; + tstate->exc_state.exc_type = local_type; + tstate->exc_state.exc_value = local_value; + tstate->exc_state.exc_traceback = local_tb; + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = local_type; + tstate->exc_value = local_value; + tstate->exc_traceback = local_tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +#else + PyErr_SetExcInfo(local_type, local_value, local_tb); +#endif + return 0; +bad: + *type = 0; + *value = 0; + *tb = 0; + Py_XDECREF(local_type); + Py_XDECREF(local_value); + Py_XDECREF(local_tb); + return -1; +} + +/* SetupReduce */ + static int __Pyx_setup_reduce_is_named(PyObject* meth, PyObject* name) { + int ret; + PyObject *name_attr; + name_attr = __Pyx_PyObject_GetAttrStr(meth, __pyx_n_s_name); + if (likely(name_attr)) { + ret = PyObject_RichCompareBool(name_attr, name, Py_EQ); + } else { + ret = -1; + } + if (unlikely(ret < 0)) { + PyErr_Clear(); + ret = 0; + } + Py_XDECREF(name_attr); + return ret; +} +static int __Pyx_setup_reduce(PyObject* type_obj) { + int ret = 0; + PyObject *object_reduce = NULL; + PyObject *object_reduce_ex = NULL; + PyObject *reduce = NULL; + PyObject *reduce_ex = NULL; + PyObject *reduce_cython = NULL; + PyObject *setstate = NULL; + PyObject *setstate_cython = NULL; +#if CYTHON_USE_PYTYPE_LOOKUP + if (_PyType_Lookup((PyTypeObject*)type_obj, __pyx_n_s_getstate)) goto GOOD; +#else + if (PyObject_HasAttr(type_obj, __pyx_n_s_getstate)) goto GOOD; +#endif +#if CYTHON_USE_PYTYPE_LOOKUP + object_reduce_ex = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto BAD; +#else + object_reduce_ex = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto BAD; +#endif + reduce_ex = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_ex); if (unlikely(!reduce_ex)) goto BAD; + if (reduce_ex == object_reduce_ex) { +#if CYTHON_USE_PYTYPE_LOOKUP + object_reduce = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto BAD; +#else + object_reduce = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto BAD; +#endif + reduce = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce); if (unlikely(!reduce)) goto BAD; + if (reduce == object_reduce || __Pyx_setup_reduce_is_named(reduce, __pyx_n_s_reduce_cython)) { + reduce_cython = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_cython); if (unlikely(!reduce_cython)) goto BAD; + ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce, reduce_cython); if (unlikely(ret < 0)) goto BAD; + ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce_cython); if (unlikely(ret < 0)) goto BAD; + setstate = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate); + if (!setstate) PyErr_Clear(); + if (!setstate || __Pyx_setup_reduce_is_named(setstate, __pyx_n_s_setstate_cython)) { + setstate_cython = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate_cython); if (unlikely(!setstate_cython)) goto BAD; + ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate, setstate_cython); if (unlikely(ret < 0)) goto BAD; + ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate_cython); if (unlikely(ret < 0)) goto BAD; + } + PyType_Modified((PyTypeObject*)type_obj); + } + } + goto GOOD; +BAD: + if (!PyErr_Occurred()) + PyErr_Format(PyExc_RuntimeError, "Unable to initialize pickling for %s", ((PyTypeObject*)type_obj)->tp_name); + ret = -1; +GOOD: +#if !CYTHON_USE_PYTYPE_LOOKUP + Py_XDECREF(object_reduce); + Py_XDECREF(object_reduce_ex); +#endif + Py_XDECREF(reduce); + Py_XDECREF(reduce_ex); + Py_XDECREF(reduce_cython); + Py_XDECREF(setstate); + Py_XDECREF(setstate_cython); + return ret; +} + +/* Import */ + static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + PyObject *empty_list = 0; + PyObject *module = 0; + PyObject *global_dict = 0; + PyObject *empty_dict = 0; + PyObject *list; + #if PY_MAJOR_VERSION < 3 + PyObject *py_import; + py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); + if (!py_import) + goto bad; + #endif + if (from_list) + list = from_list; + else { + empty_list = PyList_New(0); + if (!empty_list) + goto bad; + list = empty_list; + } + global_dict = PyModule_GetDict(__pyx_m); + if (!global_dict) + goto bad; + empty_dict = PyDict_New(); + if (!empty_dict) + goto bad; + { + #if PY_MAJOR_VERSION >= 3 + if (level == -1) { + if (strchr(__Pyx_MODULE_NAME, '.')) { + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, 1); + if (!module) { + if (!PyErr_ExceptionMatches(PyExc_ImportError)) + goto bad; + PyErr_Clear(); + } + } + level = 0; + } + #endif + if (!module) { + #if PY_MAJOR_VERSION < 3 + PyObject *py_level = PyInt_FromLong(level); + if (!py_level) + goto bad; + module = PyObject_CallFunctionObjArgs(py_import, + name, global_dict, empty_dict, list, py_level, NULL); + Py_DECREF(py_level); + #else + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, level); + #endif + } + } +bad: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(py_import); + #endif + Py_XDECREF(empty_list); + Py_XDECREF(empty_dict); + return module; +} + +/* CLineInTraceback */ + #ifndef CYTHON_CLINE_IN_TRACEBACK +static int __Pyx_CLineForTraceback(CYTHON_UNUSED PyThreadState *tstate, int c_line) { + PyObject *use_cline; + PyObject *ptype, *pvalue, *ptraceback; +#if CYTHON_COMPILING_IN_CPYTHON + PyObject **cython_runtime_dict; +#endif + __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); +#if CYTHON_COMPILING_IN_CPYTHON + cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); + if (likely(cython_runtime_dict)) { + use_cline = PyDict_GetItem(*cython_runtime_dict, __pyx_n_s_cline_in_traceback); + } else +#endif + { + PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); + if (use_cline_obj) { + use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; + Py_DECREF(use_cline_obj); + } else { + PyErr_Clear(); + use_cline = NULL; + } + } + if (!use_cline) { + c_line = 0; + PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); + } + else if (PyObject_Not(use_cline) != 0) { + c_line = 0; + } + __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); + return c_line; +} +#endif + +/* CodeObjectCache */ + static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + int start = 0, mid = 0, end = count - 1; + if (end >= 0 && code_line > entries[end].code_line) { + return count; + } + while (start < end) { + mid = start + (end - start) / 2; + if (code_line < entries[mid].code_line) { + end = mid; + } else if (code_line > entries[mid].code_line) { + start = mid + 1; + } else { + return mid; + } + } + if (code_line <= entries[mid].code_line) { + return mid; + } else { + return mid + 1; + } +} +static PyCodeObject *__pyx_find_code_object(int code_line) { + PyCodeObject* code_object; + int pos; + if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { + return NULL; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { + return NULL; + } + code_object = __pyx_code_cache.entries[pos].code_object; + Py_INCREF(code_object); + return code_object; +} +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { + int pos, i; + __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; + if (unlikely(!code_line)) { + return; + } + if (unlikely(!entries)) { + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); + if (likely(entries)) { + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = 64; + __pyx_code_cache.count = 1; + entries[0].code_line = code_line; + entries[0].code_object = code_object; + Py_INCREF(code_object); + } + return; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { + PyCodeObject* tmp = entries[pos].code_object; + entries[pos].code_object = code_object; + Py_DECREF(tmp); + return; + } + if (__pyx_code_cache.count == __pyx_code_cache.max_count) { + int new_max = __pyx_code_cache.max_count + 64; + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( + __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); + if (unlikely(!entries)) { + return; + } + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = new_max; + } + for (i=__pyx_code_cache.count; i>pos; i--) { + entries[i] = entries[i-1]; + } + entries[pos].code_line = code_line; + entries[pos].code_object = code_object; + __pyx_code_cache.count++; + Py_INCREF(code_object); +} + +/* AddTraceback */ + #include "compile.h" +#include "frameobject.h" +#include "traceback.h" +static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( + const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyObject *py_srcfile = 0; + PyObject *py_funcname = 0; + #if PY_MAJOR_VERSION < 3 + py_srcfile = PyString_FromString(filename); + #else + py_srcfile = PyUnicode_FromString(filename); + #endif + if (!py_srcfile) goto bad; + if (c_line) { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #else + py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #endif + } + else { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromString(funcname); + #else + py_funcname = PyUnicode_FromString(funcname); + #endif + } + if (!py_funcname) goto bad; + py_code = __Pyx_PyCode_New( + 0, + 0, + 0, + 0, + 0, + __pyx_empty_bytes, /*PyObject *code,*/ + __pyx_empty_tuple, /*PyObject *consts,*/ + __pyx_empty_tuple, /*PyObject *names,*/ + __pyx_empty_tuple, /*PyObject *varnames,*/ + __pyx_empty_tuple, /*PyObject *freevars,*/ + __pyx_empty_tuple, /*PyObject *cellvars,*/ + py_srcfile, /*PyObject *filename,*/ + py_funcname, /*PyObject *name,*/ + py_line, + __pyx_empty_bytes /*PyObject *lnotab*/ + ); + Py_DECREF(py_srcfile); + Py_DECREF(py_funcname); + return py_code; +bad: + Py_XDECREF(py_srcfile); + Py_XDECREF(py_funcname); + return NULL; +} +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyFrameObject *py_frame = 0; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + if (c_line) { + c_line = __Pyx_CLineForTraceback(tstate, c_line); + } + py_code = __pyx_find_code_object(c_line ? -c_line : py_line); + if (!py_code) { + py_code = __Pyx_CreateCodeObjectForTraceback( + funcname, c_line, py_line, filename); + if (!py_code) goto bad; + __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); + } + py_frame = PyFrame_New( + tstate, /*PyThreadState *tstate,*/ + py_code, /*PyCodeObject *code,*/ + __pyx_d, /*PyObject *globals,*/ + 0 /*PyObject *locals*/ + ); + if (!py_frame) goto bad; + __Pyx_PyFrame_SetLineNumber(py_frame, py_line); + PyTraceBack_Here(py_frame); +bad: + Py_XDECREF(py_code); + Py_XDECREF(py_frame); +} + +#if PY_MAJOR_VERSION < 3 +static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { + if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); + if (__Pyx_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) return __pyx_pw_5numpy_7ndarray_1__getbuffer__(obj, view, flags); + PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); + return -1; +} +static void __Pyx_ReleaseBuffer(Py_buffer *view) { + PyObject *obj = view->obj; + if (!obj) return; + if (PyObject_CheckBuffer(obj)) { + PyBuffer_Release(view); + return; + } + if ((0)) {} + else if (__Pyx_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) __pyx_pw_5numpy_7ndarray_3__releasebuffer__(obj, view); + view->obj = NULL; + Py_DECREF(obj); +} +#endif + + + /* CIntFromPyVerify */ + #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) +#define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) +#define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ + {\ + func_type value = func_value;\ + if (sizeof(target_type) < sizeof(func_type)) {\ + if (unlikely(value != (func_type) (target_type) value)) {\ + func_type zero = 0;\ + if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ + return (target_type) -1;\ + if (is_unsigned && unlikely(value < zero))\ + goto raise_neg_overflow;\ + else\ + goto raise_overflow;\ + }\ + }\ + return (target_type) value;\ + } + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_uint32_t(uint32_t value) { + const uint32_t neg_one = (uint32_t) -1, const_zero = (uint32_t) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(uint32_t) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(uint32_t) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(uint32_t) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(uint32_t) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(uint32_t) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(uint32_t), + little, !is_unsigned); + } +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int8_t(int8_t value) { + const int8_t neg_one = (int8_t) -1, const_zero = (int8_t) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(int8_t) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(int8_t) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int8_t) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(int8_t) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int8_t) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(int8_t), + little, !is_unsigned); + } +} + +/* Declarations */ + #if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return ::std::complex< float >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return x + y*(__pyx_t_float_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + __pyx_t_float_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ + #if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabsf(b.real) >= fabsf(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + float r = b.imag / b.real; + float s = 1.0 / (b.real + b.imag * r); + return __pyx_t_float_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + float r = b.real / b.imag; + float s = 1.0 / (b.imag + b.real * r); + return __pyx_t_float_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + float denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_float_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrtf(z.real*z.real + z.imag*z.imag); + #else + return hypotf(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + float r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + float denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(a, a); + case 3: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, a); + case 4: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = powf(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2f(0, -1); + } + } else { + r = __Pyx_c_abs_float(a); + theta = atan2f(a.imag, a.real); + } + lnr = logf(r); + z_r = expf(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cosf(z_theta); + z.imag = z_r * sinf(z_theta); + return z; + } + #endif +#endif + +/* Declarations */ + #if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return ::std::complex< double >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return x + y*(__pyx_t_double_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + __pyx_t_double_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ + #if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabs(b.real) >= fabs(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + double r = b.imag / b.real; + double s = 1.0 / (b.real + b.imag * r); + return __pyx_t_double_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + double r = b.real / b.imag; + double s = 1.0 / (b.imag + b.real * r); + return __pyx_t_double_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + double denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_double_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrt(z.real*z.real + z.imag*z.imag); + #else + return hypot(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + double r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + double denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(a, a); + case 3: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, a); + case 4: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = pow(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2(0, -1); + } + } else { + r = __Pyx_c_abs_double(a); + theta = atan2(a.imag, a.real); + } + lnr = log(r); + z_r = exp(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cos(z_theta); + z.imag = z_r * sin(z_theta); + return z; + } + #endif +#endif + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + const int neg_one = (int) -1, const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(int) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(int) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(int) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(int), + little, !is_unsigned); + } +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value) { + const enum NPY_TYPES neg_one = (enum NPY_TYPES) -1, const_zero = (enum NPY_TYPES) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(enum NPY_TYPES) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(enum NPY_TYPES) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(enum NPY_TYPES) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(enum NPY_TYPES), + little, !is_unsigned); + } +} + +/* CIntFromPy */ + static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + const int neg_one = (int) -1, const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(int) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (int) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { + return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { + return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { + return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (int) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(int) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) + case -2: + if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + } +#endif + if (sizeof(int) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + int val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (int) -1; + } + } else { + int val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (int) -1; + val = __Pyx_PyInt_As_int(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to int"); + return (int) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to int"); + return (int) -1; +} + +/* CIntFromPy */ + static CYTHON_INLINE uint32_t __Pyx_PyInt_As_uint32_t(PyObject *x) { + const uint32_t neg_one = (uint32_t) -1, const_zero = (uint32_t) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(uint32_t) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(uint32_t, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (uint32_t) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (uint32_t) 0; + case 1: __PYX_VERIFY_RETURN_INT(uint32_t, digit, digits[0]) + case 2: + if (8 * sizeof(uint32_t) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) >= 2 * PyLong_SHIFT) { + return (uint32_t) (((((uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(uint32_t) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) >= 3 * PyLong_SHIFT) { + return (uint32_t) (((((((uint32_t)digits[2]) << PyLong_SHIFT) | (uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(uint32_t) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) >= 4 * PyLong_SHIFT) { + return (uint32_t) (((((((((uint32_t)digits[3]) << PyLong_SHIFT) | (uint32_t)digits[2]) << PyLong_SHIFT) | (uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (uint32_t) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(uint32_t) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(uint32_t, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(uint32_t) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(uint32_t, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (uint32_t) 0; + case -1: __PYX_VERIFY_RETURN_INT(uint32_t, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(uint32_t, digit, +digits[0]) + case -2: + if (8 * sizeof(uint32_t) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) - 1 > 2 * PyLong_SHIFT) { + return (uint32_t) (((uint32_t)-1)*(((((uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(uint32_t) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) - 1 > 2 * PyLong_SHIFT) { + return (uint32_t) ((((((uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(uint32_t) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) - 1 > 3 * PyLong_SHIFT) { + return (uint32_t) (((uint32_t)-1)*(((((((uint32_t)digits[2]) << PyLong_SHIFT) | (uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(uint32_t) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) - 1 > 3 * PyLong_SHIFT) { + return (uint32_t) ((((((((uint32_t)digits[2]) << PyLong_SHIFT) | (uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(uint32_t) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) - 1 > 4 * PyLong_SHIFT) { + return (uint32_t) (((uint32_t)-1)*(((((((((uint32_t)digits[3]) << PyLong_SHIFT) | (uint32_t)digits[2]) << PyLong_SHIFT) | (uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(uint32_t) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(uint32_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(uint32_t) - 1 > 4 * PyLong_SHIFT) { + return (uint32_t) ((((((((((uint32_t)digits[3]) << PyLong_SHIFT) | (uint32_t)digits[2]) << PyLong_SHIFT) | (uint32_t)digits[1]) << PyLong_SHIFT) | (uint32_t)digits[0]))); + } + } + break; + } +#endif + if (sizeof(uint32_t) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(uint32_t, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(uint32_t) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(uint32_t, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + uint32_t val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (uint32_t) -1; + } + } else { + uint32_t val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (uint32_t) -1; + val = __Pyx_PyInt_As_uint32_t(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to uint32_t"); + return (uint32_t) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to uint32_t"); + return (uint32_t) -1; +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + const long neg_one = (long) -1, const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(long) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(long) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(long) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(long), + little, !is_unsigned); + } +} + +/* CIntFromPy */ + static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + const long neg_one = (long) -1, const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(long) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (long) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { + return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { + return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { + return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (long) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(long) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) + case -2: + if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + } +#endif + if (sizeof(long) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + long val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (long) -1; + } + } else { + long val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (long) -1; + val = __Pyx_PyInt_As_long(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to long"); + return (long) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to long"); + return (long) -1; +} + +/* FastTypeChecks */ + #if CYTHON_COMPILING_IN_CPYTHON +static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { + while (a) { + a = a->tp_base; + if (a == b) + return 1; + } + return b == &PyBaseObject_Type; +} +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { + PyObject *mro; + if (a == b) return 1; + mro = a->tp_mro; + if (likely(mro)) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(mro); + for (i = 0; i < n; i++) { + if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) + return 1; + } + return 0; + } + return __Pyx_InBases(a, b); +} +#if PY_MAJOR_VERSION == 2 +static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { + PyObject *exception, *value, *tb; + int res; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&exception, &value, &tb); + res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + if (!res) { + res = PyObject_IsSubclass(err, exc_type2); + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + } + __Pyx_ErrRestore(exception, value, tb); + return res; +} +#else +static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { + int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; + if (!res) { + res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); + } + return res; +} +#endif +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject* exc_type) { + if (likely(err == exc_type)) return 1; + if (likely(PyExceptionClass_Check(err))) { + return __Pyx_inner_PyErr_GivenExceptionMatches2(err, NULL, exc_type); + } + return PyErr_GivenExceptionMatches(err, exc_type); +} +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *exc_type1, PyObject *exc_type2) { + if (likely(err == exc_type1 || err == exc_type2)) return 1; + if (likely(PyExceptionClass_Check(err))) { + return __Pyx_inner_PyErr_GivenExceptionMatches2(err, exc_type1, exc_type2); + } + return (PyErr_GivenExceptionMatches(err, exc_type1) || PyErr_GivenExceptionMatches(err, exc_type2)); +} +#endif + +/* CheckBinaryVersion */ + static int __Pyx_check_binary_version(void) { + char ctversion[4], rtversion[4]; + PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); + PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); + if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) { + char message[200]; + PyOS_snprintf(message, sizeof(message), + "compiletime version %s of module '%.100s' " + "does not match runtime version %s", + ctversion, __Pyx_MODULE_NAME, rtversion); + return PyErr_WarnEx(NULL, message, 1); + } + return 0; +} + +/* ModuleImport */ + #ifndef __PYX_HAVE_RT_ImportModule +#define __PYX_HAVE_RT_ImportModule +static PyObject *__Pyx_ImportModule(const char *name) { + PyObject *py_name = 0; + PyObject *py_module = 0; + py_name = __Pyx_PyIdentifier_FromString(name); + if (!py_name) + goto bad; + py_module = PyImport_Import(py_name); + Py_DECREF(py_name); + return py_module; +bad: + Py_XDECREF(py_name); + return 0; +} +#endif + +/* TypeImport */ + #ifndef __PYX_HAVE_RT_ImportType +#define __PYX_HAVE_RT_ImportType +static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, + size_t size, int strict) +{ + PyObject *py_module = 0; + PyObject *result = 0; + PyObject *py_name = 0; + char warning[200]; + Py_ssize_t basicsize; +#ifdef Py_LIMITED_API + PyObject *py_basicsize; +#endif + py_module = __Pyx_ImportModule(module_name); + if (!py_module) + goto bad; + py_name = __Pyx_PyIdentifier_FromString(class_name); + if (!py_name) + goto bad; + result = PyObject_GetAttr(py_module, py_name); + Py_DECREF(py_name); + py_name = 0; + Py_DECREF(py_module); + py_module = 0; + if (!result) + goto bad; + if (!PyType_Check(result)) { + PyErr_Format(PyExc_TypeError, + "%.200s.%.200s is not a type object", + module_name, class_name); + goto bad; + } +#ifndef Py_LIMITED_API + basicsize = ((PyTypeObject *)result)->tp_basicsize; +#else + py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); + if (!py_basicsize) + goto bad; + basicsize = PyLong_AsSsize_t(py_basicsize); + Py_DECREF(py_basicsize); + py_basicsize = 0; + if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) + goto bad; +#endif + if (!strict && (size_t)basicsize > size) { + PyOS_snprintf(warning, sizeof(warning), + "%s.%s size changed, may indicate binary incompatibility. Expected %zd, got %zd", + module_name, class_name, basicsize, size); + if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; + } + else if ((size_t)basicsize != size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s has the wrong size, try recompiling. Expected %zd, got %zd", + module_name, class_name, basicsize, size); + goto bad; + } + return (PyTypeObject *)result; +bad: + Py_XDECREF(py_module); + Py_XDECREF(result); + return NULL; +} +#endif + +/* InitStrings */ + static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { + while (t->p) { + #if PY_MAJOR_VERSION < 3 + if (t->is_unicode) { + *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); + } else if (t->intern) { + *t->p = PyString_InternFromString(t->s); + } else { + *t->p = PyString_FromStringAndSize(t->s, t->n - 1); + } + #else + if (t->is_unicode | t->is_str) { + if (t->intern) { + *t->p = PyUnicode_InternFromString(t->s); + } else if (t->encoding) { + *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); + } else { + *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); + } + } else { + *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); + } + #endif + if (!*t->p) + return -1; + if (PyObject_Hash(*t->p) == -1) + PyErr_Clear(); + ++t; + } + return 0; +} + +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { + return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); +} +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { + Py_ssize_t ignore; + return __Pyx_PyObject_AsStringAndSize(o, &ignore); +} +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +#if !CYTHON_PEP393_ENABLED +static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + char* defenc_c; + PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); + if (!defenc) return NULL; + defenc_c = PyBytes_AS_STRING(defenc); +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + { + char* end = defenc_c + PyBytes_GET_SIZE(defenc); + char* c; + for (c = defenc_c; c < end; c++) { + if ((unsigned char) (*c) >= 128) { + PyUnicode_AsASCIIString(o); + return NULL; + } + } + } +#endif + *length = PyBytes_GET_SIZE(defenc); + return defenc_c; +} +#else +static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + if (likely(PyUnicode_IS_ASCII(o))) { + *length = PyUnicode_GET_LENGTH(o); + return PyUnicode_AsUTF8(o); + } else { + PyUnicode_AsASCIIString(o); + return NULL; + } +#else + return PyUnicode_AsUTF8AndSize(o, length); +#endif +} +#endif +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT + if ( +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + __Pyx_sys_getdefaultencoding_not_ascii && +#endif + PyUnicode_Check(o)) { + return __Pyx_PyUnicode_AsStringAndSize(o, length); + } else +#endif +#if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) + if (PyByteArray_Check(o)) { + *length = PyByteArray_GET_SIZE(o); + return PyByteArray_AS_STRING(o); + } else +#endif + { + char* result; + int r = PyBytes_AsStringAndSize(o, &result, length); + if (unlikely(r < 0)) { + return NULL; + } else { + return result; + } + } +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { + int is_true = x == Py_True; + if (is_true | (x == Py_False) | (x == Py_None)) return is_true; + else return PyObject_IsTrue(x); +} +static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { +#if PY_MAJOR_VERSION >= 3 + if (PyLong_Check(result)) { + if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, + "__int__ returned non-int (type %.200s). " + "The ability to return an instance of a strict subclass of int " + "is deprecated, and may be removed in a future version of Python.", + Py_TYPE(result)->tp_name)) { + Py_DECREF(result); + return NULL; + } + return result; + } +#endif + PyErr_Format(PyExc_TypeError, + "__%.4s__ returned non-%.4s (type %.200s)", + type_name, type_name, Py_TYPE(result)->tp_name); + Py_DECREF(result); + return NULL; +} +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { +#if CYTHON_USE_TYPE_SLOTS + PyNumberMethods *m; +#endif + const char *name = NULL; + PyObject *res = NULL; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x) || PyLong_Check(x))) +#else + if (likely(PyLong_Check(x))) +#endif + return __Pyx_NewRef(x); +#if CYTHON_USE_TYPE_SLOTS + m = Py_TYPE(x)->tp_as_number; + #if PY_MAJOR_VERSION < 3 + if (m && m->nb_int) { + name = "int"; + res = m->nb_int(x); + } + else if (m && m->nb_long) { + name = "long"; + res = m->nb_long(x); + } + #else + if (likely(m && m->nb_int)) { + name = "int"; + res = m->nb_int(x); + } + #endif +#else + if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { + res = PyNumber_Int(x); + } +#endif + if (likely(res)) { +#if PY_MAJOR_VERSION < 3 + if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { +#else + if (unlikely(!PyLong_CheckExact(res))) { +#endif + return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); + } + } + else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + } + return res; +} +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { + Py_ssize_t ival; + PyObject *x; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(b))) { + if (sizeof(Py_ssize_t) >= sizeof(long)) + return PyInt_AS_LONG(b); + else + return PyInt_AsSsize_t(x); + } +#endif + if (likely(PyLong_CheckExact(b))) { + #if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)b)->ob_digit; + const Py_ssize_t size = Py_SIZE(b); + if (likely(__Pyx_sst_abs(size) <= 1)) { + ival = likely(size) ? digits[0] : 0; + if (size == -1) ival = -ival; + return ival; + } else { + switch (size) { + case 2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + } + } + #endif + return PyLong_AsSsize_t(b); + } + x = PyNumber_Index(b); + if (!x) return -1; + ival = PyInt_AsSsize_t(x); + Py_DECREF(x); + return ival; +} +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { + return PyInt_FromSize_t(ival); +} + + +#endif /* Py_PYTHON_H */ diff --git a/eval/src/utils/libkdtree/pykdtree/kdtree.pyx b/eval/src/utils/libkdtree/pykdtree/kdtree.pyx new file mode 100644 index 0000000..0f40da2 --- /dev/null +++ b/eval/src/utils/libkdtree/pykdtree/kdtree.pyx @@ -0,0 +1,280 @@ +#pykdtree, Fast kd-tree implementation with OpenMP-enabled queries +# +#Copyright (C) 2013 - present Esben S. Nielsen +# +# This program is free software: you can redistribute it and/or modify it under +# the terms of the GNU Lesser General Public License as published by the Free +# Software Foundation, either version 3 of the License, or +#(at your option) any later version. +# +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more +# details. +# +# You should have received a copy of the GNU Lesser General Public License along +# with this program. If not, see . + +import numpy as np +cimport numpy as np +from libc.stdint cimport uint32_t, int8_t, uint8_t +cimport cython + + +# Node structure +cdef struct node_float: + float cut_val + int8_t cut_dim + uint32_t start_idx + uint32_t n + float cut_bounds_lv + float cut_bounds_hv + node_float *left_child + node_float *right_child + +cdef struct tree_float: + float *bbox + int8_t no_dims + uint32_t *pidx + node_float *root + +cdef struct node_double: + double cut_val + int8_t cut_dim + uint32_t start_idx + uint32_t n + double cut_bounds_lv + double cut_bounds_hv + node_double *left_child + node_double *right_child + +cdef struct tree_double: + double *bbox + int8_t no_dims + uint32_t *pidx + node_double *root + +cdef extern tree_float* construct_tree_float(float *pa, int8_t no_dims, uint32_t n, uint32_t bsp) nogil +cdef extern void search_tree_float(tree_float *kdtree, float *pa, float *point_coords, uint32_t num_points, uint32_t k, float distance_upper_bound, float eps_fac, uint8_t *mask, uint32_t *closest_idxs, float *closest_dists) nogil +cdef extern void delete_tree_float(tree_float *kdtree) + +cdef extern tree_double* construct_tree_double(double *pa, int8_t no_dims, uint32_t n, uint32_t bsp) nogil +cdef extern void search_tree_double(tree_double *kdtree, double *pa, double *point_coords, uint32_t num_points, uint32_t k, double distance_upper_bound, double eps_fac, uint8_t *mask, uint32_t *closest_idxs, double *closest_dists) nogil +cdef extern void delete_tree_double(tree_double *kdtree) + +cdef class KDTree: + """kd-tree for fast nearest-neighbour lookup. + The interface is made to resemble the scipy.spatial kd-tree except + only Euclidean distance measure is supported. + + :Parameters: + data_pts : numpy array + Data points with shape (n , dims) + leafsize : int, optional + Maximum number of data points in tree leaf + """ + + cdef tree_float *_kdtree_float + cdef tree_double *_kdtree_double + cdef readonly np.ndarray data_pts + cdef readonly np.ndarray data + cdef float *_data_pts_data_float + cdef double *_data_pts_data_double + cdef readonly uint32_t n + cdef readonly int8_t ndim + cdef readonly uint32_t leafsize + + def __cinit__(KDTree self): + self._kdtree_float = NULL + self._kdtree_double = NULL + + def __init__(KDTree self, np.ndarray data_pts not None, int leafsize=16): + + # Check arguments + if leafsize < 1: + raise ValueError('leafsize must be greater than zero') + + # Get data content + cdef np.ndarray[float, ndim=1] data_array_float + cdef np.ndarray[double, ndim=1] data_array_double + + if data_pts.dtype == np.float32: + data_array_float = np.ascontiguousarray(data_pts.ravel(), dtype=np.float32) + self._data_pts_data_float = data_array_float.data + self.data_pts = data_array_float + else: + data_array_double = np.ascontiguousarray(data_pts.ravel(), dtype=np.float64) + self._data_pts_data_double = data_array_double.data + self.data_pts = data_array_double + + # scipy interface compatibility + self.data = self.data_pts + + # Get tree info + self.n = data_pts.shape[0] + self.leafsize = leafsize + if data_pts.ndim == 1: + self.ndim = 1 + else: + self.ndim = data_pts.shape[1] + + # Release GIL and construct tree + if data_pts.dtype == np.float32: + with nogil: + self._kdtree_float = construct_tree_float(self._data_pts_data_float, self.ndim, + self.n, self.leafsize) + else: + with nogil: + self._kdtree_double = construct_tree_double(self._data_pts_data_double, self.ndim, + self.n, self.leafsize) + + + def query(KDTree self, np.ndarray query_pts not None, k=1, eps=0, + distance_upper_bound=None, sqr_dists=False, mask=None): + """Query the kd-tree for nearest neighbors + + :Parameters: + query_pts : numpy array + Query points with shape (m, dims) + k : int + The number of nearest neighbours to return + eps : non-negative float + Return approximate nearest neighbours; the k-th returned value + is guaranteed to be no further than (1 + eps) times the distance + to the real k-th nearest neighbour + distance_upper_bound : non-negative float + Return only neighbors within this distance. + This is used to prune tree searches. + sqr_dists : bool, optional + Internally pykdtree works with squared distances. + Determines if the squared or Euclidean distances are returned. + mask : numpy array, optional + Array of booleans where neighbors are considered invalid and + should not be returned. A mask value of True represents an + invalid pixel. Mask should have shape (n,) to match data points. + By default all points are considered valid. + + """ + + # Check arguments + if k < 1: + raise ValueError('Number of neighbours must be greater than zero') + elif eps < 0: + raise ValueError('eps must be non-negative') + elif distance_upper_bound is not None: + if distance_upper_bound < 0: + raise ValueError('distance_upper_bound must be non negative') + + # Check dimensions + if query_pts.ndim == 1: + q_ndim = 1 + else: + q_ndim = query_pts.shape[1] + + if self.ndim != q_ndim: + raise ValueError('Data and query points must have same dimensions') + + if self.data_pts.dtype == np.float32 and query_pts.dtype != np.float32: + raise TypeError('Type mismatch. query points must be of type float32 when data points are of type float32') + + # Get query info + cdef uint32_t num_qpoints = query_pts.shape[0] + cdef uint32_t num_n = k + cdef np.ndarray[uint32_t, ndim=1] closest_idxs = np.empty(num_qpoints * k, dtype=np.uint32) + cdef np.ndarray[float, ndim=1] closest_dists_float + cdef np.ndarray[double, ndim=1] closest_dists_double + + + # Set up return arrays + cdef uint32_t *closest_idxs_data = closest_idxs.data + cdef float *closest_dists_data_float + cdef double *closest_dists_data_double + + # Get query points data + cdef np.ndarray[float, ndim=1] query_array_float + cdef np.ndarray[double, ndim=1] query_array_double + cdef float *query_array_data_float + cdef double *query_array_data_double + cdef np.ndarray[np.uint8_t, ndim=1] query_mask + cdef np.uint8_t *query_mask_data + + if mask is not None and mask.size != self.n: + raise ValueError('Mask must have the same size as data points') + elif mask is not None: + query_mask = np.ascontiguousarray(mask.ravel(), dtype=np.uint8) + query_mask_data = query_mask.data + else: + query_mask_data = NULL + + + if query_pts.dtype == np.float32 and self.data_pts.dtype == np.float32: + closest_dists_float = np.empty(num_qpoints * k, dtype=np.float32) + closest_dists = closest_dists_float + closest_dists_data_float = closest_dists_float.data + query_array_float = np.ascontiguousarray(query_pts.ravel(), dtype=np.float32) + query_array_data_float = query_array_float.data + else: + closest_dists_double = np.empty(num_qpoints * k, dtype=np.float64) + closest_dists = closest_dists_double + closest_dists_data_double = closest_dists_double.data + query_array_double = np.ascontiguousarray(query_pts.ravel(), dtype=np.float64) + query_array_data_double = query_array_double.data + + # Setup distance_upper_bound + cdef float dub_float + cdef double dub_double + if distance_upper_bound is None: + if self.data_pts.dtype == np.float32: + dub_float = np.finfo(np.float32).max + else: + dub_double = np.finfo(np.float64).max + else: + if self.data_pts.dtype == np.float32: + dub_float = (distance_upper_bound * distance_upper_bound) + else: + dub_double = (distance_upper_bound * distance_upper_bound) + + # Set epsilon + cdef double epsilon_float = eps + cdef double epsilon_double = eps + + # Release GIL and query tree + if self.data_pts.dtype == np.float32: + with nogil: + search_tree_float(self._kdtree_float, self._data_pts_data_float, + query_array_data_float, num_qpoints, num_n, dub_float, epsilon_float, + query_mask_data, closest_idxs_data, closest_dists_data_float) + + else: + with nogil: + search_tree_double(self._kdtree_double, self._data_pts_data_double, + query_array_data_double, num_qpoints, num_n, dub_double, epsilon_double, + query_mask_data, closest_idxs_data, closest_dists_data_double) + + # Shape result + if k > 1: + closest_dists_res = closest_dists.reshape(num_qpoints, k) + closest_idxs_res = closest_idxs.reshape(num_qpoints, k) + else: + closest_dists_res = closest_dists + closest_idxs_res = closest_idxs + + if distance_upper_bound is not None: # Mark out of bounds results + if self.data_pts.dtype == np.float32: + idx_out = (closest_dists_res >= dub_float) + else: + idx_out = (closest_dists_res >= dub_double) + + closest_dists_res[idx_out] = np.Inf + closest_idxs_res[idx_out] = self.n + + if not sqr_dists: # Return actual cartesian distances + closest_dists_res = np.sqrt(closest_dists_res) + + return closest_dists_res, closest_idxs_res + + def __dealloc__(KDTree self): + if self._kdtree_float != NULL: + delete_tree_float(self._kdtree_float) + elif self._kdtree_double != NULL: + delete_tree_double(self._kdtree_double) diff --git a/eval/src/utils/libkdtree/pykdtree/render_template.py b/eval/src/utils/libkdtree/pykdtree/render_template.py new file mode 100644 index 0000000..34cc167 --- /dev/null +++ b/eval/src/utils/libkdtree/pykdtree/render_template.py @@ -0,0 +1,7 @@ +#!/usr/bin/env python + +from mako.template import Template + +mytemplate = Template(filename='_kdtree_core.c.mako') +with open('_kdtree_core.c', 'w') as fp: + fp.write(mytemplate.render()) diff --git a/eval/src/utils/libkdtree/pykdtree/test_tree.py b/eval/src/utils/libkdtree/pykdtree/test_tree.py new file mode 100644 index 0000000..5b33b74 --- /dev/null +++ b/eval/src/utils/libkdtree/pykdtree/test_tree.py @@ -0,0 +1,353 @@ +import numpy as np + +from pykdtree.kdtree import KDTree + + +data_pts_real = np.array([[ 790535.062, -369324.656, 6310963.5 ], + [ 790024.312, -365155.688, 6311270. ], + [ 789515.75 , -361009.469, 6311572. ], + [ 789011. , -356886.562, 6311869.5 ], + [ 788508.438, -352785.969, 6312163. ], + [ 788007.25 , -348707.219, 6312452. ], + [ 787509.188, -344650.875, 6312737. ], + [ 787014.438, -340616.906, 6313018. ], + [ 786520.312, -336604.156, 6313294.5 ], + [ 786030.312, -332613.844, 6313567. ], + [ 785541.562, -328644.375, 6313835.5 ], + [ 785054.75 , -324696.031, 6314100.5 ], + [ 784571.188, -320769.5 , 6314361.5 ], + [ 784089.312, -316863.562, 6314618.5 ], + [ 783610.562, -312978.719, 6314871.5 ], + [ 783133. , -309114.312, 6315121. ], + [ 782658.25 , -305270.531, 6315367. ], + [ 782184.312, -301446.719, 6315609. ], + [ 781715.062, -297643.844, 6315847.5 ], + [ 781246.188, -293860.281, 6316083. ], + [ 780780.125, -290096.938, 6316314.5 ], + [ 780316.312, -286353.469, 6316542.5 ], + [ 779855.625, -282629.75 , 6316767.5 ], + [ 779394.75 , -278924.781, 6316988.5 ], + [ 778937.312, -275239.625, 6317206.5 ], + [ 778489.812, -271638.094, 6317418. ], + [ 778044.688, -268050.562, 6317626. ], + [ 777599.688, -264476.75 , 6317831.5 ], + [ 777157.625, -260916.859, 6318034. ], + [ 776716.688, -257371.125, 6318233.5 ], + [ 776276.812, -253838.891, 6318430.5 ], + [ 775838.125, -250320.266, 6318624.5 ], + [ 775400.75 , -246815.516, 6318816.5 ], + [ 774965.312, -243324.953, 6319005. ], + [ 774532.062, -239848.25 , 6319191. ], + [ 774100.25 , -236385.516, 6319374.5 ], + [ 773667.875, -232936.016, 6319555.5 ], + [ 773238.562, -229500.812, 6319734. ], + [ 772810.938, -226079.562, 6319909.5 ], + [ 772385.25 , -222672.219, 6320082.5 ], + [ 771960. , -219278.5 , 6320253. ], + [ 771535.938, -215898.609, 6320421. ], + [ 771114. , -212532.625, 6320587. ], + [ 770695. , -209180.859, 6320749.5 ], + [ 770275.25 , -205842.562, 6320910.5 ], + [ 769857.188, -202518.125, 6321068.5 ], + [ 769442.312, -199207.844, 6321224.5 ], + [ 769027.812, -195911.203, 6321378. ], + [ 768615.938, -192628.859, 6321529. ], + [ 768204.688, -189359.969, 6321677.5 ], + [ 767794.062, -186104.844, 6321824. ], + [ 767386.25 , -182864.016, 6321968.5 ], + [ 766980.062, -179636.969, 6322110. ], + [ 766575.625, -176423.75 , 6322249.5 ], + [ 766170.688, -173224.172, 6322387. ], + [ 765769.812, -170038.984, 6322522.5 ], + [ 765369.5 , -166867.312, 6322655. ], + [ 764970.562, -163709.594, 6322786. ], + [ 764573. , -160565.781, 6322914.5 ], + [ 764177.75 , -157435.938, 6323041. ], + [ 763784.188, -154320.062, 6323165.5 ], + [ 763392.375, -151218.047, 6323288. ], + [ 763000.938, -148129.734, 6323408. ], + [ 762610.812, -145055.344, 6323526.5 ], + [ 762224.188, -141995.141, 6323642.5 ], + [ 761847.188, -139025.734, 6323754. ], + [ 761472.375, -136066.312, 6323863.5 ], + [ 761098.125, -133116.859, 6323971.5 ], + [ 760725.25 , -130177.484, 6324077.5 ], + [ 760354. , -127247.984, 6324181.5 ], + [ 759982.812, -124328.336, 6324284.5 ], + [ 759614. , -121418.844, 6324385. ], + [ 759244.688, -118519.102, 6324484.5 ], + [ 758877.125, -115629.305, 6324582. ], + [ 758511.562, -112749.648, 6324677.5 ], + [ 758145.625, -109879.82 , 6324772.5 ], + [ 757781.688, -107019.953, 6324865. ], + [ 757418.438, -104170.047, 6324956. ], + [ 757056.562, -101330.125, 6325045.5 ], + [ 756697. , -98500.266, 6325133.5 ], + [ 756337.375, -95680.289, 6325219.5 ], + [ 755978.062, -92870.148, 6325304.5 ], + [ 755621.188, -90070.109, 6325387.5 ], + [ 755264.625, -87280.008, 6325469. ], + [ 754909.188, -84499.828, 6325549. ], + [ 754555.062, -81729.609, 6325628. ], + [ 754202.938, -78969.43 , 6325705. ], + [ 753850.688, -76219.133, 6325781. ], + [ 753499.875, -73478.836, 6325855. ], + [ 753151.375, -70748.578, 6325927.5 ], + [ 752802.312, -68028.188, 6325999. ], + [ 752455.75 , -65317.871, 6326068.5 ], + [ 752108.625, -62617.344, 6326137.5 ], + [ 751764.125, -59926.969, 6326204.5 ], + [ 751420.125, -57246.434, 6326270. ], + [ 751077.438, -54575.902, 6326334.5 ], + [ 750735.312, -51915.363, 6326397.5 ], + [ 750396.188, -49264.852, 6326458.5 ], + [ 750056.375, -46624.227, 6326519. ], + [ 749718.875, -43993.633, 6326578. ]]) + +def test1d(): + + data_pts = np.arange(1000) + kdtree = KDTree(data_pts, leafsize=15) + query_pts = np.arange(400, 300, -10) + dist, idx = kdtree.query(query_pts) + assert idx[0] == 400 + assert dist[0] == 0 + assert idx[1] == 390 + +def test3d(): + + + #7, 93, 45 + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + + kdtree = KDTree(data_pts_real) + dist, idx = kdtree.query(query_pts, sqr_dists=True) + + epsilon = 1e-5 + assert idx[0] == 7 + assert idx[1] == 93 + assert idx[2] == 45 + assert dist[0] == 0 + assert abs(dist[1] - 3.) < epsilon * dist[1] + assert abs(dist[2] - 20001.) < epsilon * dist[2] + +def test3d_float32(): + + + #7, 93, 45 + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]], dtype=np.float32) + + + kdtree = KDTree(data_pts_real.astype(np.float32)) + dist, idx = kdtree.query(query_pts, sqr_dists=True) + epsilon = 1e-5 + assert idx[0] == 7 + assert idx[1] == 93 + assert idx[2] == 45 + assert dist[0] == 0 + assert abs(dist[1] - 3.) < epsilon * dist[1] + assert abs(dist[2] - 20001.) < epsilon * dist[2] + assert kdtree.data_pts.dtype == np.float32 + +def test3d_float32_mismatch(): + + + #7, 93, 45 + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]], dtype=np.float32) + + kdtree = KDTree(data_pts_real) + dist, idx = kdtree.query(query_pts, sqr_dists=True) + +def test3d_float32_mismatch2(): + + + #7, 93, 45 + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real.astype(np.float32)) + try: + dist, idx = kdtree.query(query_pts, sqr_dists=True) + assert False + except TypeError: + assert True + + +def test3d_8n(): + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real) + dist, idx = kdtree.query(query_pts, k=8) + + exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03, + 8.17063009e+03, 1.20904577e+04, 1.22902057e+04, 1.60775136e+04], + [ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03, + 5.43793210e+03, 8.07855631e+03, 8.17119970e+03, 1.07513693e+04], + [ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03, + 6.81038455e+03, 9.89140135e+03, 1.01918659e+04, 1.31892516e+04]]) + + exp_idx = np.array([[ 7, 8, 6, 9, 5, 10, 4, 11], + [93, 94, 92, 95, 91, 96, 90, 97], + [45, 46, 44, 47, 43, 48, 42, 49]]) + + assert np.array_equal(idx, exp_idx) + assert np.allclose(dist, exp_dist) + +def test3d_8n_ub(): + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real) + dist, idx = kdtree.query(query_pts, k=8, distance_upper_bound=10e3, sqr_dists=False) + + exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03, + 8.17063009e+03, np.Inf, np.Inf, np.Inf], + [ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03, + 5.43793210e+03, 8.07855631e+03, 8.17119970e+03, np.Inf], + [ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03, + 6.81038455e+03, 9.89140135e+03, np.Inf, np.Inf]]) + n = 100 + exp_idx = np.array([[ 7, 8, 6, 9, 5, n, n, n], + [93, 94, 92, 95, 91, 96, 90, n], + [45, 46, 44, 47, 43, 48, n, n]]) + + assert np.array_equal(idx, exp_idx) + assert np.allclose(dist, exp_dist) + +def test3d_8n_ub_leaf20(): + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real, leafsize=20) + dist, idx = kdtree.query(query_pts, k=8, distance_upper_bound=10e3, sqr_dists=False) + + exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03, + 8.17063009e+03, np.Inf, np.Inf, np.Inf], + [ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03, + 5.43793210e+03, 8.07855631e+03, 8.17119970e+03, np.Inf], + [ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03, + 6.81038455e+03, 9.89140135e+03, np.Inf, np.Inf]]) + n = 100 + exp_idx = np.array([[ 7, 8, 6, 9, 5, n, n, n], + [93, 94, 92, 95, 91, 96, 90, n], + [45, 46, 44, 47, 43, 48, n, n]]) + + assert np.array_equal(idx, exp_idx) + assert np.allclose(dist, exp_dist) + +def test3d_8n_ub_eps(): + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real) + dist, idx = kdtree.query(query_pts, k=8, eps=0.1, distance_upper_bound=10e3, sqr_dists=False) + + exp_dist = np.array([[ 0.00000000e+00, 4.05250235e+03, 4.07389794e+03, 8.08201128e+03, + 8.17063009e+03, np.Inf, np.Inf, np.Inf], + [ 1.73205081e+00, 2.70216896e+03, 2.71431274e+03, 5.39537066e+03, + 5.43793210e+03, 8.07855631e+03, 8.17119970e+03, np.Inf], + [ 1.41424892e+02, 3.25500021e+03, 3.44284958e+03, 6.58019346e+03, + 6.81038455e+03, 9.89140135e+03, np.Inf, np.Inf]]) + n = 100 + exp_idx = np.array([[ 7, 8, 6, 9, 5, n, n, n], + [93, 94, 92, 95, 91, 96, 90, n], + [45, 46, 44, 47, 43, 48, n, n]]) + + assert np.array_equal(idx, exp_idx) + assert np.allclose(dist, exp_dist) + +def test3d_large_query(): + # Target idxs: 7, 93, 45 + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + # Repeat the same points multiple times to get 60000 query points + n = 20000 + query_pts = np.repeat(query_pts, n, axis=0) + + kdtree = KDTree(data_pts_real) + dist, idx = kdtree.query(query_pts, sqr_dists=True) + + epsilon = 1e-5 + assert np.all(idx[:n] == 7) + assert np.all(idx[n:2*n] == 93) + assert np.all(idx[2*n:] == 45) + assert np.all(dist[:n] == 0) + assert np.all(abs(dist[n:2*n] - 3.) < epsilon * dist[n:2*n]) + assert np.all(abs(dist[2*n:] - 20001.) < epsilon * dist[2*n:]) + +def test_scipy_comp(): + + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real) + assert id(kdtree.data) == id(kdtree.data_pts) + + +def test1d_mask(): + data_pts = np.arange(1000) + # put the input locations in random order + np.random.shuffle(data_pts) + bad_idx = np.nonzero(data_pts == 400) + nearest_idx_1 = np.nonzero(data_pts == 399) + nearest_idx_2 = np.nonzero(data_pts == 390) + kdtree = KDTree(data_pts, leafsize=15) + # shift the query points just a little bit for known neighbors + # we want 399 as a result, not 401, when we query for ~400 + query_pts = np.arange(399.9, 299.9, -10) + query_mask = np.zeros(data_pts.shape[0]).astype(bool) + query_mask[bad_idx] = True + dist, idx = kdtree.query(query_pts, mask=query_mask) + assert idx[0] == nearest_idx_1 # 399, would be 400 if no mask + assert np.isclose(dist[0], 0.9) + assert idx[1] == nearest_idx_2 # 390 + assert np.isclose(dist[1], 0.1) + + +def test1d_all_masked(): + data_pts = np.arange(1000) + np.random.shuffle(data_pts) + kdtree = KDTree(data_pts, leafsize=15) + query_pts = np.arange(400, 300, -10) + query_mask = np.ones(data_pts.shape[0]).astype(bool) + dist, idx = kdtree.query(query_pts, mask=query_mask) + # all invalid + assert np.all(i >= 1000 for i in idx) + assert np.all(d >= 1001 for d in dist) + + +def test3d_mask(): + #7, 93, 45 + query_pts = np.array([[ 787014.438, -340616.906, 6313018.], + [751763.125, -59925.969, 6326205.5], + [769957.188, -202418.125, 6321069.5]]) + + kdtree = KDTree(data_pts_real) + query_mask = np.zeros(data_pts_real.shape[0]) + query_mask[6:10] = True + dist, idx = kdtree.query(query_pts, sqr_dists=True, mask=query_mask) + + epsilon = 1e-5 + assert idx[0] == 5 # would be 7 if no mask + assert idx[1] == 93 + assert idx[2] == 45 + # would be 0 if no mask + assert abs(dist[0] - 66759196.1053) < epsilon * dist[0] + assert abs(dist[1] - 3.) < epsilon * dist[1] + assert abs(dist[2] - 20001.) < epsilon * dist[2] diff --git a/eval/src/utils/libkdtree/setup.cfg b/eval/src/utils/libkdtree/setup.cfg new file mode 100644 index 0000000..c595009 --- /dev/null +++ b/eval/src/utils/libkdtree/setup.cfg @@ -0,0 +1,5 @@ +[bdist_rpm] +requires=numpy +release=1 + + diff --git a/eval/src/utils/libmcubes/.gitignore b/eval/src/utils/libmcubes/.gitignore new file mode 100644 index 0000000..0050e70 --- /dev/null +++ b/eval/src/utils/libmcubes/.gitignore @@ -0,0 +1,2 @@ +PyMCubes.egg-info +build diff --git a/eval/src/utils/libmcubes/LICENSE b/eval/src/utils/libmcubes/LICENSE new file mode 100644 index 0000000..2c38bd9 --- /dev/null +++ b/eval/src/utils/libmcubes/LICENSE @@ -0,0 +1,27 @@ +Copyright (c) 2012-2015, P. M. Neila +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +* Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +* Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +* Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/eval/src/utils/libmcubes/README.rst b/eval/src/utils/libmcubes/README.rst new file mode 100644 index 0000000..fa64187 --- /dev/null +++ b/eval/src/utils/libmcubes/README.rst @@ -0,0 +1,64 @@ +======== +PyMCubes +======== + +PyMCubes is an implementation of the marching cubes algorithm to extract +isosurfaces from volumetric data. The volumetric data can be given as a +three-dimensional NumPy array or as a Python function ``f(x, y, z)``. The first +option is much faster, but it requires more memory and becomes unfeasible for +very large volumes. + +PyMCubes also provides a function to export the results of the marching cubes as +COLLADA ``(.dae)`` files. This requires the +`PyCollada `_ library. + +Installation +============ + +Just as any standard Python package, clone or download the project +and run:: + + $ cd path/to/PyMCubes + $ python setup.py build + $ python setup.py install + +If you do not have write permission on the directory of Python packages, +install with the ``--user`` option:: + + $ python setup.py install --user + +Example +======= + +The following example creates a data volume with spherical isosurfaces and +extracts one of them (i.e., a sphere) with PyMCubes. The result is exported as +``sphere.dae``:: + + >>> import numpy as np + >>> import mcubes + + # Create a data volume (30 x 30 x 30) + >>> X, Y, Z = np.mgrid[:30, :30, :30] + >>> u = (X-15)**2 + (Y-15)**2 + (Z-15)**2 - 8**2 + + # Extract the 0-isosurface + >>> vertices, triangles = mcubes.marching_cubes(u, 0) + + # Export the result to sphere.dae + >>> mcubes.export_mesh(vertices, triangles, "sphere.dae", "MySphere") + +The second example is very similar to the first one, but it uses a function +to represent the volume instead of a NumPy array:: + + >>> import numpy as np + >>> import mcubes + + # Create the volume + >>> f = lambda x, y, z: x**2 + y**2 + z**2 + + # Extract the 16-isosurface + >>> vertices, triangles = mcubes.marching_cubes_func((-10,-10,-10), (10,10,10), + ... 100, 100, 100, f, 16) + + # Export the result to sphere2.dae + >>> mcubes.export_mesh(vertices, triangles, "sphere2.dae", "MySphere") diff --git a/eval/src/utils/libmcubes/__init__.py b/eval/src/utils/libmcubes/__init__.py new file mode 100644 index 0000000..76eea5f --- /dev/null +++ b/eval/src/utils/libmcubes/__init__.py @@ -0,0 +1,12 @@ +from im2mesh.utils.libmcubes.mcubes import ( + marching_cubes, marching_cubes_func +) +from im2mesh.utils.libmcubes.exporter import ( + export_mesh, export_obj, export_off +) + + +__all__ = [ + marching_cubes, marching_cubes_func, + export_mesh, export_obj, export_off +] diff --git a/eval/src/utils/libmcubes/exporter.py b/eval/src/utils/libmcubes/exporter.py new file mode 100644 index 0000000..bb46bd5 --- /dev/null +++ b/eval/src/utils/libmcubes/exporter.py @@ -0,0 +1,63 @@ + +import numpy as np + + +def export_obj(vertices, triangles, filename): + """ + Exports a mesh in the (.obj) format. + """ + + with open(filename, 'w') as fh: + + for v in vertices: + fh.write("v {} {} {}\n".format(*v)) + + for f in triangles: + fh.write("f {} {} {}\n".format(*(f + 1))) + + +def export_off(vertices, triangles, filename): + """ + Exports a mesh in the (.off) format. + """ + + with open(filename, 'w') as fh: + fh.write('OFF\n') + fh.write('{} {} 0\n'.format(len(vertices), len(triangles))) + + for v in vertices: + fh.write("{} {} {}\n".format(*v)) + + for f in triangles: + fh.write("3 {} {} {}\n".format(*f)) + + +def export_mesh(vertices, triangles, filename, mesh_name="mcubes_mesh"): + """ + Exports a mesh in the COLLADA (.dae) format. + + Needs PyCollada (https://github.com/pycollada/pycollada). + """ + + import collada + + mesh = collada.Collada() + + vert_src = collada.source.FloatSource("verts-array", vertices, ('X','Y','Z')) + geom = collada.geometry.Geometry(mesh, "geometry0", mesh_name, [vert_src]) + + input_list = collada.source.InputList() + input_list.addInput(0, 'VERTEX', "#verts-array") + + triset = geom.createTriangleSet(np.copy(triangles), input_list, "") + geom.primitives.append(triset) + mesh.geometries.append(geom) + + geomnode = collada.scene.GeometryNode(geom, []) + node = collada.scene.Node(mesh_name, children=[geomnode]) + + myscene = collada.scene.Scene("mcubes_scene", [node]) + mesh.scenes.append(myscene) + mesh.scene = myscene + + mesh.write(filename) diff --git a/eval/src/utils/libmcubes/marchingcubes.cpp b/eval/src/utils/libmcubes/marchingcubes.cpp new file mode 100644 index 0000000..9af94b0 --- /dev/null +++ b/eval/src/utils/libmcubes/marchingcubes.cpp @@ -0,0 +1,330 @@ + +#include "marchingcubes.h" + +namespace mc +{ + +int edge_table[256] = +{ + 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, + 0x190, 0x099, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, + 0x230, 0x339, 0x033, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, + 0x3a0, 0x2a9, 0x1a3, 0x0aa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, + 0x460, 0x569, 0x663, 0x76a, 0x066, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, + 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0x0ff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, + 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x055, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, + 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0x0cc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, + 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0x0cc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, + 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x055, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, + 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0x0ff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, + 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x066, 0x76a, 0x663, 0x569, 0x460, + 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0x0aa, 0x1a3, 0x2a9, 0x3a0, + 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x033, 0x339, 0x230, + 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x099, 0x190, + 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000 +}; + +int triangle_table[256][16] = +{ + {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, + {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, + {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, + {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, + {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, + {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, + {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, + {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, + {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, + {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, + {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, + {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, + {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, + {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, + {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, + {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, + {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, + {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, + {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, + {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, + {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, + {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, + {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, + {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, + {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, + {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, + {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, + {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, + {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, + {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, + {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, + {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, + {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, + {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, + {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, + {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, + {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, + {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, + {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, + {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, + {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, + {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, + {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, + {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, + {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, + {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, + {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, + {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, + {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, + {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, + {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, + {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, + {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, + {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, + {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, + {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, + {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, + {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, + {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, + {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, + {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, + {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, + {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, + {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, + {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, + {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, + {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, + {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, + {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, + {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, + {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, + {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, + {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, + {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, + {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, + {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, + {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, + {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, + {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, + {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, + {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, + {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, + {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, + {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, + {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, + {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, + {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, + {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, + {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, + {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, + {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, + {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, + {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, + {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, + {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, + {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, + {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, + {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, + {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, + {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, + {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, + {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, + {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, + {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, + {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, + {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, + {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, + {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, + {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, + {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, + {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, + {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, + {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, + {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, + {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, + {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, + {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, + {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, + {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, + {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, + {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, + {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, + {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, + {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, + {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, + {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, + {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, + {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, + {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, + {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, + {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, + {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, + {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, + {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, + {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, + {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, + {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, + {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, + {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, + {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, + {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, + {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, + {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, + {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, + {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, + {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, + {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, + {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, + {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, + {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, + {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, + {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, + {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, + {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, + {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, + {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, + {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, + {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, + {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, + {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, + {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, + {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, + {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, + {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, + {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, + {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, + {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, + {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, + {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, + {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, + {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, + {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, + {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, + {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, + {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, + {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, + {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, + {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, + {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, + {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, + {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} +}; + +namespace private_ +{ + +double mc_isovalue_interpolation(double isovalue, double f1, double f2, + double x1, double x2) +{ + if(f2==f1) + return (x2+x1)/2; + + return (x2-x1)*(isovalue-f1)/(f2-f1) + x1; +} + +void mc_add_vertex(double x1, double y1, double z1, double c2, + int axis, double f1, double f2, double isovalue, std::vector* vertices) +{ + if(axis == 0) + { + double x = mc_isovalue_interpolation(isovalue, f1, f2, x1, c2); + vertices->push_back(x); + vertices->push_back(y1); + vertices->push_back(z1); + return; + } + if(axis == 1) + { + double y = mc_isovalue_interpolation(isovalue, f1, f2, y1, c2); + vertices->push_back(x1); + vertices->push_back(y); + vertices->push_back(z1); + return; + } + if(axis == 2) + { + double z = mc_isovalue_interpolation(isovalue, f1, f2, z1, c2); + vertices->push_back(x1); + vertices->push_back(y1); + vertices->push_back(z); + return; + } +} + +} + +} diff --git a/eval/src/utils/libmcubes/marchingcubes.h b/eval/src/utils/libmcubes/marchingcubes.h new file mode 100644 index 0000000..3296ab8 --- /dev/null +++ b/eval/src/utils/libmcubes/marchingcubes.h @@ -0,0 +1,541 @@ + +#ifndef _MARCHING_CUBES_H +#define _MARCHING_CUBES_H + +#include +#include + +namespace mc +{ + +extern int edge_table[256]; +extern int triangle_table[256][16]; + +namespace private_ +{ + +double mc_isovalue_interpolation(double isovalue, double f1, double f2, + double x1, double x2); +void mc_add_vertex(double x1, double y1, double z1, double c2, + int axis, double f1, double f2, double isovalue, std::vector* vertices); +} + +template +void marching_cubes(const vector3& lower, const vector3& upper, + int numx, int numy, int numz, formula f, double isovalue, + std::vector& vertices, std::vector& polygons) +{ + using namespace private_; + + // typedef decltype(lower[0]) coord_type; + + // numx, numy and numz are the numbers of evaluations in each direction + --numx; --numy; --numz; + + coord_type dx = (upper[0] - lower[0])/static_cast(numx); + coord_type dy = (upper[1] - lower[1])/static_cast(numy); + coord_type dz = (upper[2] - lower[2])/static_cast(numz); + + size_t* shared_indices = new size_t[2*numy*numz*3]; + const int z3 = numz*3; + const int yz3 = numy*z3; + + for(int i=0; i indices(12, -1); + if(edges & 0x040) + { + indices[6] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 0] = indices[6]; + mc_add_vertex(x_dx, y_dy, z_dz, x, 0, v[6], v[7], isovalue, &vertices); + } + if(edges & 0x020) + { + indices[5] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 1] = indices[5]; + mc_add_vertex(x_dx, y, z_dz, y_dy, 1, v[5], v[6], isovalue, &vertices); + } + if(edges & 0x400) + { + indices[10] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 2] = indices[10]; + mc_add_vertex(x_dx, y+dx, z, z_dz, 2, v[2], v[6], isovalue, &vertices); + } + + if(edges & 0x001) + { + if(j == 0 || k == 0) + { + indices[0] = vertices.size() / 3; + mc_add_vertex(x, y, z, x_dx, 0, v[0], v[1], isovalue, &vertices); + } + else + indices[0] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + (k-1)*3 + 0]; + } + if(edges & 0x002) + { + if(k == 0) + { + indices[1] = vertices.size() / 3; + mc_add_vertex(x_dx, y, z, y_dy, 1, v[1], v[2], isovalue, &vertices); + } + else + indices[1] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 1]; + } + if(edges & 0x004) + { + if(k == 0) + { + indices[2] = vertices.size() / 3; + mc_add_vertex(x_dx, y_dy, z, x, 0, v[2], v[3], isovalue, &vertices); + } + else + indices[2] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 0]; + } + if(edges & 0x008) + { + if(i == 0 || k == 0) + { + indices[3] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z, y, 1, v[3], v[0], isovalue, &vertices); + } + else + indices[3] = shared_indices[i_mod_2_inv*yz3 + j*z3 + (k-1)*3 + 1]; + } + if(edges & 0x010) + { + if(j == 0) + { + indices[4] = vertices.size() / 3; + mc_add_vertex(x, y, z_dz, x_dx, 0, v[4], v[5], isovalue, &vertices); + } + else + indices[4] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 0]; + } + if(edges & 0x080) + { + if(i == 0) + { + indices[7] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z_dz, y, 1, v[7], v[4], isovalue, &vertices); + } + else + indices[7] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 1]; + } + if(edges & 0x100) + { + if(i == 0 || j == 0) + { + indices[8] = vertices.size() / 3; + mc_add_vertex(x, y, z, z_dz, 2, v[0], v[4], isovalue, &vertices); + } + else + indices[8] = shared_indices[i_mod_2_inv*yz3 + (j-1)*z3 + k*3 + 2]; + } + if(edges & 0x200) + { + if(j == 0) + { + indices[9] = vertices.size() / 3; + mc_add_vertex(x_dx, y, z, z_dz, 2, v[1], v[5], isovalue, &vertices); + } + else + indices[9] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 2]; + } + if(edges & 0x800) + { + if(i == 0) + { + indices[11] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z, z_dz, 2, v[3], v[7], isovalue, &vertices); + } + else + indices[11] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 2]; + } + + int tri; + int* triangle_table_ptr = triangle_table[cubeindex]; + for(int m=0; tri = triangle_table_ptr[m], tri != -1; ++m) + polygons.push_back(indices[tri]); + } + } + } + + delete [] shared_indices; +} + +template +void marching_cubes2(const vector3& lower, const vector3& upper, + int numx, int numy, int numz, formula f, double isovalue, + std::vector& vertices, std::vector& polygons) +{ + using namespace private_; + + // typedef decltype(lower[0]) coord_type; + + // numx, numy and numz are the numbers of evaluations in each direction + --numx; --numy; --numz; + + coord_type dx = (upper[0] - lower[0])/static_cast(numx); + coord_type dy = (upper[1] - lower[1])/static_cast(numy); + coord_type dz = (upper[2] - lower[2])/static_cast(numz); + + size_t* shared_indices = new size_t[2*numy*numz*3]; + const int z3 = numz*3; + const int yz3 = numy*z3; + + for(int i=0; i indices(12, -1); + if(edges & 0x040) + { + indices[6] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 0] = indices[6]; + mc_add_vertex(x_dx, y_dy, z_dz, x, 0, v[6], v[7], isovalue, &vertices); + } + if(edges & 0x020) + { + indices[5] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 1] = indices[5]; + mc_add_vertex(x_dx, y, z_dz, y_dy, 1, v[5], v[6], isovalue, &vertices); + } + if(edges & 0x400) + { + indices[10] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 2] = indices[10]; + mc_add_vertex(x_dx, y+dx, z, z_dz, 2, v[2], v[6], isovalue, &vertices); + } + + if(edges & 0x001) + { + if(j == 0 || k == 0) + { + indices[0] = vertices.size() / 3; + mc_add_vertex(x, y, z, x_dx, 0, v[0], v[1], isovalue, &vertices); + } + else + indices[0] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + (k-1)*3 + 0]; + } + if(edges & 0x002) + { + if(k == 0) + { + indices[1] = vertices.size() / 3; + mc_add_vertex(x_dx, y, z, y_dy, 1, v[1], v[2], isovalue, &vertices); + } + else + indices[1] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 1]; + } + if(edges & 0x004) + { + if(k == 0) + { + indices[2] = vertices.size() / 3; + mc_add_vertex(x_dx, y_dy, z, x, 0, v[2], v[3], isovalue, &vertices); + } + else + indices[2] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 0]; + } + if(edges & 0x008) + { + if(i == 0 || k == 0) + { + indices[3] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z, y, 1, v[3], v[0], isovalue, &vertices); + } + else + indices[3] = shared_indices[i_mod_2_inv*yz3 + j*z3 + (k-1)*3 + 1]; + } + if(edges & 0x010) + { + if(j == 0) + { + indices[4] = vertices.size() / 3; + mc_add_vertex(x, y, z_dz, x_dx, 0, v[4], v[5], isovalue, &vertices); + } + else + indices[4] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 0]; + } + if(edges & 0x080) + { + if(i == 0) + { + indices[7] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z_dz, y, 1, v[7], v[4], isovalue, &vertices); + } + else + indices[7] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 1]; + } + if(edges & 0x100) + { + if(i == 0 || j == 0) + { + indices[8] = vertices.size() / 3; + mc_add_vertex(x, y, z, z_dz, 2, v[0], v[4], isovalue, &vertices); + } + else + indices[8] = shared_indices[i_mod_2_inv*yz3 + (j-1)*z3 + k*3 + 2]; + } + if(edges & 0x200) + { + if(j == 0) + { + indices[9] = vertices.size() / 3; + mc_add_vertex(x_dx, y, z, z_dz, 2, v[1], v[5], isovalue, &vertices); + } + else + indices[9] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 2]; + } + if(edges & 0x800) + { + if(i == 0) + { + indices[11] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z, z_dz, 2, v[3], v[7], isovalue, &vertices); + } + else + indices[11] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 2]; + } + + int tri; + int* triangle_table_ptr = triangle_table[cubeindex]; + for(int m=0; tri = triangle_table_ptr[m], tri != -1; ++m) + polygons.push_back(indices[tri]); + } + } + } + + delete [] shared_indices; +} + +template +void marching_cubes3(const vector3& lower, const vector3& upper, + int numx, int numy, int numz, formula f, double isovalue, + std::vector& vertices, std::vector& polygons) +{ + using namespace private_; + + // typedef decltype(lower[0]) coord_type; + + // numx, numy and numz are the numbers of evaluations in each direction + --numx; --numy; --numz; + + coord_type dx = (upper[0] - lower[0])/static_cast(numx); + coord_type dy = (upper[1] - lower[1])/static_cast(numy); + coord_type dz = (upper[2] - lower[2])/static_cast(numz); + + size_t* shared_indices = new size_t[2*numy*numz*3]; + const int z3 = numz*3; + const int yz3 = numy*z3; + + for(int i=0; i indices(12, -1); + if(edges & 0x040) + { + indices[6] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 0] = indices[6]; + mc_add_vertex(x_dx, y_dy, z_dz, x, 0, v[6], v[7], isovalue, &vertices); + } + if(edges & 0x020) + { + indices[5] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 1] = indices[5]; + mc_add_vertex(x_dx, y, z_dz, y_dy, 1, v[5], v[6], isovalue, &vertices); + } + if(edges & 0x400) + { + indices[10] = vertices.size() / 3; + shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 2] = indices[10]; + mc_add_vertex(x_dx, y+dx, z, z_dz, 2, v[2], v[6], isovalue, &vertices); + } + + if(edges & 0x001) + { + if(j == 0 || k == 0) + { + indices[0] = vertices.size() / 3; + mc_add_vertex(x, y, z, x_dx, 0, v[0], v[1], isovalue, &vertices); + } + else + indices[0] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + (k-1)*3 + 0]; + } + if(edges & 0x002) + { + if(k == 0) + { + indices[1] = vertices.size() / 3; + mc_add_vertex(x_dx, y, z, y_dy, 1, v[1], v[2], isovalue, &vertices); + } + else + indices[1] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 1]; + } + if(edges & 0x004) + { + if(k == 0) + { + indices[2] = vertices.size() / 3; + mc_add_vertex(x_dx, y_dy, z, x, 0, v[2], v[3], isovalue, &vertices); + } + else + indices[2] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 0]; + } + if(edges & 0x008) + { + if(i == 0 || k == 0) + { + indices[3] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z, y, 1, v[3], v[0], isovalue, &vertices); + } + else + indices[3] = shared_indices[i_mod_2_inv*yz3 + j*z3 + (k-1)*3 + 1]; + } + if(edges & 0x010) + { + if(j == 0) + { + indices[4] = vertices.size() / 3; + mc_add_vertex(x, y, z_dz, x_dx, 0, v[4], v[5], isovalue, &vertices); + } + else + indices[4] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 0]; + } + if(edges & 0x080) + { + if(i == 0) + { + indices[7] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z_dz, y, 1, v[7], v[4], isovalue, &vertices); + } + else + indices[7] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 1]; + } + if(edges & 0x100) + { + if(i == 0 || j == 0) + { + indices[8] = vertices.size() / 3; + mc_add_vertex(x, y, z, z_dz, 2, v[0], v[4], isovalue, &vertices); + } + else + indices[8] = shared_indices[i_mod_2_inv*yz3 + (j-1)*z3 + k*3 + 2]; + } + if(edges & 0x200) + { + if(j == 0) + { + indices[9] = vertices.size() / 3; + mc_add_vertex(x_dx, y, z, z_dz, 2, v[1], v[5], isovalue, &vertices); + } + else + indices[9] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 2]; + } + if(edges & 0x800) + { + if(i == 0) + { + indices[11] = vertices.size() / 3; + mc_add_vertex(x, y_dy, z, z_dz, 2, v[3], v[7], isovalue, &vertices); + } + else + indices[11] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 2]; + } + + int tri; + int* triangle_table_ptr = triangle_table[cubeindex]; + for(int m=0; tri = triangle_table_ptr[m], tri != -1; ++m) + polygons.push_back(indices[tri]); + } + } + } + + delete [] shared_indices; +} + +} + +#endif // _MARCHING_CUBES_H diff --git a/eval/src/utils/libmcubes/mcubes.cpp b/eval/src/utils/libmcubes/mcubes.cpp new file mode 100644 index 0000000..29a0362 --- /dev/null +++ b/eval/src/utils/libmcubes/mcubes.cpp @@ -0,0 +1,8163 @@ +/* Generated by Cython 0.29.14 */ + +/* BEGIN: Cython Metadata +{ + "distutils": { + "depends": [ + "/opt/conda/lib/python3.7/site-packages/numpy/core/include/numpy/arrayobject.h", + "/opt/conda/lib/python3.7/site-packages/numpy/core/include/numpy/ufuncobject.h", + "im2mesh/utils/libmcubes/pyarray_symbol.h", + "im2mesh/utils/libmcubes/pywrapper.h" + ], + "extra_compile_args": [ + "-std=c++11" + ], + "include_dirs": [ + "im2mesh/utils/libmcubes", + "/opt/conda/lib/python3.7/site-packages/numpy/core/include" + ], + "language": "c++", + "name": "im2mesh.utils.libmcubes.mcubes", + "sources": [ + "im2mesh/utils/libmcubes/mcubes.pyx", + "im2mesh/utils/libmcubes/pywrapper.cpp", + "im2mesh/utils/libmcubes/marchingcubes.cpp" + ] + }, + "module_name": "im2mesh.utils.libmcubes.mcubes" +} +END: Cython Metadata */ + +#define PY_SSIZE_T_CLEAN +#include "Python.h" +#ifndef Py_PYTHON_H + #error Python headers needed to compile C extensions, please install development version of Python. +#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) + #error Cython requires Python 2.6+ or Python 3.3+. +#else +#define CYTHON_ABI "0_29_14" +#define CYTHON_HEX_VERSION 0x001D0EF0 +#define CYTHON_FUTURE_DIVISION 0 +#include +#ifndef offsetof + #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) +#endif +#if !defined(WIN32) && !defined(MS_WINDOWS) + #ifndef __stdcall + #define __stdcall + #endif + #ifndef __cdecl + #define __cdecl + #endif + #ifndef __fastcall + #define __fastcall + #endif +#endif +#ifndef DL_IMPORT + #define DL_IMPORT(t) t +#endif +#ifndef DL_EXPORT + #define DL_EXPORT(t) t +#endif +#define __PYX_COMMA , +#ifndef HAVE_LONG_LONG + #if PY_VERSION_HEX >= 0x02070000 + #define HAVE_LONG_LONG + #endif +#endif +#ifndef PY_LONG_LONG + #define PY_LONG_LONG LONG_LONG +#endif +#ifndef Py_HUGE_VAL + #define Py_HUGE_VAL HUGE_VAL +#endif +#ifdef PYPY_VERSION + #define CYTHON_COMPILING_IN_PYPY 1 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #undef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 0 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #if PY_VERSION_HEX < 0x03050000 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #undef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #undef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 1 + #undef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 0 + #undef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 0 + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 + #undef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS 0 + #undef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK 0 +#elif defined(PYSTON_VERSION) + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 1 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 + #undef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS 0 + #undef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK 0 +#else + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 1 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) + #define CYTHON_USE_PYTYPE_LOOKUP 1 + #endif + #if PY_MAJOR_VERSION < 3 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #elif !defined(CYTHON_USE_PYLONG_INTERNALS) + #define CYTHON_USE_PYLONG_INTERNALS 1 + #endif + #ifndef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 1 + #endif + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #if PY_VERSION_HEX < 0x030300F0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #elif !defined(CYTHON_USE_UNICODE_WRITER) + #define CYTHON_USE_UNICODE_WRITER 1 + #endif + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #ifndef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 1 + #endif + #ifndef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 1 + #endif + #ifndef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) + #endif + #ifndef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) + #endif + #ifndef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) + #endif + #ifndef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) + #endif +#endif +#if !defined(CYTHON_FAST_PYCCALL) +#define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) +#endif +#if CYTHON_USE_PYLONG_INTERNALS + #include "longintrepr.h" + #undef SHIFT + #undef BASE + #undef MASK + #ifdef SIZEOF_VOID_P + enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; + #endif +#endif +#ifndef __has_attribute + #define __has_attribute(x) 0 +#endif +#ifndef __has_cpp_attribute + #define __has_cpp_attribute(x) 0 +#endif +#ifndef CYTHON_RESTRICT + #if defined(__GNUC__) + #define CYTHON_RESTRICT __restrict__ + #elif defined(_MSC_VER) && _MSC_VER >= 1400 + #define CYTHON_RESTRICT __restrict + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_RESTRICT restrict + #else + #define CYTHON_RESTRICT + #endif +#endif +#ifndef CYTHON_UNUSED +# if defined(__GNUC__) +# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +#endif +#ifndef CYTHON_MAYBE_UNUSED_VAR +# if defined(__cplusplus) + template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } +# else +# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) +# endif +#endif +#ifndef CYTHON_NCP_UNUSED +# if CYTHON_COMPILING_IN_CPYTHON +# define CYTHON_NCP_UNUSED +# else +# define CYTHON_NCP_UNUSED CYTHON_UNUSED +# endif +#endif +#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) +#ifdef _MSC_VER + #ifndef _MSC_STDINT_H_ + #if _MSC_VER < 1300 + typedef unsigned char uint8_t; + typedef unsigned int uint32_t; + #else + typedef unsigned __int8 uint8_t; + typedef unsigned __int32 uint32_t; + #endif + #endif +#else + #include +#endif +#ifndef CYTHON_FALLTHROUGH + #if defined(__cplusplus) && __cplusplus >= 201103L + #if __has_cpp_attribute(fallthrough) + #define CYTHON_FALLTHROUGH [[fallthrough]] + #elif __has_cpp_attribute(clang::fallthrough) + #define CYTHON_FALLTHROUGH [[clang::fallthrough]] + #elif __has_cpp_attribute(gnu::fallthrough) + #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] + #endif + #endif + #ifndef CYTHON_FALLTHROUGH + #if __has_attribute(fallthrough) + #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) + #else + #define CYTHON_FALLTHROUGH + #endif + #endif + #if defined(__clang__ ) && defined(__apple_build_version__) + #if __apple_build_version__ < 7000000 + #undef CYTHON_FALLTHROUGH + #define CYTHON_FALLTHROUGH + #endif + #endif +#endif + +#ifndef __cplusplus + #error "Cython files generated with the C++ option must be compiled with a C++ compiler." +#endif +#ifndef CYTHON_INLINE + #if defined(__clang__) + #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) + #else + #define CYTHON_INLINE inline + #endif +#endif +template +void __Pyx_call_destructor(T& x) { + x.~T(); +} +template +class __Pyx_FakeReference { + public: + __Pyx_FakeReference() : ptr(NULL) { } + __Pyx_FakeReference(const T& ref) : ptr(const_cast(&ref)) { } + T *operator->() { return ptr; } + T *operator&() { return ptr; } + operator T&() { return *ptr; } + template bool operator ==(U other) { return *ptr == other; } + template bool operator !=(U other) { return *ptr != other; } + private: + T *ptr; +}; + +#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) + #define Py_OptimizeFlag 0 +#endif +#define __PYX_BUILD_PY_SSIZE_T "n" +#define CYTHON_FORMAT_SSIZE_T "z" +#if PY_MAJOR_VERSION < 3 + #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyClass_Type +#else + #define __Pyx_BUILTIN_MODULE_NAME "builtins" +#if PY_VERSION_HEX >= 0x030800A4 && PY_VERSION_HEX < 0x030800B2 + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, 0, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) +#else + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) +#endif + #define __Pyx_DefaultClassType PyType_Type +#endif +#ifndef Py_TPFLAGS_CHECKTYPES + #define Py_TPFLAGS_CHECKTYPES 0 +#endif +#ifndef Py_TPFLAGS_HAVE_INDEX + #define Py_TPFLAGS_HAVE_INDEX 0 +#endif +#ifndef Py_TPFLAGS_HAVE_NEWBUFFER + #define Py_TPFLAGS_HAVE_NEWBUFFER 0 +#endif +#ifndef Py_TPFLAGS_HAVE_FINALIZE + #define Py_TPFLAGS_HAVE_FINALIZE 0 +#endif +#ifndef METH_STACKLESS + #define METH_STACKLESS 0 +#endif +#if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) + #ifndef METH_FASTCALL + #define METH_FASTCALL 0x80 + #endif + typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); + typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, + Py_ssize_t nargs, PyObject *kwnames); +#else + #define __Pyx_PyCFunctionFast _PyCFunctionFast + #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords +#endif +#if CYTHON_FAST_PYCCALL +#define __Pyx_PyFastCFunction_Check(func)\ + ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) +#else +#define __Pyx_PyFastCFunction_Check(func) 0 +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) + #define PyObject_Malloc(s) PyMem_Malloc(s) + #define PyObject_Free(p) PyMem_Free(p) + #define PyObject_Realloc(p) PyMem_Realloc(p) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 + #define PyMem_RawMalloc(n) PyMem_Malloc(n) + #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) + #define PyMem_RawFree(p) PyMem_Free(p) +#endif +#if CYTHON_COMPILING_IN_PYSTON + #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) +#else + #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) +#endif +#if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#elif PY_VERSION_HEX >= 0x03060000 + #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() +#elif PY_VERSION_HEX >= 0x03000000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#else + #define __Pyx_PyThreadState_Current _PyThreadState_Current +#endif +#if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) +#include "pythread.h" +#define Py_tss_NEEDS_INIT 0 +typedef int Py_tss_t; +static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { + *key = PyThread_create_key(); + return 0; +} +static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { + Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); + *key = Py_tss_NEEDS_INIT; + return key; +} +static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { + PyObject_Free(key); +} +static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { + return *key != Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { + PyThread_delete_key(*key); + *key = Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { + return PyThread_set_key_value(*key, value); +} +static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { + return PyThread_get_key_value(*key); +} +#endif +#if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) +#define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) +#else +#define __Pyx_PyDict_NewPresized(n) PyDict_New() +#endif +#if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION + #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) +#else + #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS +#define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) +#else +#define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) +#endif +#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) + #define CYTHON_PEP393_ENABLED 1 + #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ + 0 : _PyUnicode_Ready((PyObject *)(op))) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) + #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) + #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) + #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) +#else + #define CYTHON_PEP393_ENABLED 0 + #define PyUnicode_1BYTE_KIND 1 + #define PyUnicode_2BYTE_KIND 2 + #define PyUnicode_4BYTE_KIND 4 + #define __Pyx_PyUnicode_READY(op) (0) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) + #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) + #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) + #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) +#endif +#if CYTHON_COMPILING_IN_PYPY + #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) +#else + #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ + PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) + #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) + #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) + #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) +#endif +#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) +#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) +#else + #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) +#endif +#if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) + #define PyObject_ASCII(o) PyObject_Repr(o) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBaseString_Type PyUnicode_Type + #define PyStringObject PyUnicodeObject + #define PyString_Type PyUnicode_Type + #define PyString_Check PyUnicode_Check + #define PyString_CheckExact PyUnicode_CheckExact + #define PyObject_Unicode PyObject_Str +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) + #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) +#else + #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) + #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) +#endif +#ifndef PySet_CheckExact + #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) +#endif +#if CYTHON_ASSUME_SAFE_MACROS + #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) +#else + #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyIntObject PyLongObject + #define PyInt_Type PyLong_Type + #define PyInt_Check(op) PyLong_Check(op) + #define PyInt_CheckExact(op) PyLong_CheckExact(op) + #define PyInt_FromString PyLong_FromString + #define PyInt_FromUnicode PyLong_FromUnicode + #define PyInt_FromLong PyLong_FromLong + #define PyInt_FromSize_t PyLong_FromSize_t + #define PyInt_FromSsize_t PyLong_FromSsize_t + #define PyInt_AsLong PyLong_AsLong + #define PyInt_AS_LONG PyLong_AS_LONG + #define PyInt_AsSsize_t PyLong_AsSsize_t + #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask + #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask + #define PyNumber_Int PyNumber_Long +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBoolObject PyLongObject +#endif +#if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY + #ifndef PyUnicode_InternFromString + #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) + #endif +#endif +#if PY_VERSION_HEX < 0x030200A4 + typedef long Py_hash_t; + #define __Pyx_PyInt_FromHash_t PyInt_FromLong + #define __Pyx_PyInt_AsHash_t PyInt_AsLong +#else + #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t + #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) +#else + #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) +#endif +#if CYTHON_USE_ASYNC_SLOTS + #if PY_VERSION_HEX >= 0x030500B1 + #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods + #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) + #else + #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) + #endif +#else + #define __Pyx_PyType_AsAsync(obj) NULL +#endif +#ifndef __Pyx_PyAsyncMethodsStruct + typedef struct { + unaryfunc am_await; + unaryfunc am_aiter; + unaryfunc am_anext; + } __Pyx_PyAsyncMethodsStruct; +#endif + +#if defined(WIN32) || defined(MS_WINDOWS) + #define _USE_MATH_DEFINES +#endif +#include +#ifdef NAN +#define __PYX_NAN() ((float) NAN) +#else +static CYTHON_INLINE float __PYX_NAN() { + float value; + memset(&value, 0xFF, sizeof(value)); + return value; +} +#endif +#if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) +#define __Pyx_truncl trunc +#else +#define __Pyx_truncl truncl +#endif + + +#define __PYX_ERR(f_index, lineno, Ln_error) \ +{ \ + __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ +} + +#ifndef __PYX_EXTERN_C + #ifdef __cplusplus + #define __PYX_EXTERN_C extern "C" + #else + #define __PYX_EXTERN_C extern + #endif +#endif + +#define __PYX_HAVE__im2mesh__utils__libmcubes__mcubes +#define __PYX_HAVE_API__im2mesh__utils__libmcubes__mcubes +/* Early includes */ +#include "pyarray_symbol.h" +#include +#include +#include "numpy/arrayobject.h" +#include "numpy/ufuncobject.h" +#include "ios" +#include "new" +#include "stdexcept" +#include "typeinfo" +#include "pywrapper.h" +#ifdef _OPENMP +#include +#endif /* _OPENMP */ + +#if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) +#define CYTHON_WITHOUT_ASSERTIONS +#endif + +typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; + const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; + +#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) +#define __PYX_DEFAULT_STRING_ENCODING "" +#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString +#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#define __Pyx_uchar_cast(c) ((unsigned char)c) +#define __Pyx_long_cast(x) ((long)x) +#define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ + (sizeof(type) < sizeof(Py_ssize_t)) ||\ + (sizeof(type) > sizeof(Py_ssize_t) &&\ + likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX) &&\ + (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ + v == (type)PY_SSIZE_T_MIN))) ||\ + (sizeof(type) == sizeof(Py_ssize_t) &&\ + (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX))) ) +static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { + return (size_t) i < (size_t) limit; +} +#if defined (__cplusplus) && __cplusplus >= 201103L + #include + #define __Pyx_sst_abs(value) std::abs(value) +#elif SIZEOF_INT >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) abs(value) +#elif SIZEOF_LONG >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) labs(value) +#elif defined (_MSC_VER) + #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) +#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define __Pyx_sst_abs(value) llabs(value) +#elif defined (__GNUC__) + #define __Pyx_sst_abs(value) __builtin_llabs(value) +#else + #define __Pyx_sst_abs(value) ((value<0) ? -value : value) +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); +#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) +#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) +#define __Pyx_PyBytes_FromString PyBytes_FromString +#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); +#if PY_MAJOR_VERSION < 3 + #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#else + #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize +#endif +#define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) +#define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) +#define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) +#define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) +#define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) +static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { + const Py_UNICODE *u_end = u; + while (*u_end++) ; + return (size_t)(u_end - u - 1); +} +#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) +#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode +#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode +#define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) +#define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); +static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); +#define __Pyx_PySequence_Tuple(obj)\ + (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); +#if CYTHON_ASSUME_SAFE_MACROS +#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) +#else +#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) +#endif +#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) +#else +#define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) +#endif +#define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII +static int __Pyx_sys_getdefaultencoding_not_ascii; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + PyObject* ascii_chars_u = NULL; + PyObject* ascii_chars_b = NULL; + const char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + if (strcmp(default_encoding_c, "ascii") == 0) { + __Pyx_sys_getdefaultencoding_not_ascii = 0; + } else { + char ascii_chars[128]; + int c; + for (c = 0; c < 128; c++) { + ascii_chars[c] = c; + } + __Pyx_sys_getdefaultencoding_not_ascii = 1; + ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); + if (!ascii_chars_u) goto bad; + ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); + if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { + PyErr_Format( + PyExc_ValueError, + "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", + default_encoding_c); + goto bad; + } + Py_DECREF(ascii_chars_u); + Py_DECREF(ascii_chars_b); + } + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + Py_XDECREF(ascii_chars_u); + Py_XDECREF(ascii_chars_b); + return -1; +} +#endif +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) +#else +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +static char* __PYX_DEFAULT_STRING_ENCODING; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); + if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; + strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + return -1; +} +#endif +#endif + + +/* Test for GCC > 2.95 */ +#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) +#else /* !__GNUC__ or GCC < 2.95 */ + #define likely(x) (x) + #define unlikely(x) (x) +#endif /* __GNUC__ */ +static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } + +static PyObject *__pyx_m = NULL; +static PyObject *__pyx_d; +static PyObject *__pyx_b; +static PyObject *__pyx_cython_runtime = NULL; +static PyObject *__pyx_empty_tuple; +static PyObject *__pyx_empty_bytes; +static PyObject *__pyx_empty_unicode; +static int __pyx_lineno; +static int __pyx_clineno = 0; +static const char * __pyx_cfilenm= __FILE__; +static const char *__pyx_filename; + +/* Header.proto */ +#if !defined(CYTHON_CCOMPLEX) + #if defined(__cplusplus) + #define CYTHON_CCOMPLEX 1 + #elif defined(_Complex_I) + #define CYTHON_CCOMPLEX 1 + #else + #define CYTHON_CCOMPLEX 0 + #endif +#endif +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #include + #else + #include + #endif +#endif +#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) + #undef _Complex_I + #define _Complex_I 1.0fj +#endif + + +static const char *__pyx_f[] = { + "im2mesh/utils/libmcubes/mcubes.pyx", + "__init__.pxd", + "type.pxd", +}; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":776 + * # in Cython to enable them only on the right systems. + * + * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + */ +typedef npy_int8 __pyx_t_5numpy_int8_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":777 + * + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t + */ +typedef npy_int16 __pyx_t_5numpy_int16_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":778 + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< + * ctypedef npy_int64 int64_t + * #ctypedef npy_int96 int96_t + */ +typedef npy_int32 __pyx_t_5numpy_int32_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":779 + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< + * #ctypedef npy_int96 int96_t + * #ctypedef npy_int128 int128_t + */ +typedef npy_int64 __pyx_t_5numpy_int64_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":783 + * #ctypedef npy_int128 int128_t + * + * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + */ +typedef npy_uint8 __pyx_t_5numpy_uint8_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":784 + * + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t + */ +typedef npy_uint16 __pyx_t_5numpy_uint16_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":785 + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< + * ctypedef npy_uint64 uint64_t + * #ctypedef npy_uint96 uint96_t + */ +typedef npy_uint32 __pyx_t_5numpy_uint32_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":786 + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< + * #ctypedef npy_uint96 uint96_t + * #ctypedef npy_uint128 uint128_t + */ +typedef npy_uint64 __pyx_t_5numpy_uint64_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":790 + * #ctypedef npy_uint128 uint128_t + * + * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< + * ctypedef npy_float64 float64_t + * #ctypedef npy_float80 float80_t + */ +typedef npy_float32 __pyx_t_5numpy_float32_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":791 + * + * ctypedef npy_float32 float32_t + * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< + * #ctypedef npy_float80 float80_t + * #ctypedef npy_float128 float128_t + */ +typedef npy_float64 __pyx_t_5numpy_float64_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":800 + * # The int types are mapped a bit surprising -- + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t + */ +typedef npy_long __pyx_t_5numpy_int_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":801 + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong longlong_t + * + */ +typedef npy_longlong __pyx_t_5numpy_long_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":802 + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_ulong uint_t + */ +typedef npy_longlong __pyx_t_5numpy_longlong_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":804 + * ctypedef npy_longlong longlong_t + * + * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t + */ +typedef npy_ulong __pyx_t_5numpy_uint_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":805 + * + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulonglong_t + * + */ +typedef npy_ulonglong __pyx_t_5numpy_ulong_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":806 + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_intp intp_t + */ +typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":808 + * ctypedef npy_ulonglong ulonglong_t + * + * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< + * ctypedef npy_uintp uintp_t + * + */ +typedef npy_intp __pyx_t_5numpy_intp_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":809 + * + * ctypedef npy_intp intp_t + * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< + * + * ctypedef npy_double float_t + */ +typedef npy_uintp __pyx_t_5numpy_uintp_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":811 + * ctypedef npy_uintp uintp_t + * + * ctypedef npy_double float_t # <<<<<<<<<<<<<< + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t + */ +typedef npy_double __pyx_t_5numpy_float_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":812 + * + * ctypedef npy_double float_t + * ctypedef npy_double double_t # <<<<<<<<<<<<<< + * ctypedef npy_longdouble longdouble_t + * + */ +typedef npy_double __pyx_t_5numpy_double_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":813 + * ctypedef npy_double float_t + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cfloat cfloat_t + */ +typedef npy_longdouble __pyx_t_5numpy_longdouble_t; +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< float > __pyx_t_float_complex; + #else + typedef float _Complex __pyx_t_float_complex; + #endif +#else + typedef struct { float real, imag; } __pyx_t_float_complex; +#endif +static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); + +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< double > __pyx_t_double_complex; + #else + typedef double _Complex __pyx_t_double_complex; + #endif +#else + typedef struct { double real, imag; } __pyx_t_double_complex; +#endif +static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); + + +/*--- Type declarations ---*/ + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":815 + * ctypedef npy_longdouble longdouble_t + * + * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t + */ +typedef npy_cfloat __pyx_t_5numpy_cfloat_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":816 + * + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< + * ctypedef npy_clongdouble clongdouble_t + * + */ +typedef npy_cdouble __pyx_t_5numpy_cdouble_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":817 + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cdouble complex_t + */ +typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":819 + * ctypedef npy_clongdouble clongdouble_t + * + * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew1(a): + */ +typedef npy_cdouble __pyx_t_5numpy_complex_t; + +/* --- Runtime support code (head) --- */ +/* Refnanny.proto */ +#ifndef CYTHON_REFNANNY + #define CYTHON_REFNANNY 0 +#endif +#if CYTHON_REFNANNY + typedef struct { + void (*INCREF)(void*, PyObject*, int); + void (*DECREF)(void*, PyObject*, int); + void (*GOTREF)(void*, PyObject*, int); + void (*GIVEREF)(void*, PyObject*, int); + void* (*SetupContext)(const char*, int, const char*); + void (*FinishContext)(void**); + } __Pyx_RefNannyAPIStruct; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); + #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; +#ifdef WITH_THREAD + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + if (acquire_gil) {\ + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + PyGILState_Release(__pyx_gilstate_save);\ + } else {\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + } +#else + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) +#endif + #define __Pyx_RefNannyFinishContext()\ + __Pyx_RefNanny->FinishContext(&__pyx_refnanny) + #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) + #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) + #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) + #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) +#else + #define __Pyx_RefNannyDeclarations + #define __Pyx_RefNannySetupContext(name, acquire_gil) + #define __Pyx_RefNannyFinishContext() + #define __Pyx_INCREF(r) Py_INCREF(r) + #define __Pyx_DECREF(r) Py_DECREF(r) + #define __Pyx_GOTREF(r) + #define __Pyx_GIVEREF(r) + #define __Pyx_XINCREF(r) Py_XINCREF(r) + #define __Pyx_XDECREF(r) Py_XDECREF(r) + #define __Pyx_XGOTREF(r) + #define __Pyx_XGIVEREF(r) +#endif +#define __Pyx_XDECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_XDECREF(tmp);\ + } while (0) +#define __Pyx_DECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_DECREF(tmp);\ + } while (0) +#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) +#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) + +/* RaiseArgTupleInvalid.proto */ +static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, + Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); + +/* RaiseDoubleKeywords.proto */ +static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); + +/* ParseKeywords.proto */ +static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ + PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ + const char* function_name); + +/* ArgTypeTest.proto */ +#define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ + ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ + __Pyx__ArgTypeTest(obj, type, name, exact)) +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); + +/* RaiseTooManyValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); + +/* RaiseNeedMoreValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); + +/* IterFinish.proto */ +static CYTHON_INLINE int __Pyx_IterFinish(void); + +/* UnpackItemEndCheck.proto */ +static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); + +/* PyObjectSetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +#define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o, n, NULL) +static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value); +#else +#define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n) +#define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v) +#endif + +/* PyObjectGetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) +#endif + +/* GetBuiltinName.proto */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name); + +/* PyObjectCall.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); +#else +#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) +#endif + +/* PyThreadStateGet.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; +#define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; +#define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type +#else +#define __Pyx_PyThreadState_declare +#define __Pyx_PyThreadState_assign +#define __Pyx_PyErr_Occurred() PyErr_Occurred() +#endif + +/* PyErrFetchRestore.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) +#define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) +#else +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#endif +#else +#define __Pyx_PyErr_Clear() PyErr_Clear() +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) +#endif + +/* RaiseException.proto */ +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); + +/* PyCFunctionFastCall.proto */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +#else +#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#endif + +/* PyFunctionFastCall.proto */ +#if CYTHON_FAST_PYCALL +#define __Pyx_PyFunction_FastCall(func, args, nargs)\ + __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); +#else +#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) +#endif +#define __Pyx_BUILD_ASSERT_EXPR(cond)\ + (sizeof(char [1 - 2*!(cond)]) - 1) +#ifndef Py_MEMBER_SIZE +#define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) +#endif + static size_t __pyx_pyframe_localsplus_offset = 0; + #include "frameobject.h" + #define __Pxy_PyFrame_Initialize_Offsets()\ + ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ + (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) + #define __Pyx_PyFrame_GetLocalsplus(frame)\ + (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) +#endif + +/* PyObjectCallMethO.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +#endif + +/* PyObjectCallOneArg.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); + +/* DictGetItem.proto */ +#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY +static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key); +#define __Pyx_PyObject_Dict_GetItem(obj, name)\ + (likely(PyDict_CheckExact(obj)) ?\ + __Pyx_PyDict_GetItem(obj, name) : PyObject_GetItem(obj, name)) +#else +#define __Pyx_PyDict_GetItem(d, key) PyObject_GetItem(d, key) +#define __Pyx_PyObject_Dict_GetItem(obj, name) PyObject_GetItem(obj, name) +#endif + +/* RaiseNoneIterError.proto */ +static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); + +/* ExtTypeTest.proto */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); + +/* GetTopmostException.proto */ +#if CYTHON_USE_EXC_INFO_STACK +static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); +#endif + +/* SaveResetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +#else +#define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) +#define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) +#endif + +/* PyErrExceptionMatches.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); +#else +#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) +#endif + +/* GetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* TypeImport.proto */ +#ifndef __PYX_HAVE_RT_ImportType_proto +#define __PYX_HAVE_RT_ImportType_proto +enum __Pyx_ImportType_CheckSize { + __Pyx_ImportType_CheckSize_Error = 0, + __Pyx_ImportType_CheckSize_Warn = 1, + __Pyx_ImportType_CheckSize_Ignore = 2 +}; +static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); +#endif + +/* Import.proto */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); + +/* PyDictVersioning.proto */ +#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS +#define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) +#define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) +#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ + (version_var) = __PYX_GET_DICT_VERSION(dict);\ + (cache_var) = (value); +#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ + static PY_UINT64_T __pyx_dict_version = 0;\ + static PyObject *__pyx_dict_cached_value = NULL;\ + if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ + (VAR) = __pyx_dict_cached_value;\ + } else {\ + (VAR) = __pyx_dict_cached_value = (LOOKUP);\ + __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ + }\ +} +static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); +static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); +static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); +#else +#define __PYX_GET_DICT_VERSION(dict) (0) +#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) +#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); +#endif + +/* CLineInTraceback.proto */ +#ifdef CYTHON_CLINE_IN_TRACEBACK +#define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) +#else +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); +#endif + +/* CodeObjectCache.proto */ +typedef struct { + PyCodeObject* code_object; + int code_line; +} __Pyx_CodeObjectCacheEntry; +struct __Pyx_CodeObjectCache { + int count; + int max_count; + __Pyx_CodeObjectCacheEntry* entries; +}; +static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); +static PyCodeObject *__pyx_find_code_object(int code_line); +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); + +/* AddTraceback.proto */ +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename); + +/* CppExceptionConversion.proto */ +#ifndef __Pyx_CppExn2PyErr +#include +#include +#include +#include +static void __Pyx_CppExn2PyErr() { + try { + if (PyErr_Occurred()) + ; // let the latest Python exn pass through and ignore the current one + else + throw; + } catch (const std::bad_alloc& exn) { + PyErr_SetString(PyExc_MemoryError, exn.what()); + } catch (const std::bad_cast& exn) { + PyErr_SetString(PyExc_TypeError, exn.what()); + } catch (const std::bad_typeid& exn) { + PyErr_SetString(PyExc_TypeError, exn.what()); + } catch (const std::domain_error& exn) { + PyErr_SetString(PyExc_ValueError, exn.what()); + } catch (const std::invalid_argument& exn) { + PyErr_SetString(PyExc_ValueError, exn.what()); + } catch (const std::ios_base::failure& exn) { + PyErr_SetString(PyExc_IOError, exn.what()); + } catch (const std::out_of_range& exn) { + PyErr_SetString(PyExc_IndexError, exn.what()); + } catch (const std::overflow_error& exn) { + PyErr_SetString(PyExc_OverflowError, exn.what()); + } catch (const std::range_error& exn) { + PyErr_SetString(PyExc_ArithmeticError, exn.what()); + } catch (const std::underflow_error& exn) { + PyErr_SetString(PyExc_ArithmeticError, exn.what()); + } catch (const std::exception& exn) { + PyErr_SetString(PyExc_RuntimeError, exn.what()); + } + catch (...) + { + PyErr_SetString(PyExc_RuntimeError, "Unknown exception"); + } +} +#endif + +/* RealImag.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #define __Pyx_CREAL(z) ((z).real()) + #define __Pyx_CIMAG(z) ((z).imag()) + #else + #define __Pyx_CREAL(z) (__real__(z)) + #define __Pyx_CIMAG(z) (__imag__(z)) + #endif +#else + #define __Pyx_CREAL(z) ((z).real) + #define __Pyx_CIMAG(z) ((z).imag) +#endif +#if defined(__cplusplus) && CYTHON_CCOMPLEX\ + && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) + #define __Pyx_SET_CREAL(z,x) ((z).real(x)) + #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) +#else + #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) + #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_float(a, b) ((a)==(b)) + #define __Pyx_c_sum_float(a, b) ((a)+(b)) + #define __Pyx_c_diff_float(a, b) ((a)-(b)) + #define __Pyx_c_prod_float(a, b) ((a)*(b)) + #define __Pyx_c_quot_float(a, b) ((a)/(b)) + #define __Pyx_c_neg_float(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_float(z) ((z)==(float)0) + #define __Pyx_c_conj_float(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_float(z) (::std::abs(z)) + #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_float(z) ((z)==0) + #define __Pyx_c_conj_float(z) (conjf(z)) + #if 1 + #define __Pyx_c_abs_float(z) (cabsf(z)) + #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); + #endif +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_double(a, b) ((a)==(b)) + #define __Pyx_c_sum_double(a, b) ((a)+(b)) + #define __Pyx_c_diff_double(a, b) ((a)-(b)) + #define __Pyx_c_prod_double(a, b) ((a)*(b)) + #define __Pyx_c_quot_double(a, b) ((a)/(b)) + #define __Pyx_c_neg_double(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_double(z) ((z)==(double)0) + #define __Pyx_c_conj_double(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (::std::abs(z)) + #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_double(z) ((z)==0) + #define __Pyx_c_conj_double(z) (conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (cabs(z)) + #define __Pyx_c_pow_double(a, b) (cpow(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); + #endif +#endif + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + +/* FastTypeChecks.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); +#else +#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) +#define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) +#define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) +#endif +#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) + +/* CheckBinaryVersion.proto */ +static int __Pyx_check_binary_version(void); + +/* InitStrings.proto */ +static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); + + +/* Module declarations from 'cpython.buffer' */ + +/* Module declarations from 'libc.string' */ + +/* Module declarations from 'libc.stdio' */ + +/* Module declarations from '__builtin__' */ + +/* Module declarations from 'cpython.type' */ +static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; + +/* Module declarations from 'cpython' */ + +/* Module declarations from 'cpython.object' */ + +/* Module declarations from 'cpython.ref' */ + +/* Module declarations from 'cpython.mem' */ + +/* Module declarations from 'numpy' */ + +/* Module declarations from 'numpy' */ +static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; +static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; +static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; +static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; +static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; +static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/ +static CYTHON_INLINE int __pyx_f_5numpy_import_array(void); /*proto*/ + +/* Module declarations from 'im2mesh.utils.libmcubes.mcubes' */ +#define __Pyx_MODULE_NAME "im2mesh.utils.libmcubes.mcubes" +extern int __pyx_module_is_main_im2mesh__utils__libmcubes__mcubes; +int __pyx_module_is_main_im2mesh__utils__libmcubes__mcubes = 0; + +/* Implementation of 'im2mesh.utils.libmcubes.mcubes' */ +static PyObject *__pyx_builtin_ValueError; +static PyObject *__pyx_builtin_range; +static PyObject *__pyx_builtin_RuntimeError; +static PyObject *__pyx_builtin_ImportError; +static const char __pyx_k_f[] = "f"; +static const char __pyx_k_np[] = "np"; +static const char __pyx_k_main[] = "__main__"; +static const char __pyx_k_name[] = "__name__"; +static const char __pyx_k_numx[] = "numx"; +static const char __pyx_k_numy[] = "numy"; +static const char __pyx_k_numz[] = "numz"; +static const char __pyx_k_test[] = "__test__"; +static const char __pyx_k_faces[] = "faces"; +static const char __pyx_k_lower[] = "lower"; +static const char __pyx_k_numpy[] = "numpy"; +static const char __pyx_k_range[] = "range"; +static const char __pyx_k_shape[] = "shape"; +static const char __pyx_k_upper[] = "upper"; +static const char __pyx_k_verts[] = "verts"; +static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_volume[] = "volume"; +static const char __pyx_k_isovalue[] = "isovalue"; +static const char __pyx_k_ValueError[] = "ValueError"; +static const char __pyx_k_ImportError[] = "ImportError"; +static const char __pyx_k_RuntimeError[] = "RuntimeError"; +static const char __pyx_k_marching_cubes[] = "marching_cubes"; +static const char __pyx_k_marching_cubes2[] = "marching_cubes2"; +static const char __pyx_k_marching_cubes3[] = "marching_cubes3"; +static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; +static const char __pyx_k_marching_cubes_func[] = "marching_cubes_func"; +static const char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous"; +static const char __pyx_k_im2mesh_utils_libmcubes_mcubes[] = "im2mesh.utils.libmcubes.mcubes"; +static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; +static const char __pyx_k_unknown_dtype_code_in_numpy_pxd[] = "unknown dtype code in numpy.pxd (%d)"; +static const char __pyx_k_Format_string_allocated_too_shor[] = "Format string allocated too short, see comment in numpy.pxd"; +static const char __pyx_k_Non_native_byte_order_not_suppor[] = "Non-native byte order not supported"; +static const char __pyx_k_im2mesh_utils_libmcubes_mcubes_p[] = "im2mesh/utils/libmcubes/mcubes.pyx"; +static const char __pyx_k_ndarray_is_not_Fortran_contiguou[] = "ndarray is not Fortran contiguous"; +static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; +static const char __pyx_k_Format_string_allocated_too_shor_2[] = "Format string allocated too short."; +static PyObject *__pyx_kp_u_Format_string_allocated_too_shor; +static PyObject *__pyx_kp_u_Format_string_allocated_too_shor_2; +static PyObject *__pyx_n_s_ImportError; +static PyObject *__pyx_kp_u_Non_native_byte_order_not_suppor; +static PyObject *__pyx_n_s_RuntimeError; +static PyObject *__pyx_n_s_ValueError; +static PyObject *__pyx_n_s_cline_in_traceback; +static PyObject *__pyx_n_s_f; +static PyObject *__pyx_n_s_faces; +static PyObject *__pyx_n_s_im2mesh_utils_libmcubes_mcubes; +static PyObject *__pyx_kp_s_im2mesh_utils_libmcubes_mcubes_p; +static PyObject *__pyx_n_s_import; +static PyObject *__pyx_n_s_isovalue; +static PyObject *__pyx_n_s_lower; +static PyObject *__pyx_n_s_main; +static PyObject *__pyx_n_s_marching_cubes; +static PyObject *__pyx_n_s_marching_cubes2; +static PyObject *__pyx_n_s_marching_cubes3; +static PyObject *__pyx_n_s_marching_cubes_func; +static PyObject *__pyx_n_s_name; +static PyObject *__pyx_kp_u_ndarray_is_not_C_contiguous; +static PyObject *__pyx_kp_u_ndarray_is_not_Fortran_contiguou; +static PyObject *__pyx_n_s_np; +static PyObject *__pyx_n_s_numpy; +static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; +static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; +static PyObject *__pyx_n_s_numx; +static PyObject *__pyx_n_s_numy; +static PyObject *__pyx_n_s_numz; +static PyObject *__pyx_n_s_range; +static PyObject *__pyx_n_s_shape; +static PyObject *__pyx_n_s_test; +static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd; +static PyObject *__pyx_n_s_upper; +static PyObject *__pyx_n_s_verts; +static PyObject *__pyx_n_s_volume; +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_marching_cubes(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_volume, float __pyx_v_isovalue); /* proto */ +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_2marching_cubes2(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_volume, float __pyx_v_isovalue); /* proto */ +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_4marching_cubes3(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_volume, float __pyx_v_isovalue); /* proto */ +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_6marching_cubes_func(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_lower, PyObject *__pyx_v_upper, int __pyx_v_numx, int __pyx_v_numy, int __pyx_v_numz, PyObject *__pyx_v_f, double __pyx_v_isovalue); /* proto */ +static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */ +static PyObject *__pyx_int_3; +static PyObject *__pyx_int_neg_1; +static PyObject *__pyx_tuple_; +static PyObject *__pyx_tuple__2; +static PyObject *__pyx_tuple__3; +static PyObject *__pyx_tuple__4; +static PyObject *__pyx_tuple__5; +static PyObject *__pyx_tuple__6; +static PyObject *__pyx_tuple__7; +static PyObject *__pyx_tuple__8; +static PyObject *__pyx_tuple__9; +static PyObject *__pyx_tuple__11; +static PyObject *__pyx_tuple__13; +static PyObject *__pyx_tuple__15; +static PyObject *__pyx_codeobj__10; +static PyObject *__pyx_codeobj__12; +static PyObject *__pyx_codeobj__14; +static PyObject *__pyx_codeobj__16; +/* Late includes */ + +/* "im2mesh/utils/libmcubes/mcubes.pyx":22 + * cdef object c_marching_cubes_func "marching_cubes_func"(tuple, tuple, int, int, int, object, double) except + + * + * def marching_cubes(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes(volume, isovalue) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_1marching_cubes(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static char __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_marching_cubes[] = "marching_cubes(ndarray volume, float isovalue)"; +static PyMethodDef __pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_1marching_cubes = {"marching_cubes", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_1marching_cubes, METH_VARARGS|METH_KEYWORDS, __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_marching_cubes}; +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_1marching_cubes(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyArrayObject *__pyx_v_volume = 0; + float __pyx_v_isovalue; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("marching_cubes (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_volume,&__pyx_n_s_isovalue,0}; + PyObject* values[2] = {0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_volume)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_isovalue)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes", 1, 2, 2, 1); __PYX_ERR(0, 22, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "marching_cubes") < 0)) __PYX_ERR(0, 22, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + } + __pyx_v_volume = ((PyArrayObject *)values[0]); + __pyx_v_isovalue = __pyx_PyFloat_AsFloat(values[1]); if (unlikely((__pyx_v_isovalue == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 22, __pyx_L3_error) + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("marching_cubes", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 22, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_volume), __pyx_ptype_5numpy_ndarray, 1, "volume", 0))) __PYX_ERR(0, 22, __pyx_L1_error) + __pyx_r = __pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_marching_cubes(__pyx_self, __pyx_v_volume, __pyx_v_isovalue); + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_marching_cubes(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_volume, float __pyx_v_isovalue) { + PyObject *__pyx_v_verts = NULL; + PyObject *__pyx_v_faces = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *(*__pyx_t_5)(PyObject *); + __Pyx_RefNannySetupContext("marching_cubes", 0); + + /* "im2mesh/utils/libmcubes/mcubes.pyx":24 + * def marching_cubes(np.ndarray volume, float isovalue): + * + * verts, faces = c_marching_cubes(volume, isovalue) # <<<<<<<<<<<<<< + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + */ + try { + __pyx_t_1 = marching_cubes(__pyx_v_volume, __pyx_v_isovalue); + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 24, __pyx_L1_error) + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 24, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_1); + if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { + PyObject* sequence = __pyx_t_1; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(0, 24, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); + } else { + __pyx_t_2 = PyList_GET_ITEM(sequence, 0); + __pyx_t_3 = PyList_GET_ITEM(sequence, 1); + } + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_3); + #else + __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 24, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 24, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + Py_ssize_t index = -1; + __pyx_t_4 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 24, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_5 = Py_TYPE(__pyx_t_4)->tp_iternext; + index = 0; __pyx_t_2 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_2)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_2); + index = 1; __pyx_t_3 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_3)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_3); + if (__Pyx_IternextUnpackEndCheck(__pyx_t_5(__pyx_t_4), 2) < 0) __PYX_ERR(0, 24, __pyx_L1_error) + __pyx_t_5 = NULL; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + goto __pyx_L4_unpacking_done; + __pyx_L3_unpacking_failed:; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + __PYX_ERR(0, 24, __pyx_L1_error) + __pyx_L4_unpacking_done:; + } + __pyx_v_verts = __pyx_t_2; + __pyx_t_2 = 0; + __pyx_v_faces = __pyx_t_3; + __pyx_t_3 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":25 + * + * verts, faces = c_marching_cubes(volume, isovalue) + * verts.shape = (-1, 3) # <<<<<<<<<<<<<< + * faces.shape = (-1, 3) + * return verts, faces + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_verts, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 25, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":26 + * verts, faces = c_marching_cubes(volume, isovalue) + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) # <<<<<<<<<<<<<< + * return verts, faces + * + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_faces, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 26, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":27 + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + * return verts, faces # <<<<<<<<<<<<<< + * + * def marching_cubes2(np.ndarray volume, float isovalue): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 27, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v_verts); + __Pyx_GIVEREF(__pyx_v_verts); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_verts); + __Pyx_INCREF(__pyx_v_faces); + __Pyx_GIVEREF(__pyx_v_faces); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_faces); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":22 + * cdef object c_marching_cubes_func "marching_cubes_func"(tuple, tuple, int, int, int, object, double) except + + * + * def marching_cubes(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes(volume, isovalue) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_verts); + __Pyx_XDECREF(__pyx_v_faces); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "im2mesh/utils/libmcubes/mcubes.pyx":29 + * return verts, faces + * + * def marching_cubes2(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes2(volume, isovalue) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_3marching_cubes2(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static char __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_2marching_cubes2[] = "marching_cubes2(ndarray volume, float isovalue)"; +static PyMethodDef __pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_3marching_cubes2 = {"marching_cubes2", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_3marching_cubes2, METH_VARARGS|METH_KEYWORDS, __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_2marching_cubes2}; +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_3marching_cubes2(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyArrayObject *__pyx_v_volume = 0; + float __pyx_v_isovalue; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("marching_cubes2 (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_volume,&__pyx_n_s_isovalue,0}; + PyObject* values[2] = {0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_volume)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_isovalue)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes2", 1, 2, 2, 1); __PYX_ERR(0, 29, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "marching_cubes2") < 0)) __PYX_ERR(0, 29, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + } + __pyx_v_volume = ((PyArrayObject *)values[0]); + __pyx_v_isovalue = __pyx_PyFloat_AsFloat(values[1]); if (unlikely((__pyx_v_isovalue == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 29, __pyx_L3_error) + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("marching_cubes2", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 29, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes2", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_volume), __pyx_ptype_5numpy_ndarray, 1, "volume", 0))) __PYX_ERR(0, 29, __pyx_L1_error) + __pyx_r = __pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_2marching_cubes2(__pyx_self, __pyx_v_volume, __pyx_v_isovalue); + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_2marching_cubes2(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_volume, float __pyx_v_isovalue) { + PyObject *__pyx_v_verts = NULL; + PyObject *__pyx_v_faces = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *(*__pyx_t_5)(PyObject *); + __Pyx_RefNannySetupContext("marching_cubes2", 0); + + /* "im2mesh/utils/libmcubes/mcubes.pyx":31 + * def marching_cubes2(np.ndarray volume, float isovalue): + * + * verts, faces = c_marching_cubes2(volume, isovalue) # <<<<<<<<<<<<<< + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + */ + try { + __pyx_t_1 = marching_cubes2(__pyx_v_volume, __pyx_v_isovalue); + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 31, __pyx_L1_error) + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 31, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_1); + if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { + PyObject* sequence = __pyx_t_1; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(0, 31, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); + } else { + __pyx_t_2 = PyList_GET_ITEM(sequence, 0); + __pyx_t_3 = PyList_GET_ITEM(sequence, 1); + } + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_3); + #else + __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 31, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 31, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + Py_ssize_t index = -1; + __pyx_t_4 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 31, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_5 = Py_TYPE(__pyx_t_4)->tp_iternext; + index = 0; __pyx_t_2 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_2)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_2); + index = 1; __pyx_t_3 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_3)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_3); + if (__Pyx_IternextUnpackEndCheck(__pyx_t_5(__pyx_t_4), 2) < 0) __PYX_ERR(0, 31, __pyx_L1_error) + __pyx_t_5 = NULL; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + goto __pyx_L4_unpacking_done; + __pyx_L3_unpacking_failed:; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + __PYX_ERR(0, 31, __pyx_L1_error) + __pyx_L4_unpacking_done:; + } + __pyx_v_verts = __pyx_t_2; + __pyx_t_2 = 0; + __pyx_v_faces = __pyx_t_3; + __pyx_t_3 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":32 + * + * verts, faces = c_marching_cubes2(volume, isovalue) + * verts.shape = (-1, 3) # <<<<<<<<<<<<<< + * faces.shape = (-1, 3) + * return verts, faces + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_verts, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 32, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":33 + * verts, faces = c_marching_cubes2(volume, isovalue) + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) # <<<<<<<<<<<<<< + * return verts, faces + * + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_faces, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 33, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":34 + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + * return verts, faces # <<<<<<<<<<<<<< + * + * def marching_cubes3(np.ndarray volume, float isovalue): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 34, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v_verts); + __Pyx_GIVEREF(__pyx_v_verts); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_verts); + __Pyx_INCREF(__pyx_v_faces); + __Pyx_GIVEREF(__pyx_v_faces); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_faces); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":29 + * return verts, faces + * + * def marching_cubes2(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes2(volume, isovalue) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes2", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_verts); + __Pyx_XDECREF(__pyx_v_faces); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "im2mesh/utils/libmcubes/mcubes.pyx":36 + * return verts, faces + * + * def marching_cubes3(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes3(volume, isovalue) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_5marching_cubes3(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static char __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_4marching_cubes3[] = "marching_cubes3(ndarray volume, float isovalue)"; +static PyMethodDef __pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_5marching_cubes3 = {"marching_cubes3", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_5marching_cubes3, METH_VARARGS|METH_KEYWORDS, __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_4marching_cubes3}; +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_5marching_cubes3(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyArrayObject *__pyx_v_volume = 0; + float __pyx_v_isovalue; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("marching_cubes3 (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_volume,&__pyx_n_s_isovalue,0}; + PyObject* values[2] = {0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_volume)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_isovalue)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes3", 1, 2, 2, 1); __PYX_ERR(0, 36, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "marching_cubes3") < 0)) __PYX_ERR(0, 36, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + } + __pyx_v_volume = ((PyArrayObject *)values[0]); + __pyx_v_isovalue = __pyx_PyFloat_AsFloat(values[1]); if (unlikely((__pyx_v_isovalue == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 36, __pyx_L3_error) + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("marching_cubes3", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 36, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes3", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_volume), __pyx_ptype_5numpy_ndarray, 1, "volume", 0))) __PYX_ERR(0, 36, __pyx_L1_error) + __pyx_r = __pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_4marching_cubes3(__pyx_self, __pyx_v_volume, __pyx_v_isovalue); + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_4marching_cubes3(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_volume, float __pyx_v_isovalue) { + PyObject *__pyx_v_verts = NULL; + PyObject *__pyx_v_faces = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *(*__pyx_t_5)(PyObject *); + __Pyx_RefNannySetupContext("marching_cubes3", 0); + + /* "im2mesh/utils/libmcubes/mcubes.pyx":38 + * def marching_cubes3(np.ndarray volume, float isovalue): + * + * verts, faces = c_marching_cubes3(volume, isovalue) # <<<<<<<<<<<<<< + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + */ + try { + __pyx_t_1 = marching_cubes3(__pyx_v_volume, __pyx_v_isovalue); + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 38, __pyx_L1_error) + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 38, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_1); + if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { + PyObject* sequence = __pyx_t_1; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(0, 38, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); + } else { + __pyx_t_2 = PyList_GET_ITEM(sequence, 0); + __pyx_t_3 = PyList_GET_ITEM(sequence, 1); + } + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_3); + #else + __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 38, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 38, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + Py_ssize_t index = -1; + __pyx_t_4 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 38, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_5 = Py_TYPE(__pyx_t_4)->tp_iternext; + index = 0; __pyx_t_2 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_2)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_2); + index = 1; __pyx_t_3 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_3)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_3); + if (__Pyx_IternextUnpackEndCheck(__pyx_t_5(__pyx_t_4), 2) < 0) __PYX_ERR(0, 38, __pyx_L1_error) + __pyx_t_5 = NULL; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + goto __pyx_L4_unpacking_done; + __pyx_L3_unpacking_failed:; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + __PYX_ERR(0, 38, __pyx_L1_error) + __pyx_L4_unpacking_done:; + } + __pyx_v_verts = __pyx_t_2; + __pyx_t_2 = 0; + __pyx_v_faces = __pyx_t_3; + __pyx_t_3 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":39 + * + * verts, faces = c_marching_cubes3(volume, isovalue) + * verts.shape = (-1, 3) # <<<<<<<<<<<<<< + * faces.shape = (-1, 3) + * return verts, faces + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_verts, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 39, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":40 + * verts, faces = c_marching_cubes3(volume, isovalue) + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) # <<<<<<<<<<<<<< + * return verts, faces + * + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_faces, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 40, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":41 + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + * return verts, faces # <<<<<<<<<<<<<< + * + * def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 41, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v_verts); + __Pyx_GIVEREF(__pyx_v_verts); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_verts); + __Pyx_INCREF(__pyx_v_faces); + __Pyx_GIVEREF(__pyx_v_faces); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_faces); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":36 + * return verts, faces + * + * def marching_cubes3(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes3(volume, isovalue) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes3", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_verts); + __Pyx_XDECREF(__pyx_v_faces); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "im2mesh/utils/libmcubes/mcubes.pyx":43 + * return verts, faces + * + * def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_7marching_cubes_func(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static char __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_6marching_cubes_func[] = "marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, f, double isovalue)"; +static PyMethodDef __pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_7marching_cubes_func = {"marching_cubes_func", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_7marching_cubes_func, METH_VARARGS|METH_KEYWORDS, __pyx_doc_7im2mesh_5utils_9libmcubes_6mcubes_6marching_cubes_func}; +static PyObject *__pyx_pw_7im2mesh_5utils_9libmcubes_6mcubes_7marching_cubes_func(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_lower = 0; + PyObject *__pyx_v_upper = 0; + int __pyx_v_numx; + int __pyx_v_numy; + int __pyx_v_numz; + PyObject *__pyx_v_f = 0; + double __pyx_v_isovalue; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("marching_cubes_func (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_lower,&__pyx_n_s_upper,&__pyx_n_s_numx,&__pyx_n_s_numy,&__pyx_n_s_numz,&__pyx_n_s_f,&__pyx_n_s_isovalue,0}; + PyObject* values[7] = {0,0,0,0,0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); + CYTHON_FALLTHROUGH; + case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + CYTHON_FALLTHROUGH; + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lower)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_upper)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, 1); __PYX_ERR(0, 43, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_numx)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, 2); __PYX_ERR(0, 43, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 3: + if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_numy)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, 3); __PYX_ERR(0, 43, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 4: + if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_numz)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, 4); __PYX_ERR(0, 43, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 5: + if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_f)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, 5); __PYX_ERR(0, 43, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 6: + if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_isovalue)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, 6); __PYX_ERR(0, 43, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "marching_cubes_func") < 0)) __PYX_ERR(0, 43, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 7) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + values[5] = PyTuple_GET_ITEM(__pyx_args, 5); + values[6] = PyTuple_GET_ITEM(__pyx_args, 6); + } + __pyx_v_lower = ((PyObject*)values[0]); + __pyx_v_upper = ((PyObject*)values[1]); + __pyx_v_numx = __Pyx_PyInt_As_int(values[2]); if (unlikely((__pyx_v_numx == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error) + __pyx_v_numy = __Pyx_PyInt_As_int(values[3]); if (unlikely((__pyx_v_numy == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error) + __pyx_v_numz = __Pyx_PyInt_As_int(values[4]); if (unlikely((__pyx_v_numz == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error) + __pyx_v_f = values[5]; + __pyx_v_isovalue = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_isovalue == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error) + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("marching_cubes_func", 1, 7, 7, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 43, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes_func", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_lower), (&PyTuple_Type), 1, "lower", 1))) __PYX_ERR(0, 43, __pyx_L1_error) + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_upper), (&PyTuple_Type), 1, "upper", 1))) __PYX_ERR(0, 43, __pyx_L1_error) + __pyx_r = __pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_6marching_cubes_func(__pyx_self, __pyx_v_lower, __pyx_v_upper, __pyx_v_numx, __pyx_v_numy, __pyx_v_numz, __pyx_v_f, __pyx_v_isovalue); + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_7im2mesh_5utils_9libmcubes_6mcubes_6marching_cubes_func(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_lower, PyObject *__pyx_v_upper, int __pyx_v_numx, int __pyx_v_numy, int __pyx_v_numz, PyObject *__pyx_v_f, double __pyx_v_isovalue) { + PyObject *__pyx_v_verts = NULL; + PyObject *__pyx_v_faces = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *(*__pyx_t_5)(PyObject *); + __Pyx_RefNannySetupContext("marching_cubes_func", 0); + + /* "im2mesh/utils/libmcubes/mcubes.pyx":45 + * def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): + * + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) # <<<<<<<<<<<<<< + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + */ + try { + __pyx_t_1 = marching_cubes_func(__pyx_v_lower, __pyx_v_upper, __pyx_v_numx, __pyx_v_numy, __pyx_v_numz, __pyx_v_f, __pyx_v_isovalue); + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 45, __pyx_L1_error) + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 45, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_1); + if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { + PyObject* sequence = __pyx_t_1; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(0, 45, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + if (likely(PyTuple_CheckExact(sequence))) { + __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1); + } else { + __pyx_t_2 = PyList_GET_ITEM(sequence, 0); + __pyx_t_3 = PyList_GET_ITEM(sequence, 1); + } + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_3); + #else + __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 45, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 45, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else { + Py_ssize_t index = -1; + __pyx_t_4 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 45, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_5 = Py_TYPE(__pyx_t_4)->tp_iternext; + index = 0; __pyx_t_2 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_2)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_2); + index = 1; __pyx_t_3 = __pyx_t_5(__pyx_t_4); if (unlikely(!__pyx_t_3)) goto __pyx_L3_unpacking_failed; + __Pyx_GOTREF(__pyx_t_3); + if (__Pyx_IternextUnpackEndCheck(__pyx_t_5(__pyx_t_4), 2) < 0) __PYX_ERR(0, 45, __pyx_L1_error) + __pyx_t_5 = NULL; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + goto __pyx_L4_unpacking_done; + __pyx_L3_unpacking_failed:; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = NULL; + if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); + __PYX_ERR(0, 45, __pyx_L1_error) + __pyx_L4_unpacking_done:; + } + __pyx_v_verts = __pyx_t_2; + __pyx_t_2 = 0; + __pyx_v_faces = __pyx_t_3; + __pyx_t_3 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":46 + * + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + * verts.shape = (-1, 3) # <<<<<<<<<<<<<< + * faces.shape = (-1, 3) + * return verts, faces + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_verts, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 46, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":47 + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) # <<<<<<<<<<<<<< + * return verts, faces + */ + if (__Pyx_PyObject_SetAttrStr(__pyx_v_faces, __pyx_n_s_shape, __pyx_tuple_) < 0) __PYX_ERR(0, 47, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":48 + * verts.shape = (-1, 3) + * faces.shape = (-1, 3) + * return verts, faces # <<<<<<<<<<<<<< + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 48, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v_verts); + __Pyx_GIVEREF(__pyx_v_verts); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_verts); + __Pyx_INCREF(__pyx_v_faces); + __Pyx_GIVEREF(__pyx_v_faces); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_faces); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":43 + * return verts, faces + * + * def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("im2mesh.utils.libmcubes.mcubes.marching_cubes_func", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_verts); + __Pyx_XDECREF(__pyx_v_faces); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":258 + * # experimental exception made for __getbuffer__ and __releasebuffer__ + * # -- the details of this may change. + * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< + * # This implementation of getbuffer is geared towards Cython + * # requirements, and does not yet fulfill the PEP. + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_v_i; + int __pyx_v_ndim; + int __pyx_v_endian_detector; + int __pyx_v_little_endian; + int __pyx_v_t; + char *__pyx_v_f; + PyArray_Descr *__pyx_v_descr = 0; + int __pyx_v_offset; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + int __pyx_t_5; + int __pyx_t_6; + PyArray_Descr *__pyx_t_7; + PyObject *__pyx_t_8 = NULL; + char *__pyx_t_9; + if (__pyx_v_info == NULL) { + PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); + return -1; + } + __Pyx_RefNannySetupContext("__getbuffer__", 0); + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":265 + * + * cdef int i, ndim + * cdef int endian_detector = 1 # <<<<<<<<<<<<<< + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * + */ + __pyx_v_endian_detector = 1; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":266 + * cdef int i, ndim + * cdef int endian_detector = 1 + * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< + * + * ndim = PyArray_NDIM(self) + */ + __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":268 + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * + * ndim = PyArray_NDIM(self) # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + */ + __pyx_v_ndim = PyArray_NDIM(__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * ndim = PyArray_NDIM(self) + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + __pyx_t_2 = (((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L4_bool_binop_done; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":271 + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): # <<<<<<<<<<<<<< + * raise ValueError(u"ndarray is not C contiguous") + * + */ + __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_ARRAY_C_CONTIGUOUS) != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L4_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * ndim = PyArray_NDIM(self) + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + if (unlikely(__pyx_t_1)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":272 + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 272, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * ndim = PyArray_NDIM(self) + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + __pyx_t_2 = (((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L7_bool_binop_done; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":275 + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): # <<<<<<<<<<<<<< + * raise ValueError(u"ndarray is not Fortran contiguous") + * + */ + __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_ARRAY_F_CONTIGUOUS) != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L7_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + if (unlikely(__pyx_t_1)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":276 + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< + * + * info.buf = PyArray_DATA(self) + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 276, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 276, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":278 + * raise ValueError(u"ndarray is not Fortran contiguous") + * + * info.buf = PyArray_DATA(self) # <<<<<<<<<<<<<< + * info.ndim = ndim + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + __pyx_v_info->buf = PyArray_DATA(__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":279 + * + * info.buf = PyArray_DATA(self) + * info.ndim = ndim # <<<<<<<<<<<<<< + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * # Allocate new buffer for strides and shape info. + */ + __pyx_v_info->ndim = __pyx_v_ndim; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":280 + * info.buf = PyArray_DATA(self) + * info.ndim = ndim + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + */ + __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":283 + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) # <<<<<<<<<<<<<< + * info.shape = info.strides + ndim + * for i in range(ndim): + */ + __pyx_v_info->strides = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * 2) * ((size_t)__pyx_v_ndim)))); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":284 + * # This is allocated as one block, strides first. + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) + * info.shape = info.strides + ndim # <<<<<<<<<<<<<< + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] + */ + __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":285 + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) + * info.shape = info.strides + ndim + * for i in range(ndim): # <<<<<<<<<<<<<< + * info.strides[i] = PyArray_STRIDES(self)[i] + * info.shape[i] = PyArray_DIMS(self)[i] + */ + __pyx_t_4 = __pyx_v_ndim; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":286 + * info.shape = info.strides + ndim + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] # <<<<<<<<<<<<<< + * info.shape[i] = PyArray_DIMS(self)[i] + * else: + */ + (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":287 + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] + * info.shape[i] = PyArray_DIMS(self)[i] # <<<<<<<<<<<<<< + * else: + * info.strides = PyArray_STRIDES(self) + */ + (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]); + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":280 + * info.buf = PyArray_DATA(self) + * info.ndim = ndim + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + */ + goto __pyx_L9; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":289 + * info.shape[i] = PyArray_DIMS(self)[i] + * else: + * info.strides = PyArray_STRIDES(self) # <<<<<<<<<<<<<< + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL + */ + /*else*/ { + __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":290 + * else: + * info.strides = PyArray_STRIDES(self) + * info.shape = PyArray_DIMS(self) # <<<<<<<<<<<<<< + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) + */ + __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self)); + } + __pyx_L9:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":291 + * info.strides = PyArray_STRIDES(self) + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * info.itemsize = PyArray_ITEMSIZE(self) + * info.readonly = not PyArray_ISWRITEABLE(self) + */ + __pyx_v_info->suboffsets = NULL; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":292 + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) # <<<<<<<<<<<<<< + * info.readonly = not PyArray_ISWRITEABLE(self) + * + */ + __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":293 + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) + * info.readonly = not PyArray_ISWRITEABLE(self) # <<<<<<<<<<<<<< + * + * cdef int t + */ + __pyx_v_info->readonly = (!(PyArray_ISWRITEABLE(__pyx_v_self) != 0)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":296 + * + * cdef int t + * cdef char* f = NULL # <<<<<<<<<<<<<< + * cdef dtype descr = PyArray_DESCR(self) + * cdef int offset + */ + __pyx_v_f = NULL; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":297 + * cdef int t + * cdef char* f = NULL + * cdef dtype descr = PyArray_DESCR(self) # <<<<<<<<<<<<<< + * cdef int offset + * + */ + __pyx_t_7 = PyArray_DESCR(__pyx_v_self); + __pyx_t_3 = ((PyObject *)__pyx_t_7); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_descr = ((PyArray_Descr *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":300 + * cdef int offset + * + * info.obj = self # <<<<<<<<<<<<<< + * + * if not PyDataType_HASFIELDS(descr): + */ + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":302 + * info.obj = self + * + * if not PyDataType_HASFIELDS(descr): # <<<<<<<<<<<<<< + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + */ + __pyx_t_1 = ((!(PyDataType_HASFIELDS(__pyx_v_descr) != 0)) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":303 + * + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num # <<<<<<<<<<<<<< + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + */ + __pyx_t_4 = __pyx_v_descr->type_num; + __pyx_v_t = __pyx_t_4; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + __pyx_t_2 = ((__pyx_v_descr->byteorder == '>') != 0); + if (!__pyx_t_2) { + goto __pyx_L15_next_or; + } else { + } + __pyx_t_2 = (__pyx_v_little_endian != 0); + if (!__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L14_bool_binop_done; + } + __pyx_L15_next_or:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":305 + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" + */ + __pyx_t_2 = ((__pyx_v_descr->byteorder == '<') != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L14_bool_binop_done; + } + __pyx_t_2 = ((!(__pyx_v_little_endian != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L14_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + if (unlikely(__pyx_t_1)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":306 + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 306, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 306, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":307 + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" # <<<<<<<<<<<<<< + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" + */ + switch (__pyx_v_t) { + case NPY_BYTE: + __pyx_v_f = ((char *)"b"); + break; + case NPY_UBYTE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":308 + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" # <<<<<<<<<<<<<< + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" + */ + __pyx_v_f = ((char *)"B"); + break; + case NPY_SHORT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":309 + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" # <<<<<<<<<<<<<< + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" + */ + __pyx_v_f = ((char *)"h"); + break; + case NPY_USHORT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":310 + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" # <<<<<<<<<<<<<< + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" + */ + __pyx_v_f = ((char *)"H"); + break; + case NPY_INT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":311 + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" # <<<<<<<<<<<<<< + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" + */ + __pyx_v_f = ((char *)"i"); + break; + case NPY_UINT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":312 + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" # <<<<<<<<<<<<<< + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" + */ + __pyx_v_f = ((char *)"I"); + break; + case NPY_LONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":313 + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" # <<<<<<<<<<<<<< + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" + */ + __pyx_v_f = ((char *)"l"); + break; + case NPY_ULONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":314 + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" # <<<<<<<<<<<<<< + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" + */ + __pyx_v_f = ((char *)"L"); + break; + case NPY_LONGLONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":315 + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" # <<<<<<<<<<<<<< + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" + */ + __pyx_v_f = ((char *)"q"); + break; + case NPY_ULONGLONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":316 + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" # <<<<<<<<<<<<<< + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" + */ + __pyx_v_f = ((char *)"Q"); + break; + case NPY_FLOAT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":317 + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" # <<<<<<<<<<<<<< + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" + */ + __pyx_v_f = ((char *)"f"); + break; + case NPY_DOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":318 + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" # <<<<<<<<<<<<<< + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" + */ + __pyx_v_f = ((char *)"d"); + break; + case NPY_LONGDOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":319 + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" # <<<<<<<<<<<<<< + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" + */ + __pyx_v_f = ((char *)"g"); + break; + case NPY_CFLOAT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":320 + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" # <<<<<<<<<<<<<< + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" + */ + __pyx_v_f = ((char *)"Zf"); + break; + case NPY_CDOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":321 + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" # <<<<<<<<<<<<<< + * elif t == NPY_CLONGDOUBLE: f = "Zg" + * elif t == NPY_OBJECT: f = "O" + */ + __pyx_v_f = ((char *)"Zd"); + break; + case NPY_CLONGDOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":322 + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" # <<<<<<<<<<<<<< + * elif t == NPY_OBJECT: f = "O" + * else: + */ + __pyx_v_f = ((char *)"Zg"); + break; + case NPY_OBJECT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":323 + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" + * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<< + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + */ + __pyx_v_f = ((char *)"O"); + break; + default: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":325 + * elif t == NPY_OBJECT: f = "O" + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< + * info.format = f + * return + */ + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 325, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_8 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 325, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 325, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 325, __pyx_L1_error) + break; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":326 + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * info.format = f # <<<<<<<<<<<<<< + * return + * else: + */ + __pyx_v_info->format = __pyx_v_f; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":327 + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * info.format = f + * return # <<<<<<<<<<<<<< + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":302 + * info.obj = self + * + * if not PyDataType_HASFIELDS(descr): # <<<<<<<<<<<<<< + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":329 + * return + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) # <<<<<<<<<<<<<< + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 + */ + /*else*/ { + __pyx_v_info->format = ((char *)PyObject_Malloc(0xFF)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":330 + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) + * info.format[0] = c'^' # Native data types, manual alignment # <<<<<<<<<<<<<< + * offset = 0 + * f = _util_dtypestring(descr, info.format + 1, + */ + (__pyx_v_info->format[0]) = '^'; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":331 + * info.format = PyObject_Malloc(_buffer_format_string_len) + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 # <<<<<<<<<<<<<< + * f = _util_dtypestring(descr, info.format + 1, + * info.format + _buffer_format_string_len, + */ + __pyx_v_offset = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":332 + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 + * f = _util_dtypestring(descr, info.format + 1, # <<<<<<<<<<<<<< + * info.format + _buffer_format_string_len, + * &offset) + */ + __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 0xFF), (&__pyx_v_offset)); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(1, 332, __pyx_L1_error) + __pyx_v_f = __pyx_t_9; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":335 + * info.format + _buffer_format_string_len, + * &offset) + * f[0] = c'\0' # Terminate format string # <<<<<<<<<<<<<< + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + */ + (__pyx_v_f[0]) = '\x00'; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":258 + * # experimental exception made for __getbuffer__ and __releasebuffer__ + * # -- the details of this may change. + * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< + * # This implementation of getbuffer is geared towards Cython + * # requirements, and does not yet fulfill the PEP. + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + __pyx_L2:; + __Pyx_XDECREF((PyObject *)__pyx_v_descr); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":337 + * f[0] = c'\0' # Terminate format string + * + * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + */ + +/* Python wrapper */ +static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/ +static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0); + __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) { + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__releasebuffer__", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":338 + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + __pyx_t_1 = (PyArray_HASFIELDS(__pyx_v_self) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":339 + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) # <<<<<<<<<<<<<< + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * PyObject_Free(info.strides) + */ + PyObject_Free(__pyx_v_info->format); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":338 + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":340 + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * PyObject_Free(info.strides) + * # info.shape was stored after info.strides in the same block + */ + __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":341 + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * PyObject_Free(info.strides) # <<<<<<<<<<<<<< + * # info.shape was stored after info.strides in the same block + * + */ + PyObject_Free(__pyx_v_info->strides); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":340 + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * PyObject_Free(info.strides) + * # info.shape was stored after info.strides in the same block + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":337 + * f[0] = c'\0' # Terminate format string + * + * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":821 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":822 + * + * cdef inline object PyArray_MultiIterNew1(a): + * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew2(a, b): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 822, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":821 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":824 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":825 + * + * cdef inline object PyArray_MultiIterNew2(a, b): + * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 825, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":824 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":827 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":828 + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 828, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":827 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":830 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":831 + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 831, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":830 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":833 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":834 + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 834, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":833 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":836 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":837 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":838 + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape # <<<<<<<<<<<<<< + * else: + * return () + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); + __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":837 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":840 + * return d.subarray.shape + * else: + * return () # <<<<<<<<<<<<<< + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_empty_tuple); + __pyx_r = __pyx_empty_tuple; + goto __pyx_L0; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":836 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":842 + * return () + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< + * # Recursive utility function used in __getbuffer__ to get format + * # string. The new location in the format string is returned. + */ + +static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx_v_descr, char *__pyx_v_f, char *__pyx_v_end, int *__pyx_v_offset) { + PyArray_Descr *__pyx_v_child = 0; + int __pyx_v_endian_detector; + int __pyx_v_little_endian; + PyObject *__pyx_v_fields = 0; + PyObject *__pyx_v_childname = NULL; + PyObject *__pyx_v_new_offset = NULL; + PyObject *__pyx_v_t = NULL; + char *__pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + int __pyx_t_5; + int __pyx_t_6; + int __pyx_t_7; + long __pyx_t_8; + char *__pyx_t_9; + __Pyx_RefNannySetupContext("_util_dtypestring", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":847 + * + * cdef dtype child + * cdef int endian_detector = 1 # <<<<<<<<<<<<<< + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * cdef tuple fields + */ + __pyx_v_endian_detector = 1; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":848 + * cdef dtype child + * cdef int endian_detector = 1 + * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< + * cdef tuple fields + * + */ + __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":851 + * cdef tuple fields + * + * for childname in descr.names: # <<<<<<<<<<<<<< + * fields = descr.fields[childname] + * child, new_offset = fields + */ + if (unlikely(__pyx_v_descr->names == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); + __PYX_ERR(1, 851, __pyx_L1_error) + } + __pyx_t_1 = __pyx_v_descr->names; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; + for (;;) { + if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(1, 851, __pyx_L1_error) + #else + __pyx_t_3 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 851, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_XDECREF_SET(__pyx_v_childname, __pyx_t_3); + __pyx_t_3 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":852 + * + * for childname in descr.names: + * fields = descr.fields[childname] # <<<<<<<<<<<<<< + * child, new_offset = fields + * + */ + if (unlikely(__pyx_v_descr->fields == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(1, 852, __pyx_L1_error) + } + __pyx_t_3 = __Pyx_PyDict_GetItem(__pyx_v_descr->fields, __pyx_v_childname); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 852, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(PyTuple_CheckExact(__pyx_t_3))||((__pyx_t_3) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_t_3)->tp_name), 0))) __PYX_ERR(1, 852, __pyx_L1_error) + __Pyx_XDECREF_SET(__pyx_v_fields, ((PyObject*)__pyx_t_3)); + __pyx_t_3 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":853 + * for childname in descr.names: + * fields = descr.fields[childname] + * child, new_offset = fields # <<<<<<<<<<<<<< + * + * if (end - f) - (new_offset - offset[0]) < 15: + */ + if (likely(__pyx_v_fields != Py_None)) { + PyObject* sequence = __pyx_v_fields; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(1, 853, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_3); + __Pyx_INCREF(__pyx_t_4); + #else + __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 853, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 853, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 853, __pyx_L1_error) + } + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_dtype))))) __PYX_ERR(1, 853, __pyx_L1_error) + __Pyx_XDECREF_SET(__pyx_v_child, ((PyArray_Descr *)__pyx_t_3)); + __pyx_t_3 = 0; + __Pyx_XDECREF_SET(__pyx_v_new_offset, __pyx_t_4); + __pyx_t_4 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":855 + * child, new_offset = fields + * + * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + */ + __pyx_t_4 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 855, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyNumber_Subtract(__pyx_v_new_offset, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 855, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 855, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = ((((__pyx_v_end - __pyx_v_f) - ((int)__pyx_t_5)) < 15) != 0); + if (unlikely(__pyx_t_6)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":856 + * + * if (end - f) - (new_offset - offset[0]) < 15: + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< + * + * if ((child.byteorder == c'>' and little_endian) or + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 856, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 856, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":855 + * child, new_offset = fields + * + * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + __pyx_t_7 = ((__pyx_v_child->byteorder == '>') != 0); + if (!__pyx_t_7) { + goto __pyx_L8_next_or; + } else { + } + __pyx_t_7 = (__pyx_v_little_endian != 0); + if (!__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L7_bool_binop_done; + } + __pyx_L8_next_or:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":859 + * + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< + * raise ValueError(u"Non-native byte order not supported") + * # One could encode it in the format string and have Cython + */ + __pyx_t_7 = ((__pyx_v_child->byteorder == '<') != 0); + if (__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L7_bool_binop_done; + } + __pyx_t_7 = ((!(__pyx_v_little_endian != 0)) != 0); + __pyx_t_6 = __pyx_t_7; + __pyx_L7_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + if (unlikely(__pyx_t_6)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":860 + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * # One could encode it in the format string and have Cython + * # complain instead, BUT: < and > in format strings also imply + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 860, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 860, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":870 + * + * # Output padding bytes + * while offset[0] < new_offset: # <<<<<<<<<<<<<< + * f[0] = 120 # "x"; pad byte + * f += 1 + */ + while (1) { + __pyx_t_3 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 870, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_v_new_offset, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 870, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 870, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (!__pyx_t_6) break; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":871 + * # Output padding bytes + * while offset[0] < new_offset: + * f[0] = 120 # "x"; pad byte # <<<<<<<<<<<<<< + * f += 1 + * offset[0] += 1 + */ + (__pyx_v_f[0]) = 0x78; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":872 + * while offset[0] < new_offset: + * f[0] = 120 # "x"; pad byte + * f += 1 # <<<<<<<<<<<<<< + * offset[0] += 1 + * + */ + __pyx_v_f = (__pyx_v_f + 1); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":873 + * f[0] = 120 # "x"; pad byte + * f += 1 + * offset[0] += 1 # <<<<<<<<<<<<<< + * + * offset[0] += child.itemsize + */ + __pyx_t_8 = 0; + (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + 1); + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":875 + * offset[0] += 1 + * + * offset[0] += child.itemsize # <<<<<<<<<<<<<< + * + * if not PyDataType_HASFIELDS(child): + */ + __pyx_t_8 = 0; + (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + __pyx_v_child->elsize); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":877 + * offset[0] += child.itemsize + * + * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< + * t = child.type_num + * if end - f < 5: + */ + __pyx_t_6 = ((!(PyDataType_HASFIELDS(__pyx_v_child) != 0)) != 0); + if (__pyx_t_6) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":878 + * + * if not PyDataType_HASFIELDS(child): + * t = child.type_num # <<<<<<<<<<<<<< + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") + */ + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_child->type_num); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 878, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); + __pyx_t_4 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":879 + * if not PyDataType_HASFIELDS(child): + * t = child.type_num + * if end - f < 5: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short.") + * + */ + __pyx_t_6 = (((__pyx_v_end - __pyx_v_f) < 5) != 0); + if (unlikely(__pyx_t_6)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":880 + * t = child.type_num + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< + * + * # Until ticket #99 is fixed, use integers to avoid warnings + */ + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 880, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(1, 880, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":879 + * if not PyDataType_HASFIELDS(child): + * t = child.type_num + * if end - f < 5: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short.") + * + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":883 + * + * # Until ticket #99 is fixed, use integers to avoid warnings + * if t == NPY_BYTE: f[0] = 98 #"b" # <<<<<<<<<<<<<< + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_BYTE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 883, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 883, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 883, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 98; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":884 + * # Until ticket #99 is fixed, use integers to avoid warnings + * if t == NPY_BYTE: f[0] = 98 #"b" + * elif t == NPY_UBYTE: f[0] = 66 #"B" # <<<<<<<<<<<<<< + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UBYTE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 884, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 884, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 884, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 66; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":885 + * if t == NPY_BYTE: f[0] = 98 #"b" + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" # <<<<<<<<<<<<<< + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_SHORT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 885, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 885, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 885, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x68; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":886 + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" # <<<<<<<<<<<<<< + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_USHORT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 886, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 886, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 886, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 72; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":887 + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" # <<<<<<<<<<<<<< + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_INT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 887, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 887, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 887, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x69; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":888 + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" # <<<<<<<<<<<<<< + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UINT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 888, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 888, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 888, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 73; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":889 + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" # <<<<<<<<<<<<<< + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 889, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 889, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 889, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x6C; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":890 + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" # <<<<<<<<<<<<<< + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 890, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 890, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 890, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 76; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":891 + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" # <<<<<<<<<<<<<< + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGLONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 891, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 891, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 891, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x71; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":892 + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" # <<<<<<<<<<<<<< + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONGLONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 892, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 892, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 892, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 81; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":893 + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" # <<<<<<<<<<<<<< + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_FLOAT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 893, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 893, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 893, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x66; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":894 + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" # <<<<<<<<<<<<<< + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_DOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 894, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 894, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 894, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x64; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":895 + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" # <<<<<<<<<<<<<< + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 895, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 895, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 895, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x67; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":896 + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf # <<<<<<<<<<<<<< + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CFLOAT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 896, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 896, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 896, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x66; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":897 + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd # <<<<<<<<<<<<<< + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + * elif t == NPY_OBJECT: f[0] = 79 #"O" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 897, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 897, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 897, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x64; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":898 + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg # <<<<<<<<<<<<<< + * elif t == NPY_OBJECT: f[0] = 79 #"O" + * else: + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CLONGDOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 898, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 898, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 898, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x67; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":899 + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + * elif t == NPY_OBJECT: f[0] = 79 #"O" # <<<<<<<<<<<<<< + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_OBJECT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 899, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 899, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 899, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (likely(__pyx_t_6)) { + (__pyx_v_f[0]) = 79; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":901 + * elif t == NPY_OBJECT: f[0] = 79 #"O" + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< + * f += 1 + * else: + */ + /*else*/ { + __pyx_t_3 = __Pyx_PyUnicode_FormatSafe(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 901, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 901, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(1, 901, __pyx_L1_error) + } + __pyx_L15:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":902 + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * f += 1 # <<<<<<<<<<<<<< + * else: + * # Cython ignores struct boundary information ("T{...}"), + */ + __pyx_v_f = (__pyx_v_f + 1); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":877 + * offset[0] += child.itemsize + * + * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< + * t = child.type_num + * if end - f < 5: + */ + goto __pyx_L13; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":906 + * # Cython ignores struct boundary information ("T{...}"), + * # so don't output it + * f = _util_dtypestring(child, f, end, offset) # <<<<<<<<<<<<<< + * return f + * + */ + /*else*/ { + __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_child, __pyx_v_f, __pyx_v_end, __pyx_v_offset); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(1, 906, __pyx_L1_error) + __pyx_v_f = __pyx_t_9; + } + __pyx_L13:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":851 + * cdef tuple fields + * + * for childname in descr.names: # <<<<<<<<<<<<<< + * fields = descr.fields[childname] + * child, new_offset = fields + */ + } + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":907 + * # so don't output it + * f = _util_dtypestring(child, f, end, offset) + * return f # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_f; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":842 + * return () + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< + * # Recursive utility function used in __getbuffer__ to get format + * # string. The new location in the format string is returned. + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("numpy._util_dtypestring", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_child); + __Pyx_XDECREF(__pyx_v_fields); + __Pyx_XDECREF(__pyx_v_childname); + __Pyx_XDECREF(__pyx_v_new_offset); + __Pyx_XDECREF(__pyx_v_t); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * int _import_umath() except -1 + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) + */ + +static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("set_array_base", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1023 + * + * cdef inline void set_array_base(ndarray arr, object base): + * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< + * PyArray_SetBaseObject(arr, base) + * + */ + Py_INCREF(__pyx_v_base); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1024 + * cdef inline void set_array_base(ndarray arr, object base): + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< + * + * cdef inline object get_array_base(ndarray arr): + */ + (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * int _import_umath() except -1 + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1026 + * PyArray_SetBaseObject(arr, base) + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * base = PyArray_BASE(arr) + * if base is NULL: + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { + PyObject *__pyx_v_base; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("get_array_base", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1027 + * + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< + * if base is NULL: + * return None + */ + __pyx_v_base = PyArray_BASE(__pyx_v_arr); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1028 + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) + * if base is NULL: # <<<<<<<<<<<<<< + * return None + * return base + */ + __pyx_t_1 = ((__pyx_v_base == NULL) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1029 + * base = PyArray_BASE(arr) + * if base is NULL: + * return None # <<<<<<<<<<<<<< + * return base + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1028 + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) + * if base is NULL: # <<<<<<<<<<<<<< + * return None + * return base + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1030 + * if base is NULL: + * return None + * return base # <<<<<<<<<<<<<< + * + * # Versions of the import_* functions which are more suitable for + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_base)); + __pyx_r = ((PyObject *)__pyx_v_base); + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1026 + * PyArray_SetBaseObject(arr, base) + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * base = PyArray_BASE(arr) + * if base is NULL: + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1034 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * _import_array() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_array", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1036 + * cdef inline int import_array() except -1: + * try: + * _import_array() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") + */ + __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1036, __pyx_L3_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1037 + * try: + * _import_array() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.multiarray failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1037, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1038 + * _import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1038, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 1038, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1034 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * _import_array() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1040 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_umath", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1042 + * cdef inline int import_umath() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1042, __pyx_L3_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1043 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1043, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1044 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1044, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 1044, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1040 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_ufunc", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1048 + * cdef inline int import_ufunc() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1048, __pyx_L3_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1049 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1049, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1050 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1050, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 1050, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyMethodDef __pyx_methods[] = { + {0, 0, 0, 0} +}; + +#if PY_MAJOR_VERSION >= 3 +#if CYTHON_PEP489_MULTI_PHASE_INIT +static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ +static int __pyx_pymod_exec_mcubes(PyObject* module); /*proto*/ +static PyModuleDef_Slot __pyx_moduledef_slots[] = { + {Py_mod_create, (void*)__pyx_pymod_create}, + {Py_mod_exec, (void*)__pyx_pymod_exec_mcubes}, + {0, NULL} +}; +#endif + +static struct PyModuleDef __pyx_moduledef = { + PyModuleDef_HEAD_INIT, + "mcubes", + 0, /* m_doc */ + #if CYTHON_PEP489_MULTI_PHASE_INIT + 0, /* m_size */ + #else + -1, /* m_size */ + #endif + __pyx_methods /* m_methods */, + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_moduledef_slots, /* m_slots */ + #else + NULL, /* m_reload */ + #endif + NULL, /* m_traverse */ + NULL, /* m_clear */ + NULL /* m_free */ +}; +#endif +#ifndef CYTHON_SMALL_CODE +#if defined(__clang__) + #define CYTHON_SMALL_CODE +#elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define CYTHON_SMALL_CODE __attribute__((cold)) +#else + #define CYTHON_SMALL_CODE +#endif +#endif + +static __Pyx_StringTabEntry __pyx_string_tab[] = { + {&__pyx_kp_u_Format_string_allocated_too_shor, __pyx_k_Format_string_allocated_too_shor, sizeof(__pyx_k_Format_string_allocated_too_shor), 0, 1, 0, 0}, + {&__pyx_kp_u_Format_string_allocated_too_shor_2, __pyx_k_Format_string_allocated_too_shor_2, sizeof(__pyx_k_Format_string_allocated_too_shor_2), 0, 1, 0, 0}, + {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, + {&__pyx_kp_u_Non_native_byte_order_not_suppor, __pyx_k_Non_native_byte_order_not_suppor, sizeof(__pyx_k_Non_native_byte_order_not_suppor), 0, 1, 0, 0}, + {&__pyx_n_s_RuntimeError, __pyx_k_RuntimeError, sizeof(__pyx_k_RuntimeError), 0, 0, 1, 1}, + {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, + {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, + {&__pyx_n_s_f, __pyx_k_f, sizeof(__pyx_k_f), 0, 0, 1, 1}, + {&__pyx_n_s_faces, __pyx_k_faces, sizeof(__pyx_k_faces), 0, 0, 1, 1}, + {&__pyx_n_s_im2mesh_utils_libmcubes_mcubes, __pyx_k_im2mesh_utils_libmcubes_mcubes, sizeof(__pyx_k_im2mesh_utils_libmcubes_mcubes), 0, 0, 1, 1}, + {&__pyx_kp_s_im2mesh_utils_libmcubes_mcubes_p, __pyx_k_im2mesh_utils_libmcubes_mcubes_p, sizeof(__pyx_k_im2mesh_utils_libmcubes_mcubes_p), 0, 0, 1, 0}, + {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, + {&__pyx_n_s_isovalue, __pyx_k_isovalue, sizeof(__pyx_k_isovalue), 0, 0, 1, 1}, + {&__pyx_n_s_lower, __pyx_k_lower, sizeof(__pyx_k_lower), 0, 0, 1, 1}, + {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, + {&__pyx_n_s_marching_cubes, __pyx_k_marching_cubes, sizeof(__pyx_k_marching_cubes), 0, 0, 1, 1}, + {&__pyx_n_s_marching_cubes2, __pyx_k_marching_cubes2, sizeof(__pyx_k_marching_cubes2), 0, 0, 1, 1}, + {&__pyx_n_s_marching_cubes3, __pyx_k_marching_cubes3, sizeof(__pyx_k_marching_cubes3), 0, 0, 1, 1}, + {&__pyx_n_s_marching_cubes_func, __pyx_k_marching_cubes_func, sizeof(__pyx_k_marching_cubes_func), 0, 0, 1, 1}, + {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, + {&__pyx_kp_u_ndarray_is_not_C_contiguous, __pyx_k_ndarray_is_not_C_contiguous, sizeof(__pyx_k_ndarray_is_not_C_contiguous), 0, 1, 0, 0}, + {&__pyx_kp_u_ndarray_is_not_Fortran_contiguou, __pyx_k_ndarray_is_not_Fortran_contiguou, sizeof(__pyx_k_ndarray_is_not_Fortran_contiguou), 0, 1, 0, 0}, + {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, + {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, + {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, + {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, + {&__pyx_n_s_numx, __pyx_k_numx, sizeof(__pyx_k_numx), 0, 0, 1, 1}, + {&__pyx_n_s_numy, __pyx_k_numy, sizeof(__pyx_k_numy), 0, 0, 1, 1}, + {&__pyx_n_s_numz, __pyx_k_numz, sizeof(__pyx_k_numz), 0, 0, 1, 1}, + {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, + {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, + {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, + {&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0}, + {&__pyx_n_s_upper, __pyx_k_upper, sizeof(__pyx_k_upper), 0, 0, 1, 1}, + {&__pyx_n_s_verts, __pyx_k_verts, sizeof(__pyx_k_verts), 0, 0, 1, 1}, + {&__pyx_n_s_volume, __pyx_k_volume, sizeof(__pyx_k_volume), 0, 0, 1, 1}, + {0, 0, 0, 0, 0, 0, 0} +}; +static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { + __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 272, __pyx_L1_error) + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(1, 285, __pyx_L1_error) + __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) __PYX_ERR(1, 856, __pyx_L1_error) + __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(1, 1038, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); + + /* "im2mesh/utils/libmcubes/mcubes.pyx":25 + * + * verts, faces = c_marching_cubes(volume, isovalue) + * verts.shape = (-1, 3) # <<<<<<<<<<<<<< + * faces.shape = (-1, 3) + * return verts, faces + */ + __pyx_tuple_ = PyTuple_Pack(2, __pyx_int_neg_1, __pyx_int_3); if (unlikely(!__pyx_tuple_)) __PYX_ERR(0, 25, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple_); + __Pyx_GIVEREF(__pyx_tuple_); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":272 + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + */ + __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_C_contiguous); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(1, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__2); + __Pyx_GIVEREF(__pyx_tuple__2); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":276 + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< + * + * info.buf = PyArray_DATA(self) + */ + __pyx_tuple__3 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_Fortran_contiguou); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(1, 276, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__3); + __Pyx_GIVEREF(__pyx_tuple__3); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":306 + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + */ + __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(1, 306, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__4); + __Pyx_GIVEREF(__pyx_tuple__4); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":856 + * + * if (end - f) - (new_offset - offset[0]) < 15: + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< + * + * if ((child.byteorder == c'>' and little_endian) or + */ + __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(1, 856, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__5); + __Pyx_GIVEREF(__pyx_tuple__5); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":880 + * t = child.type_num + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< + * + * # Until ticket #99 is fixed, use integers to avoid warnings + */ + __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor_2); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(1, 880, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__6); + __Pyx_GIVEREF(__pyx_tuple__6); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1038 + * _import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(1, 1038, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__7); + __Pyx_GIVEREF(__pyx_tuple__7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1044 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(1, 1044, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__8); + __Pyx_GIVEREF(__pyx_tuple__8); + + /* "im2mesh/utils/libmcubes/mcubes.pyx":22 + * cdef object c_marching_cubes_func "marching_cubes_func"(tuple, tuple, int, int, int, object, double) except + + * + * def marching_cubes(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes(volume, isovalue) + */ + __pyx_tuple__9 = PyTuple_Pack(4, __pyx_n_s_volume, __pyx_n_s_isovalue, __pyx_n_s_verts, __pyx_n_s_faces); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(0, 22, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__9); + __Pyx_GIVEREF(__pyx_tuple__9); + __pyx_codeobj__10 = (PyObject*)__Pyx_PyCode_New(2, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__9, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_im2mesh_utils_libmcubes_mcubes_p, __pyx_n_s_marching_cubes, 22, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__10)) __PYX_ERR(0, 22, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":29 + * return verts, faces + * + * def marching_cubes2(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes2(volume, isovalue) + */ + __pyx_tuple__11 = PyTuple_Pack(4, __pyx_n_s_volume, __pyx_n_s_isovalue, __pyx_n_s_verts, __pyx_n_s_faces); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(0, 29, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__11); + __Pyx_GIVEREF(__pyx_tuple__11); + __pyx_codeobj__12 = (PyObject*)__Pyx_PyCode_New(2, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__11, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_im2mesh_utils_libmcubes_mcubes_p, __pyx_n_s_marching_cubes2, 29, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__12)) __PYX_ERR(0, 29, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":36 + * return verts, faces + * + * def marching_cubes3(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes3(volume, isovalue) + */ + __pyx_tuple__13 = PyTuple_Pack(4, __pyx_n_s_volume, __pyx_n_s_isovalue, __pyx_n_s_verts, __pyx_n_s_faces); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(0, 36, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__13); + __Pyx_GIVEREF(__pyx_tuple__13); + __pyx_codeobj__14 = (PyObject*)__Pyx_PyCode_New(2, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__13, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_im2mesh_utils_libmcubes_mcubes_p, __pyx_n_s_marching_cubes3, 36, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__14)) __PYX_ERR(0, 36, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":43 + * return verts, faces + * + * def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + */ + __pyx_tuple__15 = PyTuple_Pack(9, __pyx_n_s_lower, __pyx_n_s_upper, __pyx_n_s_numx, __pyx_n_s_numy, __pyx_n_s_numz, __pyx_n_s_f, __pyx_n_s_isovalue, __pyx_n_s_verts, __pyx_n_s_faces); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(0, 43, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__15); + __Pyx_GIVEREF(__pyx_tuple__15); + __pyx_codeobj__16 = (PyObject*)__Pyx_PyCode_New(7, 0, 9, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__15, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_im2mesh_utils_libmcubes_mcubes_p, __pyx_n_s_marching_cubes_func, 43, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__16)) __PYX_ERR(0, 43, __pyx_L1_error) + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { + if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 2, __pyx_L1_error); + __pyx_int_3 = PyInt_FromLong(3); if (unlikely(!__pyx_int_3)) __PYX_ERR(0, 2, __pyx_L1_error) + __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 2, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ + +static int __Pyx_modinit_global_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); + /*--- Global init code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_variable_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); + /*--- Variable export code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); + /*--- Function export code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_type_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); + /*--- Type init code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_type_import_code(void) { + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); + /*--- Type import code ---*/ + __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 9, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", + #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 + sizeof(PyTypeObject), + #else + sizeof(PyHeapTypeObject), + #endif + __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(2, 9, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 206, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(1, 206, __pyx_L1_error) + __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(1, 229, __pyx_L1_error) + __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(1, 233, __pyx_L1_error) + __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(1, 242, __pyx_L1_error) + __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(1, 918, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_variable_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); + /*--- Variable import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); + /*--- Function import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + + +#if PY_MAJOR_VERSION < 3 +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC void +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#else +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC PyObject * +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#endif + + +#if PY_MAJOR_VERSION < 3 +__Pyx_PyMODINIT_FUNC initmcubes(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC initmcubes(void) +#else +__Pyx_PyMODINIT_FUNC PyInit_mcubes(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC PyInit_mcubes(void) +#if CYTHON_PEP489_MULTI_PHASE_INIT +{ + return PyModuleDef_Init(&__pyx_moduledef); +} +static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { + #if PY_VERSION_HEX >= 0x030700A1 + static PY_INT64_T main_interpreter_id = -1; + PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); + if (main_interpreter_id == -1) { + main_interpreter_id = current_id; + return (unlikely(current_id == -1)) ? -1 : 0; + } else if (unlikely(main_interpreter_id != current_id)) + #else + static PyInterpreterState *main_interpreter = NULL; + PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; + if (!main_interpreter) { + main_interpreter = current_interpreter; + } else if (unlikely(main_interpreter != current_interpreter)) + #endif + { + PyErr_SetString( + PyExc_ImportError, + "Interpreter change detected - this module can only be loaded into one interpreter per process."); + return -1; + } + return 0; +} +static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { + PyObject *value = PyObject_GetAttrString(spec, from_name); + int result = 0; + if (likely(value)) { + if (allow_none || value != Py_None) { + result = PyDict_SetItemString(moddict, to_name, value); + } + Py_DECREF(value); + } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + } else { + result = -1; + } + return result; +} +static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { + PyObject *module = NULL, *moddict, *modname; + if (__Pyx_check_single_interpreter()) + return NULL; + if (__pyx_m) + return __Pyx_NewRef(__pyx_m); + modname = PyObject_GetAttrString(spec, "name"); + if (unlikely(!modname)) goto bad; + module = PyModule_NewObject(modname); + Py_DECREF(modname); + if (unlikely(!module)) goto bad; + moddict = PyModule_GetDict(module); + if (unlikely(!moddict)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; + return module; +bad: + Py_XDECREF(module); + return NULL; +} + + +static CYTHON_SMALL_CODE int __pyx_pymod_exec_mcubes(PyObject *__pyx_pyinit_module) +#endif +#endif +{ + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + __Pyx_RefNannyDeclarations + #if CYTHON_PEP489_MULTI_PHASE_INIT + if (__pyx_m) { + if (__pyx_m == __pyx_pyinit_module) return 0; + PyErr_SetString(PyExc_RuntimeError, "Module 'mcubes' has already been imported. Re-initialisation is not supported."); + return -1; + } + #elif PY_MAJOR_VERSION >= 3 + if (__pyx_m) return __Pyx_NewRef(__pyx_m); + #endif + #if CYTHON_REFNANNY +__Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); +if (!__Pyx_RefNanny) { + PyErr_Clear(); + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); + if (!__Pyx_RefNanny) + Py_FatalError("failed to import 'refnanny' module"); +} +#endif + __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_mcubes(void)", 0); + if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #ifdef __Pxy_PyFrame_Initialize_Offsets + __Pxy_PyFrame_Initialize_Offsets(); + #endif + __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 2, __pyx_L1_error) + __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 2, __pyx_L1_error) + __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 2, __pyx_L1_error) + #ifdef __Pyx_CyFunction_USED + if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + #ifdef __Pyx_FusedFunction_USED + if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + #ifdef __Pyx_Coroutine_USED + if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + #ifdef __Pyx_Generator_USED + if (__pyx_Generator_init() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + #ifdef __Pyx_AsyncGen_USED + if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + #ifdef __Pyx_StopAsyncIteration_USED + if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + /*--- Library function declarations ---*/ + /*--- Threads initialization code ---*/ + #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS + #ifdef WITH_THREAD /* Python build with threading support? */ + PyEval_InitThreads(); + #endif + #endif + /*--- Module creation code ---*/ + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_m = __pyx_pyinit_module; + Py_INCREF(__pyx_m); + #else + #if PY_MAJOR_VERSION < 3 + __pyx_m = Py_InitModule4("mcubes", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); + #else + __pyx_m = PyModule_Create(&__pyx_moduledef); + #endif + if (unlikely(!__pyx_m)) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 2, __pyx_L1_error) + Py_INCREF(__pyx_d); + __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 2, __pyx_L1_error) + Py_INCREF(__pyx_b); + __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 2, __pyx_L1_error) + Py_INCREF(__pyx_cython_runtime); + if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 2, __pyx_L1_error); + /*--- Initialize various global constants etc. ---*/ + if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) + if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + if (__pyx_module_is_main_im2mesh__utils__libmcubes__mcubes) { + if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name, __pyx_n_s_main) < 0) __PYX_ERR(0, 2, __pyx_L1_error) + } + #if PY_MAJOR_VERSION >= 3 + { + PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 2, __pyx_L1_error) + if (!PyDict_GetItemString(modules, "im2mesh.utils.libmcubes.mcubes")) { + if (unlikely(PyDict_SetItemString(modules, "im2mesh.utils.libmcubes.mcubes", __pyx_m) < 0)) __PYX_ERR(0, 2, __pyx_L1_error) + } + } + #endif + /*--- Builtin init code ---*/ + if (__Pyx_InitCachedBuiltins() < 0) goto __pyx_L1_error; + /*--- Constants init code ---*/ + if (__Pyx_InitCachedConstants() < 0) goto __pyx_L1_error; + /*--- Global type/function init code ---*/ + (void)__Pyx_modinit_global_init_code(); + (void)__Pyx_modinit_variable_export_code(); + (void)__Pyx_modinit_function_export_code(); + (void)__Pyx_modinit_type_init_code(); + if (unlikely(__Pyx_modinit_type_import_code() != 0)) goto __pyx_L1_error; + (void)__Pyx_modinit_variable_import_code(); + (void)__Pyx_modinit_function_import_code(); + /*--- Execution code ---*/ + #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) + if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 2, __pyx_L1_error) + #endif + + /* "im2mesh/utils/libmcubes/mcubes.pyx":6 + * + * # from libcpp.vector cimport vector + * import numpy as np # <<<<<<<<<<<<<< + * + * # Define PY_ARRAY_UNIQUE_SYMBOL + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 6, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":14 + * cimport numpy as np + * + * np.import_array() # <<<<<<<<<<<<<< + * + * cdef extern from "pywrapper.h": + */ + __pyx_t_2 = __pyx_f_5numpy_import_array(); if (unlikely(__pyx_t_2 == ((int)-1))) __PYX_ERR(0, 14, __pyx_L1_error) + + /* "im2mesh/utils/libmcubes/mcubes.pyx":22 + * cdef object c_marching_cubes_func "marching_cubes_func"(tuple, tuple, int, int, int, object, double) except + + * + * def marching_cubes(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes(volume, isovalue) + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_1marching_cubes, NULL, __pyx_n_s_im2mesh_utils_libmcubes_mcubes); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 22, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_marching_cubes, __pyx_t_1) < 0) __PYX_ERR(0, 22, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":29 + * return verts, faces + * + * def marching_cubes2(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes2(volume, isovalue) + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_3marching_cubes2, NULL, __pyx_n_s_im2mesh_utils_libmcubes_mcubes); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 29, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_marching_cubes2, __pyx_t_1) < 0) __PYX_ERR(0, 29, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":36 + * return verts, faces + * + * def marching_cubes3(np.ndarray volume, float isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes3(volume, isovalue) + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_5marching_cubes3, NULL, __pyx_n_s_im2mesh_utils_libmcubes_mcubes); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 36, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_marching_cubes3, __pyx_t_1) < 0) __PYX_ERR(0, 36, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":43 + * return verts, faces + * + * def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): # <<<<<<<<<<<<<< + * + * verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_7im2mesh_5utils_9libmcubes_6mcubes_7marching_cubes_func, NULL, __pyx_n_s_im2mesh_utils_libmcubes_mcubes); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 43, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_marching_cubes_func, __pyx_t_1) < 0) __PYX_ERR(0, 43, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "im2mesh/utils/libmcubes/mcubes.pyx":2 + * + * # distutils: language = c++ # <<<<<<<<<<<<<< + * # cython: embedsignature = True + * + */ + __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 2, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /*--- Wrapped vars code ---*/ + + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + if (__pyx_m) { + if (__pyx_d) { + __Pyx_AddTraceback("init im2mesh.utils.libmcubes.mcubes", __pyx_clineno, __pyx_lineno, __pyx_filename); + } + Py_CLEAR(__pyx_m); + } else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_ImportError, "init im2mesh.utils.libmcubes.mcubes"); + } + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + #if CYTHON_PEP489_MULTI_PHASE_INIT + return (__pyx_m != NULL) ? 0 : -1; + #elif PY_MAJOR_VERSION >= 3 + return __pyx_m; + #else + return; + #endif +} + +/* --- Runtime support code --- */ +/* Refnanny */ +#if CYTHON_REFNANNY +static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { + PyObject *m = NULL, *p = NULL; + void *r = NULL; + m = PyImport_ImportModule(modname); + if (!m) goto end; + p = PyObject_GetAttrString(m, "RefNannyAPI"); + if (!p) goto end; + r = PyLong_AsVoidPtr(p); +end: + Py_XDECREF(p); + Py_XDECREF(m); + return (__Pyx_RefNannyAPIStruct *)r; +} +#endif + +/* RaiseArgTupleInvalid */ +static void __Pyx_RaiseArgtupleInvalid( + const char* func_name, + int exact, + Py_ssize_t num_min, + Py_ssize_t num_max, + Py_ssize_t num_found) +{ + Py_ssize_t num_expected; + const char *more_or_less; + if (num_found < num_min) { + num_expected = num_min; + more_or_less = "at least"; + } else { + num_expected = num_max; + more_or_less = "at most"; + } + if (exact) { + more_or_less = "exactly"; + } + PyErr_Format(PyExc_TypeError, + "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", + func_name, more_or_less, num_expected, + (num_expected == 1) ? "" : "s", num_found); +} + +/* RaiseDoubleKeywords */ +static void __Pyx_RaiseDoubleKeywordsError( + const char* func_name, + PyObject* kw_name) +{ + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION >= 3 + "%s() got multiple values for keyword argument '%U'", func_name, kw_name); + #else + "%s() got multiple values for keyword argument '%s'", func_name, + PyString_AsString(kw_name)); + #endif +} + +/* ParseKeywords */ +static int __Pyx_ParseOptionalKeywords( + PyObject *kwds, + PyObject **argnames[], + PyObject *kwds2, + PyObject *values[], + Py_ssize_t num_pos_args, + const char* function_name) +{ + PyObject *key = 0, *value = 0; + Py_ssize_t pos = 0; + PyObject*** name; + PyObject*** first_kw_arg = argnames + num_pos_args; + while (PyDict_Next(kwds, &pos, &key, &value)) { + name = first_kw_arg; + while (*name && (**name != key)) name++; + if (*name) { + values[name-argnames] = value; + continue; + } + name = first_kw_arg; + #if PY_MAJOR_VERSION < 3 + if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { + while (*name) { + if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) + && _PyString_Eq(**name, key)) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + if ((**argname == key) || ( + (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) + && _PyString_Eq(**argname, key))) { + goto arg_passed_twice; + } + argname++; + } + } + } else + #endif + if (likely(PyUnicode_Check(key))) { + while (*name) { + int cmp = (**name == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**name, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + int cmp = (**argname == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**argname, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) goto arg_passed_twice; + argname++; + } + } + } else + goto invalid_keyword_type; + if (kwds2) { + if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; + } else { + goto invalid_keyword; + } + } + return 0; +arg_passed_twice: + __Pyx_RaiseDoubleKeywordsError(function_name, key); + goto bad; +invalid_keyword_type: + PyErr_Format(PyExc_TypeError, + "%.200s() keywords must be strings", function_name); + goto bad; +invalid_keyword: + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION < 3 + "%.200s() got an unexpected keyword argument '%.200s'", + function_name, PyString_AsString(key)); + #else + "%s() got an unexpected keyword argument '%U'", + function_name, key); + #endif +bad: + return -1; +} + +/* ArgTypeTest */ +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) +{ + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + else if (exact) { + #if PY_MAJOR_VERSION == 2 + if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; + #endif + } + else { + if (likely(__Pyx_TypeCheck(obj, type))) return 1; + } + PyErr_Format(PyExc_TypeError, + "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", + name, type->tp_name, Py_TYPE(obj)->tp_name); + return 0; +} + +/* RaiseTooManyValuesToUnpack */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + PyErr_Format(PyExc_ValueError, + "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +} + +/* RaiseNeedMoreValuesToUnpack */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + PyErr_Format(PyExc_ValueError, + "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", + index, (index == 1) ? "" : "s"); +} + +/* IterFinish */ +static CYTHON_INLINE int __Pyx_IterFinish(void) { +#if CYTHON_FAST_THREAD_STATE + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* exc_type = tstate->curexc_type; + if (unlikely(exc_type)) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) { + PyObject *exc_value, *exc_tb; + exc_value = tstate->curexc_value; + exc_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; + Py_DECREF(exc_type); + Py_XDECREF(exc_value); + Py_XDECREF(exc_tb); + return 0; + } else { + return -1; + } + } + return 0; +#else + if (unlikely(PyErr_Occurred())) { + if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) { + PyErr_Clear(); + return 0; + } else { + return -1; + } + } + return 0; +#endif +} + +/* UnpackItemEndCheck */ +static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) { + if (unlikely(retval)) { + Py_DECREF(retval); + __Pyx_RaiseTooManyValuesError(expected); + return -1; + } else { + return __Pyx_IterFinish(); + } + return 0; +} + +/* PyObjectSetAttrStr */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_setattro)) + return tp->tp_setattro(obj, attr_name, value); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_setattr)) + return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value); +#endif + return PyObject_SetAttr(obj, attr_name, value); +} +#endif + +/* PyObjectGetAttrStr */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_getattro)) + return tp->tp_getattro(obj, attr_name); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_getattr)) + return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); +#endif + return PyObject_GetAttr(obj, attr_name); +} +#endif + +/* GetBuiltinName */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name) { + PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); + if (unlikely(!result)) { + PyErr_Format(PyExc_NameError, +#if PY_MAJOR_VERSION >= 3 + "name '%U' is not defined", name); +#else + "name '%.200s' is not defined", PyString_AS_STRING(name)); +#endif + } + return result; +} + +/* PyObjectCall */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyErrFetchRestore */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->curexc_type; + tmp_value = tstate->curexc_value; + tmp_tb = tstate->curexc_traceback; + tstate->curexc_type = type; + tstate->curexc_value = value; + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->curexc_type; + *value = tstate->curexc_value; + *tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +} +#endif + +/* RaiseException */ +#if PY_MAJOR_VERSION < 3 +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, + CYTHON_UNUSED PyObject *cause) { + __Pyx_PyThreadState_declare + Py_XINCREF(type); + if (!value || value == Py_None) + value = NULL; + else + Py_INCREF(value); + if (!tb || tb == Py_None) + tb = NULL; + else { + Py_INCREF(tb); + if (!PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto raise_error; + } + } + if (PyType_Check(type)) { +#if CYTHON_COMPILING_IN_PYPY + if (!value) { + Py_INCREF(Py_None); + value = Py_None; + } +#endif + PyErr_NormalizeException(&type, &value, &tb); + } else { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto raise_error; + } + value = type; + type = (PyObject*) Py_TYPE(type); + Py_INCREF(type); + if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto raise_error; + } + } + __Pyx_PyThreadState_assign + __Pyx_ErrRestore(type, value, tb); + return; +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(tb); + return; +} +#else +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { + PyObject* owned_instance = NULL; + if (tb == Py_None) { + tb = 0; + } else if (tb && !PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto bad; + } + if (value == Py_None) + value = 0; + if (PyExceptionInstance_Check(type)) { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto bad; + } + value = type; + type = (PyObject*) Py_TYPE(value); + } else if (PyExceptionClass_Check(type)) { + PyObject *instance_class = NULL; + if (value && PyExceptionInstance_Check(value)) { + instance_class = (PyObject*) Py_TYPE(value); + if (instance_class != type) { + int is_subclass = PyObject_IsSubclass(instance_class, type); + if (!is_subclass) { + instance_class = NULL; + } else if (unlikely(is_subclass == -1)) { + goto bad; + } else { + type = instance_class; + } + } + } + if (!instance_class) { + PyObject *args; + if (!value) + args = PyTuple_New(0); + else if (PyTuple_Check(value)) { + Py_INCREF(value); + args = value; + } else + args = PyTuple_Pack(1, value); + if (!args) + goto bad; + owned_instance = PyObject_Call(type, args, NULL); + Py_DECREF(args); + if (!owned_instance) + goto bad; + value = owned_instance; + if (!PyExceptionInstance_Check(value)) { + PyErr_Format(PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto bad; + } + } + } else { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto bad; + } + if (cause) { + PyObject *fixed_cause; + if (cause == Py_None) { + fixed_cause = NULL; + } else if (PyExceptionClass_Check(cause)) { + fixed_cause = PyObject_CallObject(cause, NULL); + if (fixed_cause == NULL) + goto bad; + } else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + Py_INCREF(fixed_cause); + } else { + PyErr_SetString(PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto bad; + } + PyException_SetCause(value, fixed_cause); + } + PyErr_SetObject(type, value); + if (tb) { +#if CYTHON_COMPILING_IN_PYPY + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); + Py_INCREF(tb); + PyErr_Restore(tmp_type, tmp_value, tb); + Py_XDECREF(tmp_tb); +#else + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* tmp_tb = tstate->curexc_traceback; + if (tb != tmp_tb) { + Py_INCREF(tb); + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_tb); + } +#endif + } +bad: + Py_XDECREF(owned_instance); + return; +} +#endif + +/* PyCFunctionFastCall */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { + PyCFunctionObject *func = (PyCFunctionObject*)func_obj; + PyCFunction meth = PyCFunction_GET_FUNCTION(func); + PyObject *self = PyCFunction_GET_SELF(func); + int flags = PyCFunction_GET_FLAGS(func); + assert(PyCFunction_Check(func)); + assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); + assert(nargs >= 0); + assert(nargs == 0 || args != NULL); + /* _PyCFunction_FastCallDict() must not be called with an exception set, + because it may clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!PyErr_Occurred()); + if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { + return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); + } else { + return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); + } +} +#endif + +/* PyFunctionFastCall */ +#if CYTHON_FAST_PYCALL +static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, + PyObject *globals) { + PyFrameObject *f; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject **fastlocals; + Py_ssize_t i; + PyObject *result; + assert(globals != NULL); + /* XXX Perhaps we should create a specialized + PyFrame_New() that doesn't take locals, but does + take builtins without sanity checking them. + */ + assert(tstate != NULL); + f = PyFrame_New(tstate, co, globals, NULL); + if (f == NULL) { + return NULL; + } + fastlocals = __Pyx_PyFrame_GetLocalsplus(f); + for (i = 0; i < na; i++) { + Py_INCREF(*args); + fastlocals[i] = *args++; + } + result = PyEval_EvalFrameEx(f,0); + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + return result; +} +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { + PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); + PyObject *globals = PyFunction_GET_GLOBALS(func); + PyObject *argdefs = PyFunction_GET_DEFAULTS(func); + PyObject *closure; +#if PY_MAJOR_VERSION >= 3 + PyObject *kwdefs; +#endif + PyObject *kwtuple, **k; + PyObject **d; + Py_ssize_t nd; + Py_ssize_t nk; + PyObject *result; + assert(kwargs == NULL || PyDict_Check(kwargs)); + nk = kwargs ? PyDict_Size(kwargs) : 0; + if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { + return NULL; + } + if ( +#if PY_MAJOR_VERSION >= 3 + co->co_kwonlyargcount == 0 && +#endif + likely(kwargs == NULL || nk == 0) && + co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { + if (argdefs == NULL && co->co_argcount == nargs) { + result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); + goto done; + } + else if (nargs == 0 && argdefs != NULL + && co->co_argcount == Py_SIZE(argdefs)) { + /* function called with no arguments, but all parameters have + a default value: use default values as arguments .*/ + args = &PyTuple_GET_ITEM(argdefs, 0); + result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); + goto done; + } + } + if (kwargs != NULL) { + Py_ssize_t pos, i; + kwtuple = PyTuple_New(2 * nk); + if (kwtuple == NULL) { + result = NULL; + goto done; + } + k = &PyTuple_GET_ITEM(kwtuple, 0); + pos = i = 0; + while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { + Py_INCREF(k[i]); + Py_INCREF(k[i+1]); + i += 2; + } + nk = i / 2; + } + else { + kwtuple = NULL; + k = NULL; + } + closure = PyFunction_GET_CLOSURE(func); +#if PY_MAJOR_VERSION >= 3 + kwdefs = PyFunction_GET_KW_DEFAULTS(func); +#endif + if (argdefs != NULL) { + d = &PyTuple_GET_ITEM(argdefs, 0); + nd = Py_SIZE(argdefs); + } + else { + d = NULL; + nd = 0; + } +#if PY_MAJOR_VERSION >= 3 + result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, + args, (int)nargs, + k, (int)nk, + d, (int)nd, kwdefs, closure); +#else + result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, + args, (int)nargs, + k, (int)nk, + d, (int)nd, closure); +#endif + Py_XDECREF(kwtuple); +done: + Py_LeaveRecursiveCall(); + return result; +} +#endif +#endif + +/* PyObjectCallMethO */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { + PyObject *self, *result; + PyCFunction cfunc; + cfunc = PyCFunction_GET_FUNCTION(func); + self = PyCFunction_GET_SELF(func); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = cfunc(self, arg); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyObjectCallOneArg */ +#if CYTHON_COMPILING_IN_CPYTHON +static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_New(1); + if (unlikely(!args)) return NULL; + Py_INCREF(arg); + PyTuple_SET_ITEM(args, 0, arg); + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, &arg, 1); + } +#endif + if (likely(PyCFunction_Check(func))) { + if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { + return __Pyx_PyObject_CallMethO(func, arg); +#if CYTHON_FAST_PYCCALL + } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { + return __Pyx_PyCFunction_FastCall(func, &arg, 1); +#endif + } + } + return __Pyx__PyObject_CallOneArg(func, arg); +} +#else +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_Pack(1, arg); + if (unlikely(!args)) return NULL; + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +#endif + +/* DictGetItem */ +#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY +static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key) { + PyObject *value; + value = PyDict_GetItemWithError(d, key); + if (unlikely(!value)) { + if (!PyErr_Occurred()) { + if (unlikely(PyTuple_Check(key))) { + PyObject* args = PyTuple_Pack(1, key); + if (likely(args)) { + PyErr_SetObject(PyExc_KeyError, args); + Py_DECREF(args); + } + } else { + PyErr_SetObject(PyExc_KeyError, key); + } + } + return NULL; + } + Py_INCREF(value); + return value; +} +#endif + +/* RaiseNoneIterError */ +static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); +} + +/* ExtTypeTest */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + if (likely(__Pyx_TypeCheck(obj, type))) + return 1; + PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", + Py_TYPE(obj)->tp_name, type->tp_name); + return 0; +} + +/* GetTopmostException */ +#if CYTHON_USE_EXC_INFO_STACK +static _PyErr_StackItem * +__Pyx_PyErr_GetTopmostException(PyThreadState *tstate) +{ + _PyErr_StackItem *exc_info = tstate->exc_info; + while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && + exc_info->previous_item != NULL) + { + exc_info = exc_info->previous_item; + } + return exc_info; +} +#endif + +/* SaveResetException */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); + *type = exc_info->exc_type; + *value = exc_info->exc_value; + *tb = exc_info->exc_traceback; + #else + *type = tstate->exc_type; + *value = tstate->exc_value; + *tb = tstate->exc_traceback; + #endif + Py_XINCREF(*type); + Py_XINCREF(*value); + Py_XINCREF(*tb); +} +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = type; + exc_info->exc_value = value; + exc_info->exc_traceback = tb; + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = type; + tstate->exc_value = value; + tstate->exc_traceback = tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +#endif + +/* PyErrExceptionMatches */ +#if CYTHON_FAST_THREAD_STATE +static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; icurexc_type; + if (exc_type == err) return 1; + if (unlikely(!exc_type)) return 0; + if (unlikely(PyTuple_Check(err))) + return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); + return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); +} +#endif + +/* GetException */ +#if CYTHON_FAST_THREAD_STATE +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) +#endif +{ + PyObject *local_type, *local_value, *local_tb; +#if CYTHON_FAST_THREAD_STATE + PyObject *tmp_type, *tmp_value, *tmp_tb; + local_type = tstate->curexc_type; + local_value = tstate->curexc_value; + local_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +#else + PyErr_Fetch(&local_type, &local_value, &local_tb); +#endif + PyErr_NormalizeException(&local_type, &local_value, &local_tb); +#if CYTHON_FAST_THREAD_STATE + if (unlikely(tstate->curexc_type)) +#else + if (unlikely(PyErr_Occurred())) +#endif + goto bad; + #if PY_MAJOR_VERSION >= 3 + if (local_tb) { + if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) + goto bad; + } + #endif + Py_XINCREF(local_tb); + Py_XINCREF(local_type); + Py_XINCREF(local_value); + *type = local_type; + *value = local_value; + *tb = local_tb; +#if CYTHON_FAST_THREAD_STATE + #if CYTHON_USE_EXC_INFO_STACK + { + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = local_type; + exc_info->exc_value = local_value; + exc_info->exc_traceback = local_tb; + } + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = local_type; + tstate->exc_value = local_value; + tstate->exc_traceback = local_tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +#else + PyErr_SetExcInfo(local_type, local_value, local_tb); +#endif + return 0; +bad: + *type = 0; + *value = 0; + *tb = 0; + Py_XDECREF(local_type); + Py_XDECREF(local_value); + Py_XDECREF(local_tb); + return -1; +} + +/* TypeImport */ +#ifndef __PYX_HAVE_RT_ImportType +#define __PYX_HAVE_RT_ImportType +static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, + size_t size, enum __Pyx_ImportType_CheckSize check_size) +{ + PyObject *result = 0; + char warning[200]; + Py_ssize_t basicsize; +#ifdef Py_LIMITED_API + PyObject *py_basicsize; +#endif + result = PyObject_GetAttrString(module, class_name); + if (!result) + goto bad; + if (!PyType_Check(result)) { + PyErr_Format(PyExc_TypeError, + "%.200s.%.200s is not a type object", + module_name, class_name); + goto bad; + } +#ifndef Py_LIMITED_API + basicsize = ((PyTypeObject *)result)->tp_basicsize; +#else + py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); + if (!py_basicsize) + goto bad; + basicsize = PyLong_AsSsize_t(py_basicsize); + Py_DECREF(py_basicsize); + py_basicsize = 0; + if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) + goto bad; +#endif + if ((size_t)basicsize < size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + goto bad; + } + if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + goto bad; + } + else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { + PyOS_snprintf(warning, sizeof(warning), + "%s.%s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; + } + return (PyTypeObject *)result; +bad: + Py_XDECREF(result); + return NULL; +} +#endif + +/* Import */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + PyObject *empty_list = 0; + PyObject *module = 0; + PyObject *global_dict = 0; + PyObject *empty_dict = 0; + PyObject *list; + #if PY_MAJOR_VERSION < 3 + PyObject *py_import; + py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); + if (!py_import) + goto bad; + #endif + if (from_list) + list = from_list; + else { + empty_list = PyList_New(0); + if (!empty_list) + goto bad; + list = empty_list; + } + global_dict = PyModule_GetDict(__pyx_m); + if (!global_dict) + goto bad; + empty_dict = PyDict_New(); + if (!empty_dict) + goto bad; + { + #if PY_MAJOR_VERSION >= 3 + if (level == -1) { + if (strchr(__Pyx_MODULE_NAME, '.')) { + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, 1); + if (!module) { + if (!PyErr_ExceptionMatches(PyExc_ImportError)) + goto bad; + PyErr_Clear(); + } + } + level = 0; + } + #endif + if (!module) { + #if PY_MAJOR_VERSION < 3 + PyObject *py_level = PyInt_FromLong(level); + if (!py_level) + goto bad; + module = PyObject_CallFunctionObjArgs(py_import, + name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); + Py_DECREF(py_level); + #else + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, level); + #endif + } + } +bad: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(py_import); + #endif + Py_XDECREF(empty_list); + Py_XDECREF(empty_dict); + return module; +} + +/* PyDictVersioning */ +#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { + PyObject *dict = Py_TYPE(obj)->tp_dict; + return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; +} +static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { + PyObject **dictptr = NULL; + Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; + if (offset) { +#if CYTHON_COMPILING_IN_CPYTHON + dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); +#else + dictptr = _PyObject_GetDictPtr(obj); +#endif + } + return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; +} +static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { + PyObject *dict = Py_TYPE(obj)->tp_dict; + if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) + return 0; + return obj_dict_version == __Pyx_get_object_dict_version(obj); +} +#endif + +/* CLineInTraceback */ +#ifndef CYTHON_CLINE_IN_TRACEBACK +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line) { + PyObject *use_cline; + PyObject *ptype, *pvalue, *ptraceback; +#if CYTHON_COMPILING_IN_CPYTHON + PyObject **cython_runtime_dict; +#endif + if (unlikely(!__pyx_cython_runtime)) { + return c_line; + } + __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); +#if CYTHON_COMPILING_IN_CPYTHON + cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); + if (likely(cython_runtime_dict)) { + __PYX_PY_DICT_LOOKUP_IF_MODIFIED( + use_cline, *cython_runtime_dict, + __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) + } else +#endif + { + PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); + if (use_cline_obj) { + use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; + Py_DECREF(use_cline_obj); + } else { + PyErr_Clear(); + use_cline = NULL; + } + } + if (!use_cline) { + c_line = 0; + PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); + } + else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { + c_line = 0; + } + __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); + return c_line; +} +#endif + +/* CodeObjectCache */ +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + int start = 0, mid = 0, end = count - 1; + if (end >= 0 && code_line > entries[end].code_line) { + return count; + } + while (start < end) { + mid = start + (end - start) / 2; + if (code_line < entries[mid].code_line) { + end = mid; + } else if (code_line > entries[mid].code_line) { + start = mid + 1; + } else { + return mid; + } + } + if (code_line <= entries[mid].code_line) { + return mid; + } else { + return mid + 1; + } +} +static PyCodeObject *__pyx_find_code_object(int code_line) { + PyCodeObject* code_object; + int pos; + if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { + return NULL; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { + return NULL; + } + code_object = __pyx_code_cache.entries[pos].code_object; + Py_INCREF(code_object); + return code_object; +} +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { + int pos, i; + __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; + if (unlikely(!code_line)) { + return; + } + if (unlikely(!entries)) { + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); + if (likely(entries)) { + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = 64; + __pyx_code_cache.count = 1; + entries[0].code_line = code_line; + entries[0].code_object = code_object; + Py_INCREF(code_object); + } + return; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { + PyCodeObject* tmp = entries[pos].code_object; + entries[pos].code_object = code_object; + Py_DECREF(tmp); + return; + } + if (__pyx_code_cache.count == __pyx_code_cache.max_count) { + int new_max = __pyx_code_cache.max_count + 64; + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( + __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); + if (unlikely(!entries)) { + return; + } + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = new_max; + } + for (i=__pyx_code_cache.count; i>pos; i--) { + entries[i] = entries[i-1]; + } + entries[pos].code_line = code_line; + entries[pos].code_object = code_object; + __pyx_code_cache.count++; + Py_INCREF(code_object); +} + +/* AddTraceback */ +#include "compile.h" +#include "frameobject.h" +#include "traceback.h" +static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( + const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyObject *py_srcfile = 0; + PyObject *py_funcname = 0; + #if PY_MAJOR_VERSION < 3 + py_srcfile = PyString_FromString(filename); + #else + py_srcfile = PyUnicode_FromString(filename); + #endif + if (!py_srcfile) goto bad; + if (c_line) { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #else + py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #endif + } + else { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromString(funcname); + #else + py_funcname = PyUnicode_FromString(funcname); + #endif + } + if (!py_funcname) goto bad; + py_code = __Pyx_PyCode_New( + 0, + 0, + 0, + 0, + 0, + __pyx_empty_bytes, /*PyObject *code,*/ + __pyx_empty_tuple, /*PyObject *consts,*/ + __pyx_empty_tuple, /*PyObject *names,*/ + __pyx_empty_tuple, /*PyObject *varnames,*/ + __pyx_empty_tuple, /*PyObject *freevars,*/ + __pyx_empty_tuple, /*PyObject *cellvars,*/ + py_srcfile, /*PyObject *filename,*/ + py_funcname, /*PyObject *name,*/ + py_line, + __pyx_empty_bytes /*PyObject *lnotab*/ + ); + Py_DECREF(py_srcfile); + Py_DECREF(py_funcname); + return py_code; +bad: + Py_XDECREF(py_srcfile); + Py_XDECREF(py_funcname); + return NULL; +} +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyFrameObject *py_frame = 0; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + if (c_line) { + c_line = __Pyx_CLineForTraceback(tstate, c_line); + } + py_code = __pyx_find_code_object(c_line ? -c_line : py_line); + if (!py_code) { + py_code = __Pyx_CreateCodeObjectForTraceback( + funcname, c_line, py_line, filename); + if (!py_code) goto bad; + __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); + } + py_frame = PyFrame_New( + tstate, /*PyThreadState *tstate,*/ + py_code, /*PyCodeObject *code,*/ + __pyx_d, /*PyObject *globals,*/ + 0 /*PyObject *locals*/ + ); + if (!py_frame) goto bad; + __Pyx_PyFrame_SetLineNumber(py_frame, py_line); + PyTraceBack_Here(py_frame); +bad: + Py_XDECREF(py_code); + Py_XDECREF(py_frame); +} + +/* CIntFromPyVerify */ +#define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) +#define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) +#define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ + {\ + func_type value = func_value;\ + if (sizeof(target_type) < sizeof(func_type)) {\ + if (unlikely(value != (func_type) (target_type) value)) {\ + func_type zero = 0;\ + if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ + return (target_type) -1;\ + if (is_unsigned && unlikely(value < zero))\ + goto raise_neg_overflow;\ + else\ + goto raise_overflow;\ + }\ + }\ + return (target_type) value;\ + } + +/* Declarations */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return ::std::complex< float >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return x + y*(__pyx_t_float_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + __pyx_t_float_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ +#if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabsf(b.real) >= fabsf(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + float r = b.imag / b.real; + float s = (float)(1.0) / (b.real + b.imag * r); + return __pyx_t_float_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + float r = b.real / b.imag; + float s = (float)(1.0) / (b.imag + b.real * r); + return __pyx_t_float_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + float denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_float_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrtf(z.real*z.real + z.imag*z.imag); + #else + return hypotf(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + float r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + float denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + return __Pyx_c_prod_float(a, a); + case 3: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, a); + case 4: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = powf(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2f(0.0, -1.0); + } + } else { + r = __Pyx_c_abs_float(a); + theta = atan2f(a.imag, a.real); + } + lnr = logf(r); + z_r = expf(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cosf(z_theta); + z.imag = z_r * sinf(z_theta); + return z; + } + #endif +#endif + +/* Declarations */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return ::std::complex< double >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return x + y*(__pyx_t_double_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + __pyx_t_double_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ +#if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabs(b.real) >= fabs(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + double r = b.imag / b.real; + double s = (double)(1.0) / (b.real + b.imag * r); + return __pyx_t_double_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + double r = b.real / b.imag; + double s = (double)(1.0) / (b.imag + b.real * r); + return __pyx_t_double_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + double denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_double_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrt(z.real*z.real + z.imag*z.imag); + #else + return hypot(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + double r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + double denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + return __Pyx_c_prod_double(a, a); + case 3: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, a); + case 4: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = pow(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2(0.0, -1.0); + } + } else { + r = __Pyx_c_abs_double(a); + theta = atan2(a.imag, a.real); + } + lnr = log(r); + z_r = exp(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cos(z_theta); + z.imag = z_r * sin(z_theta); + return z; + } + #endif +#endif + +/* CIntToPy */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(int) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(int) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(int) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(int), + little, !is_unsigned); + } +} + +/* CIntToPy */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value) { + const enum NPY_TYPES neg_one = (enum NPY_TYPES) ((enum NPY_TYPES) 0 - (enum NPY_TYPES) 1), const_zero = (enum NPY_TYPES) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(enum NPY_TYPES) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(enum NPY_TYPES) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(enum NPY_TYPES) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(enum NPY_TYPES), + little, !is_unsigned); + } +} + +/* CIntFromPy */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(int) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (int) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { + return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { + return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { + return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (int) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(int) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) + case -2: + if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + } +#endif + if (sizeof(int) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + int val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (int) -1; + } + } else { + int val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (int) -1; + val = __Pyx_PyInt_As_int(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to int"); + return (int) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to int"); + return (int) -1; +} + +/* CIntToPy */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(long) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(long) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(long) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(long), + little, !is_unsigned); + } +} + +/* CIntFromPy */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(long) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (long) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { + return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { + return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { + return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (long) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(long) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) + case -2: + if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + } +#endif + if (sizeof(long) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + long val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (long) -1; + } + } else { + long val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (long) -1; + val = __Pyx_PyInt_As_long(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to long"); + return (long) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to long"); + return (long) -1; +} + +/* FastTypeChecks */ +#if CYTHON_COMPILING_IN_CPYTHON +static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { + while (a) { + a = a->tp_base; + if (a == b) + return 1; + } + return b == &PyBaseObject_Type; +} +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { + PyObject *mro; + if (a == b) return 1; + mro = a->tp_mro; + if (likely(mro)) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(mro); + for (i = 0; i < n; i++) { + if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) + return 1; + } + return 0; + } + return __Pyx_InBases(a, b); +} +#if PY_MAJOR_VERSION == 2 +static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { + PyObject *exception, *value, *tb; + int res; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&exception, &value, &tb); + res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + if (!res) { + res = PyObject_IsSubclass(err, exc_type2); + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + } + __Pyx_ErrRestore(exception, value, tb); + return res; +} +#else +static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { + int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; + if (!res) { + res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); + } + return res; +} +#endif +static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + assert(PyExceptionClass_Check(exc_type)); + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; ip) { + #if PY_MAJOR_VERSION < 3 + if (t->is_unicode) { + *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); + } else if (t->intern) { + *t->p = PyString_InternFromString(t->s); + } else { + *t->p = PyString_FromStringAndSize(t->s, t->n - 1); + } + #else + if (t->is_unicode | t->is_str) { + if (t->intern) { + *t->p = PyUnicode_InternFromString(t->s); + } else if (t->encoding) { + *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); + } else { + *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); + } + } else { + *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); + } + #endif + if (!*t->p) + return -1; + if (PyObject_Hash(*t->p) == -1) + return -1; + ++t; + } + return 0; +} + +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { + return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); +} +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { + Py_ssize_t ignore; + return __Pyx_PyObject_AsStringAndSize(o, &ignore); +} +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +#if !CYTHON_PEP393_ENABLED +static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + char* defenc_c; + PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); + if (!defenc) return NULL; + defenc_c = PyBytes_AS_STRING(defenc); +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + { + char* end = defenc_c + PyBytes_GET_SIZE(defenc); + char* c; + for (c = defenc_c; c < end; c++) { + if ((unsigned char) (*c) >= 128) { + PyUnicode_AsASCIIString(o); + return NULL; + } + } + } +#endif + *length = PyBytes_GET_SIZE(defenc); + return defenc_c; +} +#else +static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + if (likely(PyUnicode_IS_ASCII(o))) { + *length = PyUnicode_GET_LENGTH(o); + return PyUnicode_AsUTF8(o); + } else { + PyUnicode_AsASCIIString(o); + return NULL; + } +#else + return PyUnicode_AsUTF8AndSize(o, length); +#endif +} +#endif +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT + if ( +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + __Pyx_sys_getdefaultencoding_not_ascii && +#endif + PyUnicode_Check(o)) { + return __Pyx_PyUnicode_AsStringAndSize(o, length); + } else +#endif +#if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) + if (PyByteArray_Check(o)) { + *length = PyByteArray_GET_SIZE(o); + return PyByteArray_AS_STRING(o); + } else +#endif + { + char* result; + int r = PyBytes_AsStringAndSize(o, &result, length); + if (unlikely(r < 0)) { + return NULL; + } else { + return result; + } + } +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { + int is_true = x == Py_True; + if (is_true | (x == Py_False) | (x == Py_None)) return is_true; + else return PyObject_IsTrue(x); +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { + int retval; + if (unlikely(!x)) return -1; + retval = __Pyx_PyObject_IsTrue(x); + Py_DECREF(x); + return retval; +} +static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { +#if PY_MAJOR_VERSION >= 3 + if (PyLong_Check(result)) { + if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, + "__int__ returned non-int (type %.200s). " + "The ability to return an instance of a strict subclass of int " + "is deprecated, and may be removed in a future version of Python.", + Py_TYPE(result)->tp_name)) { + Py_DECREF(result); + return NULL; + } + return result; + } +#endif + PyErr_Format(PyExc_TypeError, + "__%.4s__ returned non-%.4s (type %.200s)", + type_name, type_name, Py_TYPE(result)->tp_name); + Py_DECREF(result); + return NULL; +} +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { +#if CYTHON_USE_TYPE_SLOTS + PyNumberMethods *m; +#endif + const char *name = NULL; + PyObject *res = NULL; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x) || PyLong_Check(x))) +#else + if (likely(PyLong_Check(x))) +#endif + return __Pyx_NewRef(x); +#if CYTHON_USE_TYPE_SLOTS + m = Py_TYPE(x)->tp_as_number; + #if PY_MAJOR_VERSION < 3 + if (m && m->nb_int) { + name = "int"; + res = m->nb_int(x); + } + else if (m && m->nb_long) { + name = "long"; + res = m->nb_long(x); + } + #else + if (likely(m && m->nb_int)) { + name = "int"; + res = m->nb_int(x); + } + #endif +#else + if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { + res = PyNumber_Int(x); + } +#endif + if (likely(res)) { +#if PY_MAJOR_VERSION < 3 + if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { +#else + if (unlikely(!PyLong_CheckExact(res))) { +#endif + return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); + } + } + else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + } + return res; +} +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { + Py_ssize_t ival; + PyObject *x; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(b))) { + if (sizeof(Py_ssize_t) >= sizeof(long)) + return PyInt_AS_LONG(b); + else + return PyInt_AsSsize_t(b); + } +#endif + if (likely(PyLong_CheckExact(b))) { + #if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)b)->ob_digit; + const Py_ssize_t size = Py_SIZE(b); + if (likely(__Pyx_sst_abs(size) <= 1)) { + ival = likely(size) ? digits[0] : 0; + if (size == -1) ival = -ival; + return ival; + } else { + switch (size) { + case 2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + } + } + #endif + return PyLong_AsSsize_t(b); + } + x = PyNumber_Index(b); + if (!x) return -1; + ival = PyInt_AsSsize_t(x); + Py_DECREF(x); + return ival; +} +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { + return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); +} +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { + return PyInt_FromSize_t(ival); +} + + +#endif /* Py_PYTHON_H */ diff --git a/eval/src/utils/libmcubes/mcubes.pyx b/eval/src/utils/libmcubes/mcubes.pyx new file mode 100644 index 0000000..e7b847b --- /dev/null +++ b/eval/src/utils/libmcubes/mcubes.pyx @@ -0,0 +1,48 @@ + +# distutils: language = c++ +# cython: embedsignature = True + +# from libcpp.vector cimport vector +import numpy as np + +# Define PY_ARRAY_UNIQUE_SYMBOL +cdef extern from "pyarray_symbol.h": + pass + +cimport numpy as np + +np.import_array() + +cdef extern from "pywrapper.h": + cdef object c_marching_cubes "marching_cubes"(np.ndarray, double) except + + cdef object c_marching_cubes2 "marching_cubes2"(np.ndarray, double) except + + cdef object c_marching_cubes3 "marching_cubes3"(np.ndarray, double) except + + cdef object c_marching_cubes_func "marching_cubes_func"(tuple, tuple, int, int, int, object, double) except + + +def marching_cubes(np.ndarray volume, float isovalue): + + verts, faces = c_marching_cubes(volume, isovalue) + verts.shape = (-1, 3) + faces.shape = (-1, 3) + return verts, faces + +def marching_cubes2(np.ndarray volume, float isovalue): + + verts, faces = c_marching_cubes2(volume, isovalue) + verts.shape = (-1, 3) + faces.shape = (-1, 3) + return verts, faces + +def marching_cubes3(np.ndarray volume, float isovalue): + + verts, faces = c_marching_cubes3(volume, isovalue) + verts.shape = (-1, 3) + faces.shape = (-1, 3) + return verts, faces + +def marching_cubes_func(tuple lower, tuple upper, int numx, int numy, int numz, object f, double isovalue): + + verts, faces = c_marching_cubes_func(lower, upper, numx, numy, numz, f, isovalue) + verts.shape = (-1, 3) + faces.shape = (-1, 3) + return verts, faces diff --git a/eval/src/utils/libmcubes/pyarray_symbol.h b/eval/src/utils/libmcubes/pyarray_symbol.h new file mode 100644 index 0000000..082ec8c --- /dev/null +++ b/eval/src/utils/libmcubes/pyarray_symbol.h @@ -0,0 +1,2 @@ + +#define PY_ARRAY_UNIQUE_SYMBOL mcubes_PyArray_API diff --git a/eval/src/utils/libmcubes/pyarraymodule.h b/eval/src/utils/libmcubes/pyarraymodule.h new file mode 100644 index 0000000..9980a39 --- /dev/null +++ b/eval/src/utils/libmcubes/pyarraymodule.h @@ -0,0 +1,137 @@ + +#ifndef _EXTMODULE_H +#define _EXTMODULE_H + +#include +#include + +// #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION +#define PY_ARRAY_UNIQUE_SYMBOL mcubes_PyArray_API +#define NO_IMPORT_ARRAY +#include "numpy/arrayobject.h" + +#include + +template +struct numpy_typemap; + +#define define_numpy_type(ctype, dtype) \ + template<> \ + struct numpy_typemap \ + {static const int type = dtype;}; + +define_numpy_type(bool, NPY_BOOL); +define_numpy_type(char, NPY_BYTE); +define_numpy_type(short, NPY_SHORT); +define_numpy_type(int, NPY_INT); +define_numpy_type(long, NPY_LONG); +define_numpy_type(long long, NPY_LONGLONG); +define_numpy_type(unsigned char, NPY_UBYTE); +define_numpy_type(unsigned short, NPY_USHORT); +define_numpy_type(unsigned int, NPY_UINT); +define_numpy_type(unsigned long, NPY_ULONG); +define_numpy_type(unsigned long long, NPY_ULONGLONG); +define_numpy_type(float, NPY_FLOAT); +define_numpy_type(double, NPY_DOUBLE); +define_numpy_type(long double, NPY_LONGDOUBLE); +define_numpy_type(std::complex, NPY_CFLOAT); +define_numpy_type(std::complex, NPY_CDOUBLE); +define_numpy_type(std::complex, NPY_CLONGDOUBLE); + +template +T PyArray_SafeGet(const PyArrayObject* aobj, const npy_intp* indaux) +{ + // HORROR. + npy_intp* ind = const_cast(indaux); + void* ptr = PyArray_GetPtr(const_cast(aobj), ind); + switch(PyArray_TYPE(aobj)) + { + case NPY_BOOL: + return static_cast(*reinterpret_cast(ptr)); + case NPY_BYTE: + return static_cast(*reinterpret_cast(ptr)); + case NPY_SHORT: + return static_cast(*reinterpret_cast(ptr)); + case NPY_INT: + return static_cast(*reinterpret_cast(ptr)); + case NPY_LONG: + return static_cast(*reinterpret_cast(ptr)); + case NPY_LONGLONG: + return static_cast(*reinterpret_cast(ptr)); + case NPY_UBYTE: + return static_cast(*reinterpret_cast(ptr)); + case NPY_USHORT: + return static_cast(*reinterpret_cast(ptr)); + case NPY_UINT: + return static_cast(*reinterpret_cast(ptr)); + case NPY_ULONG: + return static_cast(*reinterpret_cast(ptr)); + case NPY_ULONGLONG: + return static_cast(*reinterpret_cast(ptr)); + case NPY_FLOAT: + return static_cast(*reinterpret_cast(ptr)); + case NPY_DOUBLE: + return static_cast(*reinterpret_cast(ptr)); + case NPY_LONGDOUBLE: + return static_cast(*reinterpret_cast(ptr)); + default: + throw std::runtime_error("data type not supported"); + } +} + +template +T PyArray_SafeSet(PyArrayObject* aobj, const npy_intp* indaux, const T& value) +{ + // HORROR. + npy_intp* ind = const_cast(indaux); + void* ptr = PyArray_GetPtr(aobj, ind); + switch(PyArray_TYPE(aobj)) + { + case NPY_BOOL: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_BYTE: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_SHORT: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_INT: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_LONG: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_LONGLONG: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_UBYTE: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_USHORT: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_UINT: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_ULONG: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_ULONGLONG: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_FLOAT: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_DOUBLE: + *reinterpret_cast(ptr) = static_cast(value); + break; + case NPY_LONGDOUBLE: + *reinterpret_cast(ptr) = static_cast(value); + break; + default: + throw std::runtime_error("data type not supported"); + } +} + +#endif diff --git a/eval/src/utils/libmcubes/pywrapper.cpp b/eval/src/utils/libmcubes/pywrapper.cpp new file mode 100644 index 0000000..b411624 --- /dev/null +++ b/eval/src/utils/libmcubes/pywrapper.cpp @@ -0,0 +1,205 @@ + +#include "pywrapper.h" + +#include "marchingcubes.h" + +#include + +struct PythonToCFunc +{ + PyObject* func; + PythonToCFunc(PyObject* func) {this->func = func;} + double operator()(double x, double y, double z) + { + PyObject* res = PyObject_CallFunction(func, "(d,d,d)", x, y, z); // py::extract(func(x,y,z)); + if(res == NULL) + return 0.0; + + double result = PyFloat_AsDouble(res); + Py_DECREF(res); + return result; + } +}; + +PyObject* marching_cubes_func(PyObject* lower, PyObject* upper, + int numx, int numy, int numz, PyObject* f, double isovalue) +{ + std::vector vertices; + std::vector polygons; + + // Copy the lower and upper coordinates to a C array. + double lower_[3]; + double upper_[3]; + for(int i=0; i<3; ++i) + { + PyObject* l = PySequence_GetItem(lower, i); + if(l == NULL) + throw std::runtime_error("error"); + PyObject* u = PySequence_GetItem(upper, i); + if(u == NULL) + { + Py_DECREF(l); + throw std::runtime_error("error"); + } + + lower_[i] = PyFloat_AsDouble(l); + upper_[i] = PyFloat_AsDouble(u); + + Py_DECREF(l); + Py_DECREF(u); + if(lower_[i]==-1.0 || upper_[i]==-1.0) + { + if(PyErr_Occurred()) + throw std::runtime_error("error"); + } + } + + // Marching cubes. + mc::marching_cubes(lower_, upper_, numx, numy, numz, PythonToCFunc(f), isovalue, vertices, polygons); + + // Copy the result to two Python ndarrays. + npy_intp size_vertices = vertices.size(); + npy_intp size_polygons = polygons.size(); + PyArrayObject* verticesarr = reinterpret_cast(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); + PyArrayObject* polygonsarr = reinterpret_cast(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); + + std::vector::const_iterator it = vertices.begin(); + for(int i=0; it!=vertices.end(); ++i, ++it) + *reinterpret_cast(PyArray_GETPTR1(verticesarr, i)) = *it; + std::vector::const_iterator it2 = polygons.begin(); + for(int i=0; it2!=polygons.end(); ++i, ++it2) + *reinterpret_cast(PyArray_GETPTR1(polygonsarr, i)) = *it2; + + PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); + Py_XDECREF(verticesarr); + Py_XDECREF(polygonsarr); + return res; +} + +struct PyArrayToCFunc +{ + PyArrayObject* arr; + PyArrayToCFunc(PyArrayObject* arr) {this->arr = arr;} + double operator()(int x, int y, int z) + { + npy_intp c[3] = {x,y,z}; + return PyArray_SafeGet(arr, c); + } +}; + +PyObject* marching_cubes(PyArrayObject* arr, double isovalue) +{ + if(PyArray_NDIM(arr) != 3) + throw std::runtime_error("Only three-dimensional arrays are supported."); + + // Prepare data. + npy_intp* shape = PyArray_DIMS(arr); + double lower[3] = {0,0,0}; + double upper[3] = {shape[0]-1, shape[1]-1, shape[2]-1}; + long numx = upper[0] - lower[0] + 1; + long numy = upper[1] - lower[1] + 1; + long numz = upper[2] - lower[2] + 1; + std::vector vertices; + std::vector polygons; + + // Marching cubes. + mc::marching_cubes(lower, upper, numx, numy, numz, PyArrayToCFunc(arr), isovalue, + vertices, polygons); + + // Copy the result to two Python ndarrays. + npy_intp size_vertices = vertices.size(); + npy_intp size_polygons = polygons.size(); + PyArrayObject* verticesarr = reinterpret_cast(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); + PyArrayObject* polygonsarr = reinterpret_cast(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); + + std::vector::const_iterator it = vertices.begin(); + for(int i=0; it!=vertices.end(); ++i, ++it) + *reinterpret_cast(PyArray_GETPTR1(verticesarr, i)) = *it; + std::vector::const_iterator it2 = polygons.begin(); + for(int i=0; it2!=polygons.end(); ++i, ++it2) + *reinterpret_cast(PyArray_GETPTR1(polygonsarr, i)) = *it2; + + PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); + Py_XDECREF(verticesarr); + Py_XDECREF(polygonsarr); + + return res; +} + +PyObject* marching_cubes2(PyArrayObject* arr, double isovalue) +{ + if(PyArray_NDIM(arr) != 3) + throw std::runtime_error("Only three-dimensional arrays are supported."); + + // Prepare data. + npy_intp* shape = PyArray_DIMS(arr); + double lower[3] = {0,0,0}; + double upper[3] = {shape[0]-1, shape[1]-1, shape[2]-1}; + long numx = upper[0] - lower[0] + 1; + long numy = upper[1] - lower[1] + 1; + long numz = upper[2] - lower[2] + 1; + std::vector vertices; + std::vector polygons; + + // Marching cubes. + mc::marching_cubes2(lower, upper, numx, numy, numz, PyArrayToCFunc(arr), isovalue, + vertices, polygons); + + // Copy the result to two Python ndarrays. + npy_intp size_vertices = vertices.size(); + npy_intp size_polygons = polygons.size(); + PyArrayObject* verticesarr = reinterpret_cast(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); + PyArrayObject* polygonsarr = reinterpret_cast(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); + + std::vector::const_iterator it = vertices.begin(); + for(int i=0; it!=vertices.end(); ++i, ++it) + *reinterpret_cast(PyArray_GETPTR1(verticesarr, i)) = *it; + std::vector::const_iterator it2 = polygons.begin(); + for(int i=0; it2!=polygons.end(); ++i, ++it2) + *reinterpret_cast(PyArray_GETPTR1(polygonsarr, i)) = *it2; + + PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); + Py_XDECREF(verticesarr); + Py_XDECREF(polygonsarr); + + return res; +} + +PyObject* marching_cubes3(PyArrayObject* arr, double isovalue) +{ + if(PyArray_NDIM(arr) != 3) + throw std::runtime_error("Only three-dimensional arrays are supported."); + + // Prepare data. + npy_intp* shape = PyArray_DIMS(arr); + double lower[3] = {0,0,0}; + double upper[3] = {shape[0]-1, shape[1]-1, shape[2]-1}; + long numx = upper[0] - lower[0] + 1; + long numy = upper[1] - lower[1] + 1; + long numz = upper[2] - lower[2] + 1; + std::vector vertices; + std::vector polygons; + + // Marching cubes. + mc::marching_cubes3(lower, upper, numx, numy, numz, PyArrayToCFunc(arr), isovalue, + vertices, polygons); + + // Copy the result to two Python ndarrays. + npy_intp size_vertices = vertices.size(); + npy_intp size_polygons = polygons.size(); + PyArrayObject* verticesarr = reinterpret_cast(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); + PyArrayObject* polygonsarr = reinterpret_cast(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); + + std::vector::const_iterator it = vertices.begin(); + for(int i=0; it!=vertices.end(); ++i, ++it) + *reinterpret_cast(PyArray_GETPTR1(verticesarr, i)) = *it; + std::vector::const_iterator it2 = polygons.begin(); + for(int i=0; it2!=polygons.end(); ++i, ++it2) + *reinterpret_cast(PyArray_GETPTR1(polygonsarr, i)) = *it2; + + PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); + Py_XDECREF(verticesarr); + Py_XDECREF(polygonsarr); + + return res; +} \ No newline at end of file diff --git a/eval/src/utils/libmcubes/pywrapper.h b/eval/src/utils/libmcubes/pywrapper.h new file mode 100644 index 0000000..0a39b7f --- /dev/null +++ b/eval/src/utils/libmcubes/pywrapper.h @@ -0,0 +1,16 @@ + +#ifndef _PYWRAPPER_H +#define _PYWRAPPER_H + +#include +#include "pyarraymodule.h" + +#include + +PyObject* marching_cubes(PyArrayObject* arr, double isovalue); +PyObject* marching_cubes2(PyArrayObject* arr, double isovalue); +PyObject* marching_cubes3(PyArrayObject* arr, double isovalue); +PyObject* marching_cubes_func(PyObject* lower, PyObject* upper, + int numx, int numy, int numz, PyObject* f, double isovalue); + +#endif // _PYWRAPPER_H diff --git a/eval/src/utils/libmesh/.gitignore b/eval/src/utils/libmesh/.gitignore new file mode 100644 index 0000000..e7b8d59 --- /dev/null +++ b/eval/src/utils/libmesh/.gitignore @@ -0,0 +1,2 @@ +triangle_hash.cpp +build diff --git a/eval/src/utils/libmesh/__init__.py b/eval/src/utils/libmesh/__init__.py new file mode 100644 index 0000000..cd9828f --- /dev/null +++ b/eval/src/utils/libmesh/__init__.py @@ -0,0 +1,8 @@ +from .inside_mesh import ( + check_mesh_contains, MeshIntersector, TriangleIntersector2d +) + + +__all__ = [ + check_mesh_contains, MeshIntersector, TriangleIntersector2d +] diff --git a/eval/src/utils/libmesh/inside_mesh.py b/eval/src/utils/libmesh/inside_mesh.py new file mode 100644 index 0000000..29f6229 --- /dev/null +++ b/eval/src/utils/libmesh/inside_mesh.py @@ -0,0 +1,154 @@ +import numpy as np +from .triangle_hash import TriangleHash as _TriangleHash + + +def check_mesh_contains(mesh, points, hash_resolution=512): + intersector = MeshIntersector(mesh, hash_resolution) + contains = intersector.query(points) + return contains + + +class MeshIntersector: + def __init__(self, mesh, resolution=512): + triangles = mesh.vertices[mesh.faces].astype(np.float64) + n_tri = triangles.shape[0] + + self.resolution = resolution + self.bbox_min = triangles.reshape(3 * n_tri, 3).min(axis=0) + self.bbox_max = triangles.reshape(3 * n_tri, 3).max(axis=0) + # Tranlate and scale it to [0.5, self.resolution - 0.5]^3 + self.scale = (resolution - 1) / (self.bbox_max - self.bbox_min) + self.translate = 0.5 - self.scale * self.bbox_min + + self._triangles = triangles = self.rescale(triangles) + # assert(np.allclose(triangles.reshape(-1, 3).min(0), 0.5)) + # assert(np.allclose(triangles.reshape(-1, 3).max(0), resolution - 0.5)) + + triangles2d = triangles[:, :, :2] + self._tri_intersector2d = TriangleIntersector2d( + triangles2d, resolution) + + def query(self, points): + # Rescale points + points = self.rescale(points) + + # placeholder result with no hits we'll fill in later + contains = np.zeros(len(points), dtype=np.bool) + + # cull points outside of the axis aligned bounding box + # this avoids running ray tests unless points are close + inside_aabb = np.all( + (0 <= points) & (points <= self.resolution), axis=1) + if not inside_aabb.any(): + return contains + + # Only consider points inside bounding box + mask = inside_aabb + points = points[mask] + + # Compute intersection depth and check order + points_indices, tri_indices = self._tri_intersector2d.query(points[:, :2]) + + triangles_intersect = self._triangles[tri_indices] + points_intersect = points[points_indices] + + depth_intersect, abs_n_2 = self.compute_intersection_depth( + points_intersect, triangles_intersect) + + # Count number of intersections in both directions + smaller_depth = depth_intersect >= points_intersect[:, 2] * abs_n_2 + bigger_depth = depth_intersect < points_intersect[:, 2] * abs_n_2 + points_indices_0 = points_indices[smaller_depth] + points_indices_1 = points_indices[bigger_depth] + + nintersect0 = np.bincount(points_indices_0, minlength=points.shape[0]) + nintersect1 = np.bincount(points_indices_1, minlength=points.shape[0]) + + # Check if point contained in mesh + contains1 = (np.mod(nintersect0, 2) == 1) + contains2 = (np.mod(nintersect1, 2) == 1) + if (contains1 != contains2).any(): + print('Warning: contains1 != contains2 for some points.') + contains[mask] = (contains1 & contains2) + return contains + + def compute_intersection_depth(self, points, triangles): + t1 = triangles[:, 0, :] + t2 = triangles[:, 1, :] + t3 = triangles[:, 2, :] + + v1 = t3 - t1 + v2 = t2 - t1 + # v1 = v1 / np.linalg.norm(v1, axis=-1, keepdims=True) + # v2 = v2 / np.linalg.norm(v2, axis=-1, keepdims=True) + + normals = np.cross(v1, v2) + alpha = np.sum(normals[:, :2] * (t1[:, :2] - points[:, :2]), axis=1) + + n_2 = normals[:, 2] + t1_2 = t1[:, 2] + s_n_2 = np.sign(n_2) + abs_n_2 = np.abs(n_2) + + mask = (abs_n_2 != 0) + + depth_intersect = np.full(points.shape[0], np.nan) + depth_intersect[mask] = \ + t1_2[mask] * abs_n_2[mask] + alpha[mask] * s_n_2[mask] + + # Test the depth: + # TODO: remove and put into tests + # points_new = np.concatenate([points[:, :2], depth_intersect[:, None]], axis=1) + # alpha = (normals * t1).sum(-1) + # mask = (depth_intersect == depth_intersect) + # assert(np.allclose((points_new[mask] * normals[mask]).sum(-1), + # alpha[mask])) + return depth_intersect, abs_n_2 + + def rescale(self, array): + array = self.scale * array + self.translate + return array + + +class TriangleIntersector2d: + def __init__(self, triangles, resolution=128): + self.triangles = triangles + self.tri_hash = _TriangleHash(triangles, resolution) + + def query(self, points): + point_indices, tri_indices = self.tri_hash.query(points) + point_indices = np.array(point_indices, dtype=np.int64) + tri_indices = np.array(tri_indices, dtype=np.int64) + points = points[point_indices] + triangles = self.triangles[tri_indices] + mask = self.check_triangles(points, triangles) + point_indices = point_indices[mask] + tri_indices = tri_indices[mask] + return point_indices, tri_indices + + def check_triangles(self, points, triangles): + contains = np.zeros(points.shape[0], dtype=np.bool) + A = triangles[:, :2] - triangles[:, 2:] + A = A.transpose([0, 2, 1]) + y = points - triangles[:, 2] + + detA = A[:, 0, 0] * A[:, 1, 1] - A[:, 0, 1] * A[:, 1, 0] + + mask = (np.abs(detA) != 0.) + A = A[mask] + y = y[mask] + detA = detA[mask] + + s_detA = np.sign(detA) + abs_detA = np.abs(detA) + + u = (A[:, 1, 1] * y[:, 0] - A[:, 0, 1] * y[:, 1]) * s_detA + v = (-A[:, 1, 0] * y[:, 0] + A[:, 0, 0] * y[:, 1]) * s_detA + + sum_uv = u + v + contains[mask] = ( + (0 < u) & (u < abs_detA) & (0 < v) & (v < abs_detA) + & (0 < sum_uv) & (sum_uv < abs_detA) + ) + return contains + diff --git a/eval/src/utils/libmesh/triangle_hash.pyx b/eval/src/utils/libmesh/triangle_hash.pyx new file mode 100644 index 0000000..9e3ad59 --- /dev/null +++ b/eval/src/utils/libmesh/triangle_hash.pyx @@ -0,0 +1,86 @@ + +# distutils: language=c++ +import numpy as np +cimport numpy as np +cimport cython +from libcpp.vector cimport vector +from libc.math cimport floor, ceil + +cdef class TriangleHash: + cdef vector[vector[int]] spatial_hash + cdef int resolution + + def __cinit__(self, double[:, :, :] triangles, int resolution): + self.spatial_hash.resize(resolution * resolution) + self.resolution = resolution + self._build_hash(triangles) + + @cython.boundscheck(False) # Deactivate bounds checking + @cython.wraparound(False) # Deactivate negative indexing. + cdef int _build_hash(self, double[:, :, :] triangles): + assert(triangles.shape[1] == 3) + assert(triangles.shape[2] == 2) + + cdef int n_tri = triangles.shape[0] + cdef int bbox_min[2] + cdef int bbox_max[2] + + cdef int i_tri, j, x, y + cdef int spatial_idx + + for i_tri in range(n_tri): + # Compute bounding box + for j in range(2): + bbox_min[j] = min( + triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j] + ) + bbox_max[j] = max( + triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j] + ) + bbox_min[j] = min(max(bbox_min[j], 0), self.resolution - 1) + bbox_max[j] = min(max(bbox_max[j], 0), self.resolution - 1) + + # Find all voxels where bounding box intersects + for x in range(bbox_min[0], bbox_max[0] + 1): + for y in range(bbox_min[1], bbox_max[1] + 1): + spatial_idx = self.resolution * x + y + self.spatial_hash[spatial_idx].push_back(i_tri) + + @cython.boundscheck(False) # Deactivate bounds checking + @cython.wraparound(False) # Deactivate negative indexing. + cpdef query(self, double[:, :] points): + assert(points.shape[1] == 2) + cdef int n_points = points.shape[0] + + cdef vector[int] points_indices + cdef vector[int] tri_indices + # cdef int[:] points_indices_np + # cdef int[:] tri_indices_np + + cdef int i_point, k, x, y + cdef int spatial_idx + + for i_point in range(n_points): + x = int(points[i_point, 0]) + y = int(points[i_point, 1]) + if not (0 <= x < self.resolution and 0 <= y < self.resolution): + continue + + spatial_idx = self.resolution * x + y + for i_tri in self.spatial_hash[spatial_idx]: + points_indices.push_back(i_point) + tri_indices.push_back(i_tri) + + points_indices_np = np.zeros(points_indices.size(), dtype=np.int32) + tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32) + + cdef int[:] points_indices_view = points_indices_np + cdef int[:] tri_indices_view = tri_indices_np + + for k in range(points_indices.size()): + points_indices_view[k] = points_indices[k] + + for k in range(tri_indices.size()): + tri_indices_view[k] = tri_indices[k] + + return points_indices_np, tri_indices_np diff --git a/eval/src/utils/libmise/.gitignore b/eval/src/utils/libmise/.gitignore new file mode 100644 index 0000000..d3d5600 --- /dev/null +++ b/eval/src/utils/libmise/.gitignore @@ -0,0 +1,3 @@ +mise.c +mise.cpp +mise.html diff --git a/eval/src/utils/libmise/__init__.py b/eval/src/utils/libmise/__init__.py new file mode 100644 index 0000000..c286010 --- /dev/null +++ b/eval/src/utils/libmise/__init__.py @@ -0,0 +1,6 @@ +from .mise import MISE + + +__all__ = [ + MISE +] diff --git a/eval/src/utils/libmise/mise.pyx b/eval/src/utils/libmise/mise.pyx new file mode 100644 index 0000000..ce063b8 --- /dev/null +++ b/eval/src/utils/libmise/mise.pyx @@ -0,0 +1,369 @@ +# distutils: language = c++ +cimport cython +from cython.operator cimport dereference as dref +from libcpp.vector cimport vector +from libcpp.map cimport map +from libc.math cimport isnan, NAN +import numpy as np + + +cdef struct Vector3D: + int x, y, z + + +cdef struct Voxel: + Vector3D loc + unsigned int level + bint is_leaf + unsigned long children[2][2][2] + + +cdef struct GridPoint: + Vector3D loc + double value + bint known + + +cdef inline unsigned long vec_to_idx(Vector3D coord, long resolution): + cdef unsigned long idx + idx = resolution * resolution * coord.x + resolution * coord.y + coord.z + return idx + + +cdef class MISE: + cdef vector[Voxel] voxels + cdef vector[GridPoint] grid_points + cdef map[long, long] grid_point_hash + cdef readonly int resolution_0 + cdef readonly int depth + cdef readonly double threshold + cdef readonly int voxel_size_0 + cdef readonly int resolution + + def __cinit__(self, int resolution_0, int depth, double threshold): + self.resolution_0 = resolution_0 + self.depth = depth + self.threshold = threshold + self.voxel_size_0 = (1 << depth) + self.resolution = resolution_0 * self.voxel_size_0 + + # Create initial voxels + self.voxels.reserve(resolution_0 * resolution_0 * resolution_0) + + cdef Voxel voxel + cdef GridPoint point + cdef Vector3D loc + cdef int i, j, k + for i in range(resolution_0): + for j in range(resolution_0): + for k in range (resolution_0): + loc = Vector3D( + i * self.voxel_size_0, + j * self.voxel_size_0, + k * self.voxel_size_0, + ) + voxel = Voxel( + loc=loc, + level=0, + is_leaf=True, + ) + + assert(self.voxels.size() == vec_to_idx(Vector3D(i, j, k), resolution_0)) + self.voxels.push_back(voxel) + + # Create initial grid points + self.grid_points.reserve((resolution_0 + 1) * (resolution_0 + 1) * (resolution_0 + 1)) + for i in range(resolution_0 + 1): + for j in range(resolution_0 + 1): + for k in range(resolution_0 + 1): + loc = Vector3D( + i * self.voxel_size_0, + j * self.voxel_size_0, + k * self.voxel_size_0, + ) + assert(self.grid_points.size() == vec_to_idx(Vector3D(i, j, k), resolution_0 + 1)) + self.add_grid_point(loc) + + def update(self, long[:, :] points, double[:] values): + """Update points and set their values. Also determine all active voxels and subdivide them.""" + assert(points.shape[0] == values.shape[0]) + assert(points.shape[1] == 3) + cdef Vector3D loc + cdef long idx + cdef int i + + # Find all indices of point and set value + for i in range(points.shape[0]): + loc = Vector3D(points[i, 0], points[i, 1], points[i, 2]) + idx = self.get_grid_point_idx(loc) + if idx == -1: + raise ValueError('Point not in grid!') + self.grid_points[idx].value = values[i] + self.grid_points[idx].known = True + # Subdivide activate voxels and add new points + self.subdivide_voxels() + + def query(self): + """Query points to evaluate.""" + # Find all points with unknown value + cdef vector[Vector3D] points + cdef int n_unknown = 0 + for p in self.grid_points: + if not p.known: + n_unknown += 1 + + points.reserve(n_unknown) + for p in self.grid_points: + if not p.known: + points.push_back(p.loc) + + # Convert to numpy + points_np = np.zeros((points.size(), 3), dtype=np.int64) + cdef long[:, :] points_view = points_np + for i in range(points.size()): + points_view[i, 0] = points[i].x + points_view[i, 1] = points[i].y + points_view[i, 2] = points[i].z + + return points_np + + def to_dense(self): + """Output dense matrix at highest resolution.""" + out_array = np.full((self.resolution + 1,) * 3, np.nan) + cdef double[:, :, :] out_view = out_array + cdef GridPoint point + cdef int i, j, k + + for point in self.grid_points: + # Take voxel for which points is upper left corner + # assert(point.known) + out_view[point.loc.x, point.loc.y, point.loc.z] = point.value + + # Complete along x axis + for i in range(1, self.resolution + 1): + for j in range(self.resolution + 1): + for k in range(self.resolution + 1): + if isnan(out_view[i, j, k]): + out_view[i, j, k] = out_view[i-1, j, k] + + # Complete along y axis + for i in range(self.resolution + 1): + for j in range(1, self.resolution + 1): + for k in range(self.resolution + 1): + if isnan(out_view[i, j, k]): + out_view[i, j, k] = out_view[i, j-1, k] + + + # Complete along z axis + for i in range(self.resolution + 1): + for j in range(self.resolution + 1): + for k in range(1, self.resolution + 1): + if isnan(out_view[i, j, k]): + out_view[i, j, k] = out_view[i, j, k-1] + assert(not isnan(out_view[i, j, k])) + return out_array + + def get_points(self): + points_np = np.zeros((self.grid_points.size(), 3), dtype=np.int64) + values_np = np.zeros((self.grid_points.size()), dtype=np.float64) + + cdef long[:, :] points_view = points_np + cdef double[:] values_view = values_np + cdef Vector3D loc + cdef int i + + for i in range(self.grid_points.size()): + loc = self.grid_points[i].loc + points_view[i, 0] = loc.x + points_view[i, 1] = loc.y + points_view[i, 2] = loc.z + values_view[i] = self.grid_points[i].value + + return points_np, values_np + + cdef void subdivide_voxels(self) except +: + cdef vector[bint] next_to_positive + cdef vector[bint] next_to_negative + cdef int i, j, k + cdef long idx + cdef Vector3D loc, adj_loc + + # Initialize vectors + next_to_positive.resize(self.voxels.size(), False) + next_to_negative.resize(self.voxels.size(), False) + + # Iterate over grid points and mark voxels active + # TODO: can move this to update operation and add attibute to voxel + for grid_point in self.grid_points: + loc = grid_point.loc + if not grid_point.known: + continue + + # Iterate over the 8 adjacent voxels + for i in range(-1, 1): + for j in range(-1, 1): + for k in range(-1, 1): + adj_loc = Vector3D( + x=loc.x + i, + y=loc.y + j, + z=loc.z + k, + ) + idx = self.get_voxel_idx(adj_loc) + if idx == -1: + continue + + if grid_point.value >= self.threshold: + next_to_positive[idx] = True + if grid_point.value <= self.threshold: + next_to_negative[idx] = True + + cdef int n_subdivide = 0 + + for idx in range(self.voxels.size()): + if not self.voxels[idx].is_leaf or self.voxels[idx].level == self.depth: + continue + if next_to_positive[idx] and next_to_negative[idx]: + n_subdivide += 1 + + self.voxels.reserve(self.voxels.size() + 8 * n_subdivide) + self.grid_points.reserve(self.voxels.size() + 19 * n_subdivide) + + for idx in range(self.voxels.size()): + if not self.voxels[idx].is_leaf or self.voxels[idx].level == self.depth: + continue + if next_to_positive[idx] and next_to_negative[idx]: + self.subdivide_voxel(idx) + + cdef void subdivide_voxel(self, long idx): + cdef Voxel voxel + cdef GridPoint point + cdef Vector3D loc0 = self.voxels[idx].loc + cdef Vector3D loc + cdef int new_level = self.voxels[idx].level + 1 + cdef int new_size = 1 << (self.depth - new_level) + assert(new_level <= self.depth) + assert(1 <= new_size <= self.voxel_size_0) + + # Current voxel is not leaf anymore + self.voxels[idx].is_leaf = False + # Add new voxels + cdef int i, j, k + for i in range(2): + for j in range(2): + for k in range(2): + loc = Vector3D( + x=loc0.x + i * new_size, + y=loc0.y + j * new_size, + z=loc0.z + k * new_size, + ) + voxel = Voxel( + loc=loc, + level=new_level, + is_leaf=True + ) + + self.voxels[idx].children[i][j][k] = self.voxels.size() + self.voxels.push_back(voxel) + + # Add new grid points + for i in range(3): + for j in range(3): + for k in range(3): + loc = Vector3D( + loc0.x + i * new_size, + loc0.y + j * new_size, + loc0.z + k * new_size, + ) + + # Only add new grid points + if self.get_grid_point_idx(loc) == -1: + self.add_grid_point(loc) + + + @cython.cdivision(True) + cdef long get_voxel_idx(self, Vector3D loc) except +: + """Utility function for getting voxel index corresponding to 3D coordinates.""" + # Shorthands + cdef long resolution = self.resolution + cdef long resolution_0 = self.resolution_0 + cdef long depth = self.depth + cdef long voxel_size_0 = self.voxel_size_0 + + # Return -1 if point lies outside bounds + if not (0 <= loc.x < resolution and 0<= loc.y < resolution and 0 <= loc.z < resolution): + return -1 + + # Coordinates in coarse voxel grid + cdef Vector3D loc0 = Vector3D( + x=loc.x >> depth, + y=loc.y >> depth, + z=loc.z >> depth, + ) + + # Initial voxels + cdef int idx = vec_to_idx(loc0, resolution_0) + cdef Voxel voxel = self.voxels[idx] + assert(voxel.loc.x == loc0.x * voxel_size_0) + assert(voxel.loc.y == loc0.y * voxel_size_0) + assert(voxel.loc.z == loc0.z * voxel_size_0) + + # Relative coordinates + cdef Vector3D loc_rel = Vector3D( + x=loc.x - (loc0.x << depth), + y=loc.y - (loc0.y << depth), + z=loc.z - (loc0.z << depth), + ) + + cdef Vector3D loc_offset + cdef long voxel_size = voxel_size_0 + + while not voxel.is_leaf: + voxel_size = voxel_size >> 1 + assert(voxel_size >= 1) + + # Determine child + loc_offset = Vector3D( + x=1 if (loc_rel.x >= voxel_size) else 0, + y=1 if (loc_rel.y >= voxel_size) else 0, + z=1 if (loc_rel.z >= voxel_size) else 0, + ) + # New voxel + idx = voxel.children[loc_offset.x][loc_offset.y][loc_offset.z] + voxel = self.voxels[idx] + + # New relative coordinates + loc_rel = Vector3D( + x=loc_rel.x - loc_offset.x * voxel_size, + y=loc_rel.y - loc_offset.y * voxel_size, + z=loc_rel.z - loc_offset.z * voxel_size, + ) + + assert(0<= loc_rel.x < voxel_size) + assert(0<= loc_rel.y < voxel_size) + assert(0<= loc_rel.z < voxel_size) + + + # Return idx + return idx + + + cdef inline void add_grid_point(self, Vector3D loc): + cdef GridPoint point = GridPoint( + loc=loc, + value=0., + known=False, + ) + self.grid_point_hash[vec_to_idx(loc, self.resolution + 1)] = self.grid_points.size() + self.grid_points.push_back(point) + + cdef inline int get_grid_point_idx(self, Vector3D loc): + p_idx = self.grid_point_hash.find(vec_to_idx(loc, self.resolution + 1)) + if p_idx == self.grid_point_hash.end(): + return -1 + + cdef int idx = dref(p_idx).second + assert(self.grid_points[idx].loc.x == loc.x) + assert(self.grid_points[idx].loc.y == loc.y) + assert(self.grid_points[idx].loc.z == loc.z) + + return idx \ No newline at end of file diff --git a/eval/src/utils/libmise/test.py b/eval/src/utils/libmise/test.py new file mode 100644 index 0000000..40b42cc --- /dev/null +++ b/eval/src/utils/libmise/test.py @@ -0,0 +1,25 @@ +import numpy as np +from mise import MISE +import time + +t0 = time.time() +extractor = MISE(1, 2, 0.) + +p = extractor.query() +i = 0 + +while p.shape[0] != 0: + print(i) + print(p) + v = 2 * (p.sum(axis=-1) > 2).astype(np.float64) - 1 + extractor.update(p, v) + p = extractor.query() + i += 1 + if (i >= 8): + break + +print(extractor.to_dense()) +# p, v = extractor.get_points() +# print(p) +# print(v) +print('Total time: %f' % (time.time() - t0)) diff --git a/eval/src/utils/libsimplify/Simplify.h b/eval/src/utils/libsimplify/Simplify.h new file mode 100644 index 0000000..5ce75d9 --- /dev/null +++ b/eval/src/utils/libsimplify/Simplify.h @@ -0,0 +1,1028 @@ +///////////////////////////////////////////// +// +// Mesh Simplification Tutorial +// +// (C) by Sven Forstmann in 2014 +// +// License : MIT +// http://opensource.org/licenses/MIT +// +//https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification +// +// 5/2016: Chris Rorden created minimal version for OSX/Linux/Windows compile + +//#include +//#include +//#include +//#include +//#include +#include +//#include +//#include +#include +#include +#include +#include +#include +#include +#include //FLT_EPSILON, DBL_EPSILON + +#define loopi(start_l,end_l) for ( int i=start_l;i1) input=1; + return (double) acos ( input ); + } + + inline double angle2( const vec3f& v , const vec3f& w ) + { + vec3f a = v , b= *this; + double dot = a.x*b.x + a.y*b.y + a.z*b.z; + double len = a.length() * b.length(); + if(len==0)len=1; + + vec3f plane; plane.cross( b,w ); + + if ( plane.x * a.x + plane.y * a.y + plane.z * a.z > 0 ) + return (double) -acos ( dot / len ); + + return (double) acos ( dot / len ); + } + + inline vec3f rot_x( double a ) + { + double yy = cos ( a ) * y + sin ( a ) * z; + double zz = cos ( a ) * z - sin ( a ) * y; + y = yy; z = zz; + return *this; + } + inline vec3f rot_y( double a ) + { + double xx = cos ( -a ) * x + sin ( -a ) * z; + double zz = cos ( -a ) * z - sin ( -a ) * x; + x = xx; z = zz; + return *this; + } + inline void clamp( double min, double max ) + { + if (xmax) x=max; + if (y>max) y=max; + if (z>max) z=max; + } + inline vec3f rot_z( double a ) + { + double yy = cos ( a ) * y + sin ( a ) * x; + double xx = cos ( a ) * x - sin ( a ) * y; + y = yy; x = xx; + return *this; + } + inline vec3f invert() + { + x=-x;y=-y;z=-z;return *this; + } + inline vec3f frac() + { + return vec3f( + x-double(int(x)), + y-double(int(y)), + z-double(int(z)) + ); + } + + inline vec3f integer() + { + return vec3f( + double(int(x)), + double(int(y)), + double(int(z)) + ); + } + + inline double length() const + { + return (double)sqrt(x*x + y*y + z*z); + } + + inline vec3f normalize( double desired_length = 1 ) + { + double square = sqrt(x*x + y*y + z*z); + /* + if (square <= 0.00001f ) + { + x=1;y=0;z=0; + return *this; + }*/ + //double len = desired_length / square; + x/=square;y/=square;z/=square; + + return *this; + } + static vec3f normalize( vec3f a ); + + static void random_init(); + static double random_double(); + static vec3f random(); + + static int random_number; + + double random_double_01(double a){ + double rnf=a*14.434252+a*364.2343+a*4213.45352+a*2341.43255+a*254341.43535+a*223454341.3523534245+23453.423412; + int rni=((int)rnf)%100000; + return double(rni)/(100000.0f-1.0f); + } + + vec3f random01_fxyz(){ + x=(double)random_double_01(x); + y=(double)random_double_01(y); + z=(double)random_double_01(z); + return *this; + } + +}; + +vec3f barycentric(const vec3f &p, const vec3f &a, const vec3f &b, const vec3f &c){ + vec3f v0 = b-a; + vec3f v1 = c-a; + vec3f v2 = p-a; + double d00 = v0.dot(v0); + double d01 = v0.dot(v1); + double d11 = v1.dot(v1); + double d20 = v2.dot(v0); + double d21 = v2.dot(v1); + double denom = d00*d11-d01*d01; + double v = (d11 * d20 - d01 * d21) / denom; + double w = (d00 * d21 - d01 * d20) / denom; + double u = 1.0 - v - w; + return vec3f(u,v,w); +} + +vec3f interpolate(const vec3f &p, const vec3f &a, const vec3f &b, const vec3f &c, const vec3f attrs[3]) +{ + vec3f bary = barycentric(p,a,b,c); + vec3f out = vec3f(0,0,0); + out = out + attrs[0] * bary.x; + out = out + attrs[1] * bary.y; + out = out + attrs[2] * bary.z; + return out; +} + +double min(double v1, double v2) { + return fmin(v1,v2); +} + + +class SymetricMatrix { + + public: + + // Constructor + + SymetricMatrix(double c=0) { loopi(0,10) m[i] = c; } + + SymetricMatrix( double m11, double m12, double m13, double m14, + double m22, double m23, double m24, + double m33, double m34, + double m44) { + m[0] = m11; m[1] = m12; m[2] = m13; m[3] = m14; + m[4] = m22; m[5] = m23; m[6] = m24; + m[7] = m33; m[8] = m34; + m[9] = m44; + } + + // Make plane + + SymetricMatrix(double a,double b,double c,double d) + { + m[0] = a*a; m[1] = a*b; m[2] = a*c; m[3] = a*d; + m[4] = b*b; m[5] = b*c; m[6] = b*d; + m[7 ] =c*c; m[8 ] = c*d; + m[9 ] = d*d; + } + + double operator[](int c) const { return m[c]; } + + // Determinant + + double det( int a11, int a12, int a13, + int a21, int a22, int a23, + int a31, int a32, int a33) + { + double det = m[a11]*m[a22]*m[a33] + m[a13]*m[a21]*m[a32] + m[a12]*m[a23]*m[a31] + - m[a13]*m[a22]*m[a31] - m[a11]*m[a23]*m[a32]- m[a12]*m[a21]*m[a33]; + return det; + } + + const SymetricMatrix operator+(const SymetricMatrix& n) const + { + return SymetricMatrix( m[0]+n[0], m[1]+n[1], m[2]+n[2], m[3]+n[3], + m[4]+n[4], m[5]+n[5], m[6]+n[6], + m[ 7]+n[ 7], m[ 8]+n[8 ], + m[ 9]+n[9 ]); + } + + SymetricMatrix& operator+=(const SymetricMatrix& n) + { + m[0]+=n[0]; m[1]+=n[1]; m[2]+=n[2]; m[3]+=n[3]; + m[4]+=n[4]; m[5]+=n[5]; m[6]+=n[6]; m[7]+=n[7]; + m[8]+=n[8]; m[9]+=n[9]; + return *this; + } + + double m[10]; +}; +/////////////////////////////////////////// + +namespace Simplify +{ + // Global Variables & Strctures + enum Attributes { + NONE, + NORMAL = 2, + TEXCOORD = 4, + COLOR = 8 + }; + struct Triangle { int v[3];double err[4];int deleted,dirty,attr;vec3f n;vec3f uvs[3];int material; }; + struct Vertex { vec3f p;int tstart,tcount;SymetricMatrix q;int border;}; + struct Ref { int tid,tvertex; }; + std::vector triangles; + std::vector vertices; + std::vector refs; + std::string mtllib; + std::vector materials; + + // Helper functions + + double vertex_error(SymetricMatrix q, double x, double y, double z); + double calculate_error(int id_v1, int id_v2, vec3f &p_result); + bool flipped(vec3f p,int i0,int i1,Vertex &v0,Vertex &v1,std::vector &deleted); + void update_uvs(int i0,const Vertex &v,const vec3f &p,std::vector &deleted); + void update_triangles(int i0,Vertex &v,std::vector &deleted,int &deleted_triangles); + void update_mesh(int iteration); + void compact_mesh(); + // + // Main simplification function + // + // target_count : target nr. of triangles + // agressiveness : sharpness to increase the threshold. + // 5..8 are good numbers + // more iterations yield higher quality + // + + void simplify_mesh(int target_count, double agressiveness=7, bool verbose=false) + { + // init + loopi(0,triangles.size()) + { + triangles[i].deleted=0; + } + + // main iteration loop + int deleted_triangles=0; + std::vector deleted0,deleted1; + int triangle_count=triangles.size(); + //int iteration = 0; + //loop(iteration,0,100) + for (int iteration = 0; iteration < 100; iteration ++) + { + if(triangle_count-deleted_triangles<=target_count)break; + + // update mesh once in a while + if(iteration%5==0) + { + update_mesh(iteration); + } + + // clear dirty flag + loopi(0,triangles.size()) triangles[i].dirty=0; + + // + // All triangles with edges below the threshold will be removed + // + // The following numbers works well for most models. + // If it does not, try to adjust the 3 parameters + // + double threshold = 0.000000001*pow(double(iteration+3),agressiveness); + + // target number of triangles reached ? Then break + if ((verbose) && (iteration%5==0)) { + printf("iteration %d - triangles %d threshold %g\n",iteration,triangle_count-deleted_triangles, threshold); + } + + // remove vertices & mark deleted triangles + loopi(0,triangles.size()) + { + Triangle &t=triangles[i]; + if(t.err[3]>threshold) continue; + if(t.deleted) continue; + if(t.dirty) continue; + + loopj(0,3)if(t.err[j] deleted0,deleted1; + int triangle_count=triangles.size(); + //int iteration = 0; + //loop(iteration,0,100) + for (int iteration = 0; iteration < 9999; iteration ++) + { + // update mesh constantly + update_mesh(iteration); + // clear dirty flag + loopi(0,triangles.size()) triangles[i].dirty=0; + // + // All triangles with edges below the threshold will be removed + // + // The following numbers works well for most models. + // If it does not, try to adjust the 3 parameters + // + double threshold = DBL_EPSILON; //1.0E-3 EPS; + if (verbose) { + printf("lossless iteration %d\n", iteration); + } + + // remove vertices & mark deleted triangles + loopi(0,triangles.size()) + { + Triangle &t=triangles[i]; + if(t.err[3]>threshold) continue; + if(t.deleted) continue; + if(t.dirty) continue; + + loopj(0,3)if(t.err[j] &deleted) + { + + loopk(0,v0.tcount) + { + Triangle &t=triangles[refs[v0.tstart+k].tid]; + if(t.deleted)continue; + + int s=refs[v0.tstart+k].tvertex; + int id1=t.v[(s+1)%3]; + int id2=t.v[(s+2)%3]; + + if(id1==i1 || id2==i1) // delete ? + { + + deleted[k]=1; + continue; + } + vec3f d1 = vertices[id1].p-p; d1.normalize(); + vec3f d2 = vertices[id2].p-p; d2.normalize(); + if(fabs(d1.dot(d2))>0.999) return true; + vec3f n; + n.cross(d1,d2); + n.normalize(); + deleted[k]=0; + if(n.dot(t.n)<0.2) return true; + } + return false; + } + + // update_uvs + + void update_uvs(int i0,const Vertex &v,const vec3f &p,std::vector &deleted) + { + loopk(0,v.tcount) + { + Ref &r=refs[v.tstart+k]; + Triangle &t=triangles[r.tid]; + if(t.deleted)continue; + if(deleted[k])continue; + vec3f p1=vertices[t.v[0]].p; + vec3f p2=vertices[t.v[1]].p; + vec3f p3=vertices[t.v[2]].p; + t.uvs[r.tvertex] = interpolate(p,p1,p2,p3,t.uvs); + } + } + + // Update triangle connections and edge error after a edge is collapsed + + void update_triangles(int i0,Vertex &v,std::vector &deleted,int &deleted_triangles) + { + vec3f p; + loopk(0,v.tcount) + { + Ref &r=refs[v.tstart+k]; + Triangle &t=triangles[r.tid]; + if(t.deleted)continue; + if(deleted[k]) + { + t.deleted=1; + deleted_triangles++; + continue; + } + t.v[r.tvertex]=i0; + t.dirty=1; + t.err[0]=calculate_error(t.v[0],t.v[1],p); + t.err[1]=calculate_error(t.v[1],t.v[2],p); + t.err[2]=calculate_error(t.v[2],t.v[0],p); + t.err[3]=min(t.err[0],min(t.err[1],t.err[2])); + refs.push_back(r); + } + } + + // compact triangles, compute edge error and build reference list + + void update_mesh(int iteration) + { + if(iteration>0) // compact triangles + { + int dst=0; + loopi(0,triangles.size()) + if(!triangles[i].deleted) + { + triangles[dst++]=triangles[i]; + } + triangles.resize(dst); + } + // + // Init Quadrics by Plane & Edge Errors + // + // required at the beginning ( iteration == 0 ) + // recomputing during the simplification is not required, + // but mostly improves the result for closed meshes + // + if( iteration == 0 ) + { + loopi(0,vertices.size()) + vertices[i].q=SymetricMatrix(0.0); + + loopi(0,triangles.size()) + { + Triangle &t=triangles[i]; + vec3f n,p[3]; + loopj(0,3) p[j]=vertices[t.v[j]].p; + n.cross(p[1]-p[0],p[2]-p[0]); + n.normalize(); + t.n=n; + loopj(0,3) vertices[t.v[j]].q = + vertices[t.v[j]].q+SymetricMatrix(n.x,n.y,n.z,-n.dot(p[0])); + } + loopi(0,triangles.size()) + { + // Calc Edge Error + Triangle &t=triangles[i];vec3f p; + loopj(0,3) t.err[j]=calculate_error(t.v[j],t.v[(j+1)%3],p); + t.err[3]=min(t.err[0],min(t.err[1],t.err[2])); + } + } + + // Init Reference ID list + loopi(0,vertices.size()) + { + vertices[i].tstart=0; + vertices[i].tcount=0; + } + loopi(0,triangles.size()) + { + Triangle &t=triangles[i]; + loopj(0,3) vertices[t.v[j]].tcount++; + } + int tstart=0; + loopi(0,vertices.size()) + { + Vertex &v=vertices[i]; + v.tstart=tstart; + tstart+=v.tcount; + v.tcount=0; + } + + // Write References + refs.resize(triangles.size()*3); + loopi(0,triangles.size()) + { + Triangle &t=triangles[i]; + loopj(0,3) + { + Vertex &v=vertices[t.v[j]]; + refs[v.tstart+v.tcount].tid=i; + refs[v.tstart+v.tcount].tvertex=j; + v.tcount++; + } + } + + // Identify boundary : vertices[].border=0,1 + if( iteration == 0 ) + { + std::vector vcount,vids; + + loopi(0,vertices.size()) + vertices[i].border=0; + + loopi(0,vertices.size()) + { + Vertex &v=vertices[i]; + vcount.clear(); + vids.clear(); + loopj(0,v.tcount) + { + int k=refs[v.tstart+j].tid; + Triangle &t=triangles[k]; + loopk(0,3) + { + int ofs=0,id=t.v[k]; + while(ofs try to find best result + vec3f p1=vertices[id_v1].p; + vec3f p2=vertices[id_v2].p; + vec3f p3=(p1+p2)/2; + double error1 = vertex_error(q, p1.x,p1.y,p1.z); + double error2 = vertex_error(q, p2.x,p2.y,p2.z); + double error3 = vertex_error(q, p3.x,p3.y,p3.z); + error = min(error1, min(error2, error3)); + if (error1 == error) p_result=p1; + if (error2 == error) p_result=p2; + if (error3 == error) p_result=p3; + } + return error; + } + + char *trimwhitespace(char *str) + { + char *end; + + // Trim leading space + while(isspace((unsigned char)*str)) str++; + + if(*str == 0) // All spaces? + return str; + + // Trim trailing space + end = str + strlen(str) - 1; + while(end > str && isspace((unsigned char)*end)) end--; + + // Write new null terminator + *(end+1) = 0; + + return str; + } + + //Option : Load OBJ + void load_obj(const char* filename, bool process_uv=false){ + vertices.clear(); + triangles.clear(); + //printf ( "Loading Objects %s ... \n",filename); + FILE* fn; + if(filename==NULL) return ; + if((char)filename[0]==0) return ; + if ((fn = fopen(filename, "rb")) == NULL) + { + printf ( "File %s not found!\n" ,filename ); + return; + } + char line[1000]; + memset ( line,0,1000 ); + int vertex_cnt = 0; + int material = -1; + std::map material_map; + std::vector uvs; + std::vector > uvMap; + + while(fgets( line, 1000, fn ) != NULL) + { + Vertex v; + vec3f uv; + + if (strncmp(line, "mtllib", 6) == 0) + { + mtllib = trimwhitespace(&line[7]); + } + if (strncmp(line, "usemtl", 6) == 0) + { + std::string usemtl = trimwhitespace(&line[7]); + if (material_map.find(usemtl) == material_map.end()) + { + material_map[usemtl] = materials.size(); + materials.push_back(usemtl); + } + material = material_map[usemtl]; + } + + if ( line[0] == 'v' && line[1] == 't' ) + { + if ( line[2] == ' ' ) + if(sscanf(line,"vt %lf %lf", + &uv.x,&uv.y)==2) + { + uv.z = 0; + uvs.push_back(uv); + } else + if(sscanf(line,"vt %lf %lf %lf", + &uv.x,&uv.y,&uv.z)==3) + { + uvs.push_back(uv); + } + } + else if ( line[0] == 'v' ) + { + if ( line[1] == ' ' ) + if(sscanf(line,"v %lf %lf %lf", + &v.p.x, &v.p.y, &v.p.z)==3) + { + vertices.push_back(v); + } + } + int integers[9]; + if ( line[0] == 'f' ) + { + Triangle t; + bool tri_ok = false; + bool has_uv = false; + + if(sscanf(line,"f %d %d %d", + &integers[0],&integers[1],&integers[2])==3) + { + tri_ok = true; + }else + if(sscanf(line,"f %d// %d// %d//", + &integers[0],&integers[1],&integers[2])==3) + { + tri_ok = true; + }else + if(sscanf(line,"f %d//%d %d//%d %d//%d", + &integers[0],&integers[3], + &integers[1],&integers[4], + &integers[2],&integers[5])==6) + { + tri_ok = true; + }else + if(sscanf(line,"f %d/%d/%d %d/%d/%d %d/%d/%d", + &integers[0],&integers[6],&integers[3], + &integers[1],&integers[7],&integers[4], + &integers[2],&integers[8],&integers[5])==9) + { + tri_ok = true; + has_uv = true; + } + else + { + printf("unrecognized sequence\n"); + printf("%s\n",line); + while(1); + } + if ( tri_ok ) + { + t.v[0] = integers[0]-1-vertex_cnt; + t.v[1] = integers[1]-1-vertex_cnt; + t.v[2] = integers[2]-1-vertex_cnt; + t.attr = 0; + + if ( process_uv && has_uv ) + { + std::vector indices; + indices.push_back(integers[6]-1-vertex_cnt); + indices.push_back(integers[7]-1-vertex_cnt); + indices.push_back(integers[8]-1-vertex_cnt); + uvMap.push_back(indices); + t.attr |= TEXCOORD; + } + + t.material = material; + //geo.triangles.push_back ( tri ); + triangles.push_back(t); + //state_before = state; + //state ='f'; + } + } + } + + if ( process_uv && uvs.size() ) + { + loopi(0,triangles.size()) + { + loopj(0,3) + triangles[i].uvs[j] = uvs[uvMap[i][j]]; + } + } + + fclose(fn); + + //printf("load_obj: vertices = %lu, triangles = %lu, uvs = %lu\n", vertices.size(), triangles.size(), uvs.size() ); + } // load_obj() + + // Optional : Store as OBJ + + void write_obj(const char* filename) + { + FILE *file=fopen(filename, "w"); + int cur_material = -1; + bool has_uv = (triangles.size() && (triangles[0].attr & TEXCOORD) == TEXCOORD); + + if (!file) + { + printf("write_obj: can't write data file \"%s\".\n", filename); + exit(0); + } + if (!mtllib.empty()) + { + fprintf(file, "mtllib %s\n", mtllib.c_str()); + } + loopi(0,vertices.size()) + { + //fprintf(file, "v %lf %lf %lf\n", vertices[i].p.x,vertices[i].p.y,vertices[i].p.z); + fprintf(file, "v %g %g %g\n", vertices[i].p.x,vertices[i].p.y,vertices[i].p.z); //more compact: remove trailing zeros + } + if (has_uv) + { + loopi(0,triangles.size()) if(!triangles[i].deleted) + { + fprintf(file, "vt %g %g\n", triangles[i].uvs[0].x, triangles[i].uvs[0].y); + fprintf(file, "vt %g %g\n", triangles[i].uvs[1].x, triangles[i].uvs[1].y); + fprintf(file, "vt %g %g\n", triangles[i].uvs[2].x, triangles[i].uvs[2].y); + } + } + int uv = 1; + loopi(0,triangles.size()) if(!triangles[i].deleted) + { + if (triangles[i].material != cur_material) + { + cur_material = triangles[i].material; + fprintf(file, "usemtl %s\n", materials[triangles[i].material].c_str()); + } + if (has_uv) + { + fprintf(file, "f %d/%d %d/%d %d/%d\n", triangles[i].v[0]+1, uv, triangles[i].v[1]+1, uv+1, triangles[i].v[2]+1, uv+2); + uv += 3; + } + else + { + fprintf(file, "f %d %d %d\n", triangles[i].v[0]+1, triangles[i].v[1]+1, triangles[i].v[2]+1); + } + //fprintf(file, "f %d// %d// %d//\n", triangles[i].v[0]+1, triangles[i].v[1]+1, triangles[i].v[2]+1); //more compact: remove trailing zeros + } + fclose(file); + } +}; +/////////////////////////////////////////// diff --git a/eval/src/utils/libsimplify/__init__.py b/eval/src/utils/libsimplify/__init__.py new file mode 100644 index 0000000..e100648 --- /dev/null +++ b/eval/src/utils/libsimplify/__init__.py @@ -0,0 +1,15 @@ +from .simplify_mesh import ( + mesh_simplify +) +import trimesh + + +def simplify_mesh(mesh, f_target=10000, agressiveness=7.): + vertices = mesh.vertices + faces = mesh.faces + + vertices, faces = mesh_simplify(vertices, faces, f_target, agressiveness) + + mesh_simplified = trimesh.Trimesh(vertices, faces, process=False) + + return mesh_simplified diff --git a/eval/src/utils/libsimplify/simplify_mesh.cpp b/eval/src/utils/libsimplify/simplify_mesh.cpp new file mode 100644 index 0000000..dcc5263 --- /dev/null +++ b/eval/src/utils/libsimplify/simplify_mesh.cpp @@ -0,0 +1,25029 @@ +/* Generated by Cython 0.29.14 */ + +/* BEGIN: Cython Metadata +{ + "distutils": { + "depends": [ + "im2mesh/utils/libsimplify/Simplify.h" + ], + "include_dirs": [ + "im2mesh/utils/libsimplify" + ], + "language": "c++", + "name": "im2mesh.utils.libsimplify.simplify_mesh", + "sources": [ + "im2mesh/utils/libsimplify/simplify_mesh.pyx" + ] + }, + "module_name": "im2mesh.utils.libsimplify.simplify_mesh" +} +END: Cython Metadata */ + +#define PY_SSIZE_T_CLEAN +#include "Python.h" +#ifndef Py_PYTHON_H + #error Python headers needed to compile C extensions, please install development version of Python. +#elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) + #error Cython requires Python 2.6+ or Python 3.3+. +#else +#define CYTHON_ABI "0_29_14" +#define CYTHON_HEX_VERSION 0x001D0EF0 +#define CYTHON_FUTURE_DIVISION 0 +#include +#ifndef offsetof + #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) +#endif +#if !defined(WIN32) && !defined(MS_WINDOWS) + #ifndef __stdcall + #define __stdcall + #endif + #ifndef __cdecl + #define __cdecl + #endif + #ifndef __fastcall + #define __fastcall + #endif +#endif +#ifndef DL_IMPORT + #define DL_IMPORT(t) t +#endif +#ifndef DL_EXPORT + #define DL_EXPORT(t) t +#endif +#define __PYX_COMMA , +#ifndef HAVE_LONG_LONG + #if PY_VERSION_HEX >= 0x02070000 + #define HAVE_LONG_LONG + #endif +#endif +#ifndef PY_LONG_LONG + #define PY_LONG_LONG LONG_LONG +#endif +#ifndef Py_HUGE_VAL + #define Py_HUGE_VAL HUGE_VAL +#endif +#ifdef PYPY_VERSION + #define CYTHON_COMPILING_IN_PYPY 1 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #undef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 0 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #if PY_VERSION_HEX < 0x03050000 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #undef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #undef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 1 + #undef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 0 + #undef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 0 + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 + #undef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS 0 + #undef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK 0 +#elif defined(PYSTON_VERSION) + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 1 + #define CYTHON_COMPILING_IN_CPYTHON 0 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #undef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 0 + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #undef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 0 + #undef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 0 + #undef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT 0 + #undef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE 0 + #undef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS 0 + #undef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK 0 +#else + #define CYTHON_COMPILING_IN_PYPY 0 + #define CYTHON_COMPILING_IN_PYSTON 0 + #define CYTHON_COMPILING_IN_CPYTHON 1 + #ifndef CYTHON_USE_TYPE_SLOTS + #define CYTHON_USE_TYPE_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYTYPE_LOOKUP + #define CYTHON_USE_PYTYPE_LOOKUP 0 + #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) + #define CYTHON_USE_PYTYPE_LOOKUP 1 + #endif + #if PY_MAJOR_VERSION < 3 + #undef CYTHON_USE_ASYNC_SLOTS + #define CYTHON_USE_ASYNC_SLOTS 0 + #elif !defined(CYTHON_USE_ASYNC_SLOTS) + #define CYTHON_USE_ASYNC_SLOTS 1 + #endif + #if PY_VERSION_HEX < 0x02070000 + #undef CYTHON_USE_PYLONG_INTERNALS + #define CYTHON_USE_PYLONG_INTERNALS 0 + #elif !defined(CYTHON_USE_PYLONG_INTERNALS) + #define CYTHON_USE_PYLONG_INTERNALS 1 + #endif + #ifndef CYTHON_USE_PYLIST_INTERNALS + #define CYTHON_USE_PYLIST_INTERNALS 1 + #endif + #ifndef CYTHON_USE_UNICODE_INTERNALS + #define CYTHON_USE_UNICODE_INTERNALS 1 + #endif + #if PY_VERSION_HEX < 0x030300F0 + #undef CYTHON_USE_UNICODE_WRITER + #define CYTHON_USE_UNICODE_WRITER 0 + #elif !defined(CYTHON_USE_UNICODE_WRITER) + #define CYTHON_USE_UNICODE_WRITER 1 + #endif + #ifndef CYTHON_AVOID_BORROWED_REFS + #define CYTHON_AVOID_BORROWED_REFS 0 + #endif + #ifndef CYTHON_ASSUME_SAFE_MACROS + #define CYTHON_ASSUME_SAFE_MACROS 1 + #endif + #ifndef CYTHON_UNPACK_METHODS + #define CYTHON_UNPACK_METHODS 1 + #endif + #ifndef CYTHON_FAST_THREAD_STATE + #define CYTHON_FAST_THREAD_STATE 1 + #endif + #ifndef CYTHON_FAST_PYCALL + #define CYTHON_FAST_PYCALL 1 + #endif + #ifndef CYTHON_PEP489_MULTI_PHASE_INIT + #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) + #endif + #ifndef CYTHON_USE_TP_FINALIZE + #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) + #endif + #ifndef CYTHON_USE_DICT_VERSIONS + #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) + #endif + #ifndef CYTHON_USE_EXC_INFO_STACK + #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) + #endif +#endif +#if !defined(CYTHON_FAST_PYCCALL) +#define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) +#endif +#if CYTHON_USE_PYLONG_INTERNALS + #include "longintrepr.h" + #undef SHIFT + #undef BASE + #undef MASK + #ifdef SIZEOF_VOID_P + enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; + #endif +#endif +#ifndef __has_attribute + #define __has_attribute(x) 0 +#endif +#ifndef __has_cpp_attribute + #define __has_cpp_attribute(x) 0 +#endif +#ifndef CYTHON_RESTRICT + #if defined(__GNUC__) + #define CYTHON_RESTRICT __restrict__ + #elif defined(_MSC_VER) && _MSC_VER >= 1400 + #define CYTHON_RESTRICT __restrict + #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define CYTHON_RESTRICT restrict + #else + #define CYTHON_RESTRICT + #endif +#endif +#ifndef CYTHON_UNUSED +# if defined(__GNUC__) +# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) +# define CYTHON_UNUSED __attribute__ ((__unused__)) +# else +# define CYTHON_UNUSED +# endif +#endif +#ifndef CYTHON_MAYBE_UNUSED_VAR +# if defined(__cplusplus) + template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } +# else +# define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) +# endif +#endif +#ifndef CYTHON_NCP_UNUSED +# if CYTHON_COMPILING_IN_CPYTHON +# define CYTHON_NCP_UNUSED +# else +# define CYTHON_NCP_UNUSED CYTHON_UNUSED +# endif +#endif +#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) +#ifdef _MSC_VER + #ifndef _MSC_STDINT_H_ + #if _MSC_VER < 1300 + typedef unsigned char uint8_t; + typedef unsigned int uint32_t; + #else + typedef unsigned __int8 uint8_t; + typedef unsigned __int32 uint32_t; + #endif + #endif +#else + #include +#endif +#ifndef CYTHON_FALLTHROUGH + #if defined(__cplusplus) && __cplusplus >= 201103L + #if __has_cpp_attribute(fallthrough) + #define CYTHON_FALLTHROUGH [[fallthrough]] + #elif __has_cpp_attribute(clang::fallthrough) + #define CYTHON_FALLTHROUGH [[clang::fallthrough]] + #elif __has_cpp_attribute(gnu::fallthrough) + #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] + #endif + #endif + #ifndef CYTHON_FALLTHROUGH + #if __has_attribute(fallthrough) + #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) + #else + #define CYTHON_FALLTHROUGH + #endif + #endif + #if defined(__clang__ ) && defined(__apple_build_version__) + #if __apple_build_version__ < 7000000 + #undef CYTHON_FALLTHROUGH + #define CYTHON_FALLTHROUGH + #endif + #endif +#endif + +#ifndef __cplusplus + #error "Cython files generated with the C++ option must be compiled with a C++ compiler." +#endif +#ifndef CYTHON_INLINE + #if defined(__clang__) + #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) + #else + #define CYTHON_INLINE inline + #endif +#endif +template +void __Pyx_call_destructor(T& x) { + x.~T(); +} +template +class __Pyx_FakeReference { + public: + __Pyx_FakeReference() : ptr(NULL) { } + __Pyx_FakeReference(const T& ref) : ptr(const_cast(&ref)) { } + T *operator->() { return ptr; } + T *operator&() { return ptr; } + operator T&() { return *ptr; } + template bool operator ==(U other) { return *ptr == other; } + template bool operator !=(U other) { return *ptr != other; } + private: + T *ptr; +}; + +#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) + #define Py_OptimizeFlag 0 +#endif +#define __PYX_BUILD_PY_SSIZE_T "n" +#define CYTHON_FORMAT_SSIZE_T "z" +#if PY_MAJOR_VERSION < 3 + #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) + #define __Pyx_DefaultClassType PyClass_Type +#else + #define __Pyx_BUILTIN_MODULE_NAME "builtins" +#if PY_VERSION_HEX >= 0x030800A4 && PY_VERSION_HEX < 0x030800B2 + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, 0, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) +#else + #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ + PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) +#endif + #define __Pyx_DefaultClassType PyType_Type +#endif +#ifndef Py_TPFLAGS_CHECKTYPES + #define Py_TPFLAGS_CHECKTYPES 0 +#endif +#ifndef Py_TPFLAGS_HAVE_INDEX + #define Py_TPFLAGS_HAVE_INDEX 0 +#endif +#ifndef Py_TPFLAGS_HAVE_NEWBUFFER + #define Py_TPFLAGS_HAVE_NEWBUFFER 0 +#endif +#ifndef Py_TPFLAGS_HAVE_FINALIZE + #define Py_TPFLAGS_HAVE_FINALIZE 0 +#endif +#ifndef METH_STACKLESS + #define METH_STACKLESS 0 +#endif +#if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) + #ifndef METH_FASTCALL + #define METH_FASTCALL 0x80 + #endif + typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); + typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, + Py_ssize_t nargs, PyObject *kwnames); +#else + #define __Pyx_PyCFunctionFast _PyCFunctionFast + #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords +#endif +#if CYTHON_FAST_PYCCALL +#define __Pyx_PyFastCFunction_Check(func)\ + ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) +#else +#define __Pyx_PyFastCFunction_Check(func) 0 +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) + #define PyObject_Malloc(s) PyMem_Malloc(s) + #define PyObject_Free(p) PyMem_Free(p) + #define PyObject_Realloc(p) PyMem_Realloc(p) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 + #define PyMem_RawMalloc(n) PyMem_Malloc(n) + #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) + #define PyMem_RawFree(p) PyMem_Free(p) +#endif +#if CYTHON_COMPILING_IN_PYSTON + #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) +#else + #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) + #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) +#endif +#if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#elif PY_VERSION_HEX >= 0x03060000 + #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() +#elif PY_VERSION_HEX >= 0x03000000 + #define __Pyx_PyThreadState_Current PyThreadState_GET() +#else + #define __Pyx_PyThreadState_Current _PyThreadState_Current +#endif +#if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) +#include "pythread.h" +#define Py_tss_NEEDS_INIT 0 +typedef int Py_tss_t; +static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { + *key = PyThread_create_key(); + return 0; +} +static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { + Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); + *key = Py_tss_NEEDS_INIT; + return key; +} +static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { + PyObject_Free(key); +} +static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { + return *key != Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { + PyThread_delete_key(*key); + *key = Py_tss_NEEDS_INIT; +} +static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { + return PyThread_set_key_value(*key, value); +} +static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { + return PyThread_get_key_value(*key); +} +#endif +#if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) +#define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) +#else +#define __Pyx_PyDict_NewPresized(n) PyDict_New() +#endif +#if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION + #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) +#else + #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) + #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) +#endif +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS +#define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) +#else +#define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) +#endif +#if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) + #define CYTHON_PEP393_ENABLED 1 + #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ + 0 : _PyUnicode_Ready((PyObject *)(op))) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) + #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) + #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) + #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) +#else + #define CYTHON_PEP393_ENABLED 0 + #define PyUnicode_1BYTE_KIND 1 + #define PyUnicode_2BYTE_KIND 2 + #define PyUnicode_4BYTE_KIND 4 + #define __Pyx_PyUnicode_READY(op) (0) + #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) + #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) + #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) + #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) + #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) + #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) + #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) +#endif +#if CYTHON_COMPILING_IN_PYPY + #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) +#else + #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) + #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ + PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) + #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) + #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) +#endif +#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) + #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) +#endif +#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) +#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) +#else + #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) +#endif +#if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) + #define PyObject_ASCII(o) PyObject_Repr(o) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBaseString_Type PyUnicode_Type + #define PyStringObject PyUnicodeObject + #define PyString_Type PyUnicode_Type + #define PyString_Check PyUnicode_Check + #define PyString_CheckExact PyUnicode_CheckExact + #define PyObject_Unicode PyObject_Str +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) + #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) +#else + #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) + #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) +#endif +#ifndef PySet_CheckExact + #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) +#endif +#if CYTHON_ASSUME_SAFE_MACROS + #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) +#else + #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyIntObject PyLongObject + #define PyInt_Type PyLong_Type + #define PyInt_Check(op) PyLong_Check(op) + #define PyInt_CheckExact(op) PyLong_CheckExact(op) + #define PyInt_FromString PyLong_FromString + #define PyInt_FromUnicode PyLong_FromUnicode + #define PyInt_FromLong PyLong_FromLong + #define PyInt_FromSize_t PyLong_FromSize_t + #define PyInt_FromSsize_t PyLong_FromSsize_t + #define PyInt_AsLong PyLong_AsLong + #define PyInt_AS_LONG PyLong_AS_LONG + #define PyInt_AsSsize_t PyLong_AsSsize_t + #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask + #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask + #define PyNumber_Int PyNumber_Long +#endif +#if PY_MAJOR_VERSION >= 3 + #define PyBoolObject PyLongObject +#endif +#if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY + #ifndef PyUnicode_InternFromString + #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) + #endif +#endif +#if PY_VERSION_HEX < 0x030200A4 + typedef long Py_hash_t; + #define __Pyx_PyInt_FromHash_t PyInt_FromLong + #define __Pyx_PyInt_AsHash_t PyInt_AsLong +#else + #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t + #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t +#endif +#if PY_MAJOR_VERSION >= 3 + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) +#else + #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) +#endif +#if CYTHON_USE_ASYNC_SLOTS + #if PY_VERSION_HEX >= 0x030500B1 + #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods + #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) + #else + #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) + #endif +#else + #define __Pyx_PyType_AsAsync(obj) NULL +#endif +#ifndef __Pyx_PyAsyncMethodsStruct + typedef struct { + unaryfunc am_await; + unaryfunc am_aiter; + unaryfunc am_anext; + } __Pyx_PyAsyncMethodsStruct; +#endif + +#if defined(WIN32) || defined(MS_WINDOWS) + #define _USE_MATH_DEFINES +#endif +#include +#ifdef NAN +#define __PYX_NAN() ((float) NAN) +#else +static CYTHON_INLINE float __PYX_NAN() { + float value; + memset(&value, 0xFF, sizeof(value)); + return value; +} +#endif +#if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) +#define __Pyx_truncl trunc +#else +#define __Pyx_truncl truncl +#endif + + +#define __PYX_ERR(f_index, lineno, Ln_error) \ +{ \ + __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ +} + +#ifndef __PYX_EXTERN_C + #ifdef __cplusplus + #define __PYX_EXTERN_C extern "C" + #else + #define __PYX_EXTERN_C extern + #endif +#endif + +#define __PYX_HAVE__im2mesh__utils__libsimplify__simplify_mesh +#define __PYX_HAVE_API__im2mesh__utils__libsimplify__simplify_mesh +/* Early includes */ +#include "ios" +#include "new" +#include "stdexcept" +#include "typeinfo" +#include +#include +#include +#include "numpy/arrayobject.h" +#include "numpy/ufuncobject.h" +#include "Simplify.h" +#include "pythread.h" +#include +#include "pystate.h" +#ifdef _OPENMP +#include +#endif /* _OPENMP */ + +#if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) +#define CYTHON_WITHOUT_ASSERTIONS +#endif + +typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; + const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; + +#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 +#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) +#define __PYX_DEFAULT_STRING_ENCODING "" +#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString +#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#define __Pyx_uchar_cast(c) ((unsigned char)c) +#define __Pyx_long_cast(x) ((long)x) +#define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ + (sizeof(type) < sizeof(Py_ssize_t)) ||\ + (sizeof(type) > sizeof(Py_ssize_t) &&\ + likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX) &&\ + (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ + v == (type)PY_SSIZE_T_MIN))) ||\ + (sizeof(type) == sizeof(Py_ssize_t) &&\ + (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ + v == (type)PY_SSIZE_T_MAX))) ) +static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { + return (size_t) i < (size_t) limit; +} +#if defined (__cplusplus) && __cplusplus >= 201103L + #include + #define __Pyx_sst_abs(value) std::abs(value) +#elif SIZEOF_INT >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) abs(value) +#elif SIZEOF_LONG >= SIZEOF_SIZE_T + #define __Pyx_sst_abs(value) labs(value) +#elif defined (_MSC_VER) + #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) +#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L + #define __Pyx_sst_abs(value) llabs(value) +#elif defined (__GNUC__) + #define __Pyx_sst_abs(value) __builtin_llabs(value) +#else + #define __Pyx_sst_abs(value) ((value<0) ? -value : value) +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); +#define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) +#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) +#define __Pyx_PyBytes_FromString PyBytes_FromString +#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); +#if PY_MAJOR_VERSION < 3 + #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize +#else + #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString + #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize +#endif +#define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) +#define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) +#define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) +#define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) +#define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) +#define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) +#define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) +static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { + const Py_UNICODE *u_end = u; + while (*u_end++) ; + return (size_t)(u_end - u - 1); +} +#define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) +#define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode +#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode +#define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) +#define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); +static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); +#define __Pyx_PySequence_Tuple(obj)\ + (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); +#if CYTHON_ASSUME_SAFE_MACROS +#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) +#else +#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) +#endif +#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) +#else +#define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) +#endif +#define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII +static int __Pyx_sys_getdefaultencoding_not_ascii; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + PyObject* ascii_chars_u = NULL; + PyObject* ascii_chars_b = NULL; + const char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + if (strcmp(default_encoding_c, "ascii") == 0) { + __Pyx_sys_getdefaultencoding_not_ascii = 0; + } else { + char ascii_chars[128]; + int c; + for (c = 0; c < 128; c++) { + ascii_chars[c] = c; + } + __Pyx_sys_getdefaultencoding_not_ascii = 1; + ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); + if (!ascii_chars_u) goto bad; + ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); + if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { + PyErr_Format( + PyExc_ValueError, + "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", + default_encoding_c); + goto bad; + } + Py_DECREF(ascii_chars_u); + Py_DECREF(ascii_chars_b); + } + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + Py_XDECREF(ascii_chars_u); + Py_XDECREF(ascii_chars_b); + return -1; +} +#endif +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) +#else +#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) +#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +static char* __PYX_DEFAULT_STRING_ENCODING; +static int __Pyx_init_sys_getdefaultencoding_params(void) { + PyObject* sys; + PyObject* default_encoding = NULL; + char* default_encoding_c; + sys = PyImport_ImportModule("sys"); + if (!sys) goto bad; + default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); + Py_DECREF(sys); + if (!default_encoding) goto bad; + default_encoding_c = PyBytes_AsString(default_encoding); + if (!default_encoding_c) goto bad; + __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); + if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; + strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); + Py_DECREF(default_encoding); + return 0; +bad: + Py_XDECREF(default_encoding); + return -1; +} +#endif +#endif + + +/* Test for GCC > 2.95 */ +#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) + #define likely(x) __builtin_expect(!!(x), 1) + #define unlikely(x) __builtin_expect(!!(x), 0) +#else /* !__GNUC__ or GCC < 2.95 */ + #define likely(x) (x) + #define unlikely(x) (x) +#endif /* __GNUC__ */ +static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } + +static PyObject *__pyx_m = NULL; +static PyObject *__pyx_d; +static PyObject *__pyx_b; +static PyObject *__pyx_cython_runtime = NULL; +static PyObject *__pyx_empty_tuple; +static PyObject *__pyx_empty_bytes; +static PyObject *__pyx_empty_unicode; +static int __pyx_lineno; +static int __pyx_clineno = 0; +static const char * __pyx_cfilenm= __FILE__; +static const char *__pyx_filename; + +/* Header.proto */ +#if !defined(CYTHON_CCOMPLEX) + #if defined(__cplusplus) + #define CYTHON_CCOMPLEX 1 + #elif defined(_Complex_I) + #define CYTHON_CCOMPLEX 1 + #else + #define CYTHON_CCOMPLEX 0 + #endif +#endif +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #include + #else + #include + #endif +#endif +#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) + #undef _Complex_I + #define _Complex_I 1.0fj +#endif + + +static const char *__pyx_f[] = { + "im2mesh/utils/libsimplify/simplify_mesh.pyx", + "__init__.pxd", + "stringsource", + "type.pxd", +}; +/* MemviewSliceStruct.proto */ +struct __pyx_memoryview_obj; +typedef struct { + struct __pyx_memoryview_obj *memview; + char *data; + Py_ssize_t shape[8]; + Py_ssize_t strides[8]; + Py_ssize_t suboffsets[8]; +} __Pyx_memviewslice; +#define __Pyx_MemoryView_Len(m) (m.shape[0]) + +/* Atomics.proto */ +#include +#ifndef CYTHON_ATOMICS + #define CYTHON_ATOMICS 1 +#endif +#define __pyx_atomic_int_type int +#if CYTHON_ATOMICS && __GNUC__ >= 4 && (__GNUC_MINOR__ > 1 ||\ + (__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL >= 2)) &&\ + !defined(__i386__) + #define __pyx_atomic_incr_aligned(value, lock) __sync_fetch_and_add(value, 1) + #define __pyx_atomic_decr_aligned(value, lock) __sync_fetch_and_sub(value, 1) + #ifdef __PYX_DEBUG_ATOMICS + #warning "Using GNU atomics" + #endif +#elif CYTHON_ATOMICS && defined(_MSC_VER) && 0 + #include + #undef __pyx_atomic_int_type + #define __pyx_atomic_int_type LONG + #define __pyx_atomic_incr_aligned(value, lock) InterlockedIncrement(value) + #define __pyx_atomic_decr_aligned(value, lock) InterlockedDecrement(value) + #ifdef __PYX_DEBUG_ATOMICS + #pragma message ("Using MSVC atomics") + #endif +#elif CYTHON_ATOMICS && (defined(__ICC) || defined(__INTEL_COMPILER)) && 0 + #define __pyx_atomic_incr_aligned(value, lock) _InterlockedIncrement(value) + #define __pyx_atomic_decr_aligned(value, lock) _InterlockedDecrement(value) + #ifdef __PYX_DEBUG_ATOMICS + #warning "Using Intel atomics" + #endif +#else + #undef CYTHON_ATOMICS + #define CYTHON_ATOMICS 0 + #ifdef __PYX_DEBUG_ATOMICS + #warning "Not using atomics" + #endif +#endif +typedef volatile __pyx_atomic_int_type __pyx_atomic_int; +#if CYTHON_ATOMICS + #define __pyx_add_acquisition_count(memview)\ + __pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock) + #define __pyx_sub_acquisition_count(memview)\ + __pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview), memview->lock) +#else + #define __pyx_add_acquisition_count(memview)\ + __pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) + #define __pyx_sub_acquisition_count(memview)\ + __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) +#endif + +/* ForceInitThreads.proto */ +#ifndef __PYX_FORCE_INIT_THREADS + #define __PYX_FORCE_INIT_THREADS 0 +#endif + +/* NoFastGil.proto */ +#define __Pyx_PyGILState_Ensure PyGILState_Ensure +#define __Pyx_PyGILState_Release PyGILState_Release +#define __Pyx_FastGIL_Remember() +#define __Pyx_FastGIL_Forget() +#define __Pyx_FastGilFuncInit() + +/* BufferFormatStructs.proto */ +#define IS_UNSIGNED(type) (((type) -1) > 0) +struct __Pyx_StructField_; +#define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) +typedef struct { + const char* name; + struct __Pyx_StructField_* fields; + size_t size; + size_t arraysize[8]; + int ndim; + char typegroup; + char is_unsigned; + int flags; +} __Pyx_TypeInfo; +typedef struct __Pyx_StructField_ { + __Pyx_TypeInfo* type; + const char* name; + size_t offset; +} __Pyx_StructField; +typedef struct { + __Pyx_StructField* field; + size_t parent_offset; +} __Pyx_BufFmt_StackElem; +typedef struct { + __Pyx_StructField root; + __Pyx_BufFmt_StackElem* head; + size_t fmt_offset; + size_t new_count, enc_count; + size_t struct_alignment; + int is_complex; + char enc_type; + char new_packmode; + char enc_packmode; + char is_valid_array; +} __Pyx_BufFmt_Context; + + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":776 + * # in Cython to enable them only on the right systems. + * + * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + */ +typedef npy_int8 __pyx_t_5numpy_int8_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":777 + * + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t + */ +typedef npy_int16 __pyx_t_5numpy_int16_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":778 + * ctypedef npy_int8 int8_t + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< + * ctypedef npy_int64 int64_t + * #ctypedef npy_int96 int96_t + */ +typedef npy_int32 __pyx_t_5numpy_int32_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":779 + * ctypedef npy_int16 int16_t + * ctypedef npy_int32 int32_t + * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< + * #ctypedef npy_int96 int96_t + * #ctypedef npy_int128 int128_t + */ +typedef npy_int64 __pyx_t_5numpy_int64_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":783 + * #ctypedef npy_int128 int128_t + * + * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + */ +typedef npy_uint8 __pyx_t_5numpy_uint8_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":784 + * + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t + */ +typedef npy_uint16 __pyx_t_5numpy_uint16_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":785 + * ctypedef npy_uint8 uint8_t + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< + * ctypedef npy_uint64 uint64_t + * #ctypedef npy_uint96 uint96_t + */ +typedef npy_uint32 __pyx_t_5numpy_uint32_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":786 + * ctypedef npy_uint16 uint16_t + * ctypedef npy_uint32 uint32_t + * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< + * #ctypedef npy_uint96 uint96_t + * #ctypedef npy_uint128 uint128_t + */ +typedef npy_uint64 __pyx_t_5numpy_uint64_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":790 + * #ctypedef npy_uint128 uint128_t + * + * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< + * ctypedef npy_float64 float64_t + * #ctypedef npy_float80 float80_t + */ +typedef npy_float32 __pyx_t_5numpy_float32_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":791 + * + * ctypedef npy_float32 float32_t + * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< + * #ctypedef npy_float80 float80_t + * #ctypedef npy_float128 float128_t + */ +typedef npy_float64 __pyx_t_5numpy_float64_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":800 + * # The int types are mapped a bit surprising -- + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t + */ +typedef npy_long __pyx_t_5numpy_int_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":801 + * # numpy.int corresponds to 'l' and numpy.long to 'q' + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< + * ctypedef npy_longlong longlong_t + * + */ +typedef npy_longlong __pyx_t_5numpy_long_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":802 + * ctypedef npy_long int_t + * ctypedef npy_longlong long_t + * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_ulong uint_t + */ +typedef npy_longlong __pyx_t_5numpy_longlong_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":804 + * ctypedef npy_longlong longlong_t + * + * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t + */ +typedef npy_ulong __pyx_t_5numpy_uint_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":805 + * + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< + * ctypedef npy_ulonglong ulonglong_t + * + */ +typedef npy_ulonglong __pyx_t_5numpy_ulong_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":806 + * ctypedef npy_ulong uint_t + * ctypedef npy_ulonglong ulong_t + * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< + * + * ctypedef npy_intp intp_t + */ +typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":808 + * ctypedef npy_ulonglong ulonglong_t + * + * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< + * ctypedef npy_uintp uintp_t + * + */ +typedef npy_intp __pyx_t_5numpy_intp_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":809 + * + * ctypedef npy_intp intp_t + * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< + * + * ctypedef npy_double float_t + */ +typedef npy_uintp __pyx_t_5numpy_uintp_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":811 + * ctypedef npy_uintp uintp_t + * + * ctypedef npy_double float_t # <<<<<<<<<<<<<< + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t + */ +typedef npy_double __pyx_t_5numpy_float_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":812 + * + * ctypedef npy_double float_t + * ctypedef npy_double double_t # <<<<<<<<<<<<<< + * ctypedef npy_longdouble longdouble_t + * + */ +typedef npy_double __pyx_t_5numpy_double_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":813 + * ctypedef npy_double float_t + * ctypedef npy_double double_t + * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cfloat cfloat_t + */ +typedef npy_longdouble __pyx_t_5numpy_longdouble_t; +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< float > __pyx_t_float_complex; + #else + typedef float _Complex __pyx_t_float_complex; + #endif +#else + typedef struct { float real, imag; } __pyx_t_float_complex; +#endif +static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); + +/* Declarations.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + typedef ::std::complex< double > __pyx_t_double_complex; + #else + typedef double _Complex __pyx_t_double_complex; + #endif +#else + typedef struct { double real, imag; } __pyx_t_double_complex; +#endif +static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); + + +/*--- Type declarations ---*/ +struct __pyx_array_obj; +struct __pyx_MemviewEnum_obj; +struct __pyx_memoryview_obj; +struct __pyx_memoryviewslice_obj; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":815 + * ctypedef npy_longdouble longdouble_t + * + * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t + */ +typedef npy_cfloat __pyx_t_5numpy_cfloat_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":816 + * + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< + * ctypedef npy_clongdouble clongdouble_t + * + */ +typedef npy_cdouble __pyx_t_5numpy_cdouble_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":817 + * ctypedef npy_cfloat cfloat_t + * ctypedef npy_cdouble cdouble_t + * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< + * + * ctypedef npy_cdouble complex_t + */ +typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":819 + * ctypedef npy_clongdouble clongdouble_t + * + * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew1(a): + */ +typedef npy_cdouble __pyx_t_5numpy_complex_t; +struct __pyx_opt_args_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify; + +/* "im2mesh/utils/libsimplify/simplify_mesh.pyx":34 + * + * + * cpdef mesh_simplify(double[:, ::1] vertices_in, long[:, ::1] triangles_in, # <<<<<<<<<<<<<< + * int f_target, double agressiveness=7.) except +: + * vertices.clear() + */ +struct __pyx_opt_args_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify { + int __pyx_n; + double agressiveness; +}; + +/* "View.MemoryView":105 + * + * @cname("__pyx_array") + * cdef class array: # <<<<<<<<<<<<<< + * + * cdef: + */ +struct __pyx_array_obj { + PyObject_HEAD + struct __pyx_vtabstruct_array *__pyx_vtab; + char *data; + Py_ssize_t len; + char *format; + int ndim; + Py_ssize_t *_shape; + Py_ssize_t *_strides; + Py_ssize_t itemsize; + PyObject *mode; + PyObject *_format; + void (*callback_free_data)(void *); + int free_data; + int dtype_is_object; +}; + + +/* "View.MemoryView":279 + * + * @cname('__pyx_MemviewEnum') + * cdef class Enum(object): # <<<<<<<<<<<<<< + * cdef object name + * def __init__(self, name): + */ +struct __pyx_MemviewEnum_obj { + PyObject_HEAD + PyObject *name; +}; + + +/* "View.MemoryView":330 + * + * @cname('__pyx_memoryview') + * cdef class memoryview(object): # <<<<<<<<<<<<<< + * + * cdef object obj + */ +struct __pyx_memoryview_obj { + PyObject_HEAD + struct __pyx_vtabstruct_memoryview *__pyx_vtab; + PyObject *obj; + PyObject *_size; + PyObject *_array_interface; + PyThread_type_lock lock; + __pyx_atomic_int acquisition_count[2]; + __pyx_atomic_int *acquisition_count_aligned_p; + Py_buffer view; + int flags; + int dtype_is_object; + __Pyx_TypeInfo *typeinfo; +}; + + +/* "View.MemoryView":965 + * + * @cname('__pyx_memoryviewslice') + * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< + * "Internal class for passing memoryview slices to Python" + * + */ +struct __pyx_memoryviewslice_obj { + struct __pyx_memoryview_obj __pyx_base; + __Pyx_memviewslice from_slice; + PyObject *from_object; + PyObject *(*to_object_func)(char *); + int (*to_dtype_func)(char *, PyObject *); +}; + + + +/* "View.MemoryView":105 + * + * @cname("__pyx_array") + * cdef class array: # <<<<<<<<<<<<<< + * + * cdef: + */ + +struct __pyx_vtabstruct_array { + PyObject *(*get_memview)(struct __pyx_array_obj *); +}; +static struct __pyx_vtabstruct_array *__pyx_vtabptr_array; + + +/* "View.MemoryView":330 + * + * @cname('__pyx_memoryview') + * cdef class memoryview(object): # <<<<<<<<<<<<<< + * + * cdef object obj + */ + +struct __pyx_vtabstruct_memoryview { + char *(*get_item_pointer)(struct __pyx_memoryview_obj *, PyObject *); + PyObject *(*is_slice)(struct __pyx_memoryview_obj *, PyObject *); + PyObject *(*setitem_slice_assignment)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); + PyObject *(*setitem_slice_assign_scalar)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *); + PyObject *(*setitem_indexed)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); + PyObject *(*convert_item_to_object)(struct __pyx_memoryview_obj *, char *); + PyObject *(*assign_item_from_object)(struct __pyx_memoryview_obj *, char *, PyObject *); +}; +static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; + + +/* "View.MemoryView":965 + * + * @cname('__pyx_memoryviewslice') + * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< + * "Internal class for passing memoryview slices to Python" + * + */ + +struct __pyx_vtabstruct__memoryviewslice { + struct __pyx_vtabstruct_memoryview __pyx_base; +}; +static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; + +/* --- Runtime support code (head) --- */ +/* Refnanny.proto */ +#ifndef CYTHON_REFNANNY + #define CYTHON_REFNANNY 0 +#endif +#if CYTHON_REFNANNY + typedef struct { + void (*INCREF)(void*, PyObject*, int); + void (*DECREF)(void*, PyObject*, int); + void (*GOTREF)(void*, PyObject*, int); + void (*GIVEREF)(void*, PyObject*, int); + void* (*SetupContext)(const char*, int, const char*); + void (*FinishContext)(void**); + } __Pyx_RefNannyAPIStruct; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; + static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); + #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; +#ifdef WITH_THREAD + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + if (acquire_gil) {\ + PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + PyGILState_Release(__pyx_gilstate_save);\ + } else {\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ + } +#else + #define __Pyx_RefNannySetupContext(name, acquire_gil)\ + __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) +#endif + #define __Pyx_RefNannyFinishContext()\ + __Pyx_RefNanny->FinishContext(&__pyx_refnanny) + #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) + #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) + #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) + #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) + #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) +#else + #define __Pyx_RefNannyDeclarations + #define __Pyx_RefNannySetupContext(name, acquire_gil) + #define __Pyx_RefNannyFinishContext() + #define __Pyx_INCREF(r) Py_INCREF(r) + #define __Pyx_DECREF(r) Py_DECREF(r) + #define __Pyx_GOTREF(r) + #define __Pyx_GIVEREF(r) + #define __Pyx_XINCREF(r) Py_XINCREF(r) + #define __Pyx_XDECREF(r) Py_XDECREF(r) + #define __Pyx_XGOTREF(r) + #define __Pyx_XGIVEREF(r) +#endif +#define __Pyx_XDECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_XDECREF(tmp);\ + } while (0) +#define __Pyx_DECREF_SET(r, v) do {\ + PyObject *tmp = (PyObject *) r;\ + r = v; __Pyx_DECREF(tmp);\ + } while (0) +#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) +#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) + +/* PyObjectGetAttrStr.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) +#endif + +/* GetBuiltinName.proto */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name); + +/* BufferIndexError.proto */ +static void __Pyx_RaiseBufferIndexError(int axis); + +/* PyDictVersioning.proto */ +#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS +#define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) +#define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) +#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ + (version_var) = __PYX_GET_DICT_VERSION(dict);\ + (cache_var) = (value); +#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ + static PY_UINT64_T __pyx_dict_version = 0;\ + static PyObject *__pyx_dict_cached_value = NULL;\ + if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ + (VAR) = __pyx_dict_cached_value;\ + } else {\ + (VAR) = __pyx_dict_cached_value = (LOOKUP);\ + __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ + }\ +} +static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); +static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); +static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); +#else +#define __PYX_GET_DICT_VERSION(dict) (0) +#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) +#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); +#endif + +/* GetModuleGlobalName.proto */ +#if CYTHON_USE_DICT_VERSIONS +#define __Pyx_GetModuleGlobalName(var, name) {\ + static PY_UINT64_T __pyx_dict_version = 0;\ + static PyObject *__pyx_dict_cached_value = NULL;\ + (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ + (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ + __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ +} +#define __Pyx_GetModuleGlobalNameUncached(var, name) {\ + PY_UINT64_T __pyx_dict_version;\ + PyObject *__pyx_dict_cached_value;\ + (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ +} +static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); +#else +#define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) +#define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) +static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); +#endif + +/* PyObjectCall.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); +#else +#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) +#endif + +/* MemviewSliceInit.proto */ +#define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d +#define __Pyx_MEMVIEW_DIRECT 1 +#define __Pyx_MEMVIEW_PTR 2 +#define __Pyx_MEMVIEW_FULL 4 +#define __Pyx_MEMVIEW_CONTIG 8 +#define __Pyx_MEMVIEW_STRIDED 16 +#define __Pyx_MEMVIEW_FOLLOW 32 +#define __Pyx_IS_C_CONTIG 1 +#define __Pyx_IS_F_CONTIG 2 +static int __Pyx_init_memviewslice( + struct __pyx_memoryview_obj *memview, + int ndim, + __Pyx_memviewslice *memviewslice, + int memview_is_new_reference); +static CYTHON_INLINE int __pyx_add_acquisition_count_locked( + __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); +static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( + __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); +#define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p) +#define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview)) +#define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__) +#define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__) +static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); +static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); + +/* RaiseArgTupleInvalid.proto */ +static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, + Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); + +/* RaiseDoubleKeywords.proto */ +static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); + +/* ParseKeywords.proto */ +static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ + PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ + const char* function_name); + +/* None.proto */ +static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); + +/* PyThreadStateGet.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; +#define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; +#define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type +#else +#define __Pyx_PyThreadState_declare +#define __Pyx_PyThreadState_assign +#define __Pyx_PyErr_Occurred() PyErr_Occurred() +#endif + +/* PyErrFetchRestore.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) +#define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) +#else +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#endif +#else +#define __Pyx_PyErr_Clear() PyErr_Clear() +#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) +#define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) +#define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) +#define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) +#endif + +/* RaiseException.proto */ +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); + +/* PyCFunctionFastCall.proto */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); +#else +#define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) +#endif + +/* PyFunctionFastCall.proto */ +#if CYTHON_FAST_PYCALL +#define __Pyx_PyFunction_FastCall(func, args, nargs)\ + __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); +#else +#define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) +#endif +#define __Pyx_BUILD_ASSERT_EXPR(cond)\ + (sizeof(char [1 - 2*!(cond)]) - 1) +#ifndef Py_MEMBER_SIZE +#define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) +#endif + static size_t __pyx_pyframe_localsplus_offset = 0; + #include "frameobject.h" + #define __Pxy_PyFrame_Initialize_Offsets()\ + ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ + (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) + #define __Pyx_PyFrame_GetLocalsplus(frame)\ + (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) +#endif + +/* PyObjectCallMethO.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); +#endif + +/* PyObjectCallOneArg.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); + +/* DictGetItem.proto */ +#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY +static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key); +#define __Pyx_PyObject_Dict_GetItem(obj, name)\ + (likely(PyDict_CheckExact(obj)) ?\ + __Pyx_PyDict_GetItem(obj, name) : PyObject_GetItem(obj, name)) +#else +#define __Pyx_PyDict_GetItem(d, key) PyObject_GetItem(d, key) +#define __Pyx_PyObject_Dict_GetItem(obj, name) PyObject_GetItem(obj, name) +#endif + +/* RaiseTooManyValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); + +/* RaiseNeedMoreValuesToUnpack.proto */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); + +/* RaiseNoneIterError.proto */ +static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); + +/* ExtTypeTest.proto */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); + +/* GetTopmostException.proto */ +#if CYTHON_USE_EXC_INFO_STACK +static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); +#endif + +/* SaveResetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); +#else +#define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) +#define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) +#endif + +/* PyErrExceptionMatches.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) +static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); +#else +#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) +#endif + +/* GetException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* ArgTypeTest.proto */ +#define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ + ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ + __Pyx__ArgTypeTest(obj, type, name, exact)) +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); + +/* PyObjectCall2Args.proto */ +static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); + +/* IncludeStringH.proto */ +#include + +/* BytesEquals.proto */ +static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); + +/* UnicodeEquals.proto */ +static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); + +/* StrEquals.proto */ +#if PY_MAJOR_VERSION >= 3 +#define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals +#else +#define __Pyx_PyString_Equals __Pyx_PyBytes_Equals +#endif + +/* None.proto */ +static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t, Py_ssize_t); + +/* UnaryNegOverflows.proto */ +#define UNARY_NEG_WOULD_OVERFLOW(x)\ + (((x) < 0) & ((unsigned long)(x) == 0-(unsigned long)(x))) + +static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *); /*proto*/ +/* GetAttr.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); + +/* GetItemInt.proto */ +#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ + (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ + __Pyx_GetItemInt_Generic(o, to_py_func(i)))) +#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ + (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ + __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ + (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + int wraparound, int boundscheck); +static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, + int is_list, int wraparound, int boundscheck); + +/* ObjectGetItem.proto */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); +#else +#define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) +#endif + +/* decode_c_string_utf16.proto */ +static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors) { + int byteorder = 0; + return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); +} +static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16LE(const char *s, Py_ssize_t size, const char *errors) { + int byteorder = -1; + return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); +} +static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16BE(const char *s, Py_ssize_t size, const char *errors) { + int byteorder = 1; + return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); +} + +/* decode_c_string.proto */ +static CYTHON_INLINE PyObject* __Pyx_decode_c_string( + const char* cstring, Py_ssize_t start, Py_ssize_t stop, + const char* encoding, const char* errors, + PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); + +/* GetAttr3.proto */ +static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); + +/* SwapException.proto */ +#if CYTHON_FAST_THREAD_STATE +#define __Pyx_ExceptionSwap(type, value, tb) __Pyx__ExceptionSwap(__pyx_tstate, type, value, tb) +static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); +#else +static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); +#endif + +/* Import.proto */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); + +/* FastTypeChecks.proto */ +#if CYTHON_COMPILING_IN_CPYTHON +#define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); +static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); +#else +#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) +#define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) +#define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) +#endif +#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) + +static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +/* ListCompAppend.proto */ +#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS +static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { + PyListObject* L = (PyListObject*) list; + Py_ssize_t len = Py_SIZE(list); + if (likely(L->allocated > len)) { + Py_INCREF(x); + PyList_SET_ITEM(list, len, x); + Py_SIZE(list) = len+1; + return 0; + } + return PyList_Append(list, x); +} +#else +#define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) +#endif + +/* PyIntBinop.proto */ +#if !CYTHON_COMPILING_IN_PYPY +static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); +#else +#define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ + (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) +#endif + +/* ListExtend.proto */ +static CYTHON_INLINE int __Pyx_PyList_Extend(PyObject* L, PyObject* v) { +#if CYTHON_COMPILING_IN_CPYTHON + PyObject* none = _PyList_Extend((PyListObject*)L, v); + if (unlikely(!none)) + return -1; + Py_DECREF(none); + return 0; +#else + return PyList_SetSlice(L, PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, v); +#endif +} + +/* ListAppend.proto */ +#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS +static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { + PyListObject* L = (PyListObject*) list; + Py_ssize_t len = Py_SIZE(list); + if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { + Py_INCREF(x); + PyList_SET_ITEM(list, len, x); + Py_SIZE(list) = len+1; + return 0; + } + return PyList_Append(list, x); +} +#else +#define __Pyx_PyList_Append(L,x) PyList_Append(L,x) +#endif + +/* None.proto */ +static CYTHON_INLINE long __Pyx_div_long(long, long); + +/* ImportFrom.proto */ +static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); + +/* HasAttr.proto */ +static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); + +/* PyObject_GenericGetAttrNoDict.proto */ +#if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GenericGetAttrNoDict PyObject_GenericGetAttr +#endif + +/* PyObject_GenericGetAttr.proto */ +#if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name); +#else +#define __Pyx_PyObject_GenericGetAttr PyObject_GenericGetAttr +#endif + +/* SetVTable.proto */ +static int __Pyx_SetVtable(PyObject *dict, void *vtable); + +/* SetupReduce.proto */ +static int __Pyx_setup_reduce(PyObject* type_obj); + +/* TypeImport.proto */ +#ifndef __PYX_HAVE_RT_ImportType_proto +#define __PYX_HAVE_RT_ImportType_proto +enum __Pyx_ImportType_CheckSize { + __Pyx_ImportType_CheckSize_Error = 0, + __Pyx_ImportType_CheckSize_Warn = 1, + __Pyx_ImportType_CheckSize_Ignore = 2 +}; +static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); +#endif + +/* CLineInTraceback.proto */ +#ifdef CYTHON_CLINE_IN_TRACEBACK +#define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) +#else +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); +#endif + +/* CodeObjectCache.proto */ +typedef struct { + PyCodeObject* code_object; + int code_line; +} __Pyx_CodeObjectCacheEntry; +struct __Pyx_CodeObjectCache { + int count; + int max_count; + __Pyx_CodeObjectCacheEntry* entries; +}; +static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); +static PyCodeObject *__pyx_find_code_object(int code_line); +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); + +/* AddTraceback.proto */ +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename); + +#if PY_MAJOR_VERSION < 3 + static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); + static void __Pyx_ReleaseBuffer(Py_buffer *view); +#else + #define __Pyx_GetBuffer PyObject_GetBuffer + #define __Pyx_ReleaseBuffer PyBuffer_Release +#endif + + +/* BufferStructDeclare.proto */ +typedef struct { + Py_ssize_t shape, strides, suboffsets; +} __Pyx_Buf_DimInfo; +typedef struct { + size_t refcount; + Py_buffer pybuffer; +} __Pyx_Buffer; +typedef struct { + __Pyx_Buffer *rcbuffer; + char *data; + __Pyx_Buf_DimInfo diminfo[8]; +} __Pyx_LocalBuf_ND; + +/* MemviewSliceIsContig.proto */ +static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim); + +/* OverlappingSlices.proto */ +static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, + __Pyx_memviewslice *slice2, + int ndim, size_t itemsize); + +/* Capsule.proto */ +static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); + +/* IsLittleEndian.proto */ +static CYTHON_INLINE int __Pyx_Is_Little_Endian(void); + +/* BufferFormatCheck.proto */ +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); +static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type); + +/* TypeInfoCompare.proto */ +static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); + +/* MemviewSliceValidateAndInit.proto */ +static int __Pyx_ValidateAndInit_memviewslice( + int *axes_specs, + int c_or_f_flag, + int buf_flags, + int ndim, + __Pyx_TypeInfo *dtype, + __Pyx_BufFmt_StackElem stack[], + __Pyx_memviewslice *memviewslice, + PyObject *original_obj); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *, int writable_flag); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_long(PyObject *, int writable_flag); + +/* CppExceptionConversion.proto */ +#ifndef __Pyx_CppExn2PyErr +#include +#include +#include +#include +static void __Pyx_CppExn2PyErr() { + try { + if (PyErr_Occurred()) + ; // let the latest Python exn pass through and ignore the current one + else + throw; + } catch (const std::bad_alloc& exn) { + PyErr_SetString(PyExc_MemoryError, exn.what()); + } catch (const std::bad_cast& exn) { + PyErr_SetString(PyExc_TypeError, exn.what()); + } catch (const std::bad_typeid& exn) { + PyErr_SetString(PyExc_TypeError, exn.what()); + } catch (const std::domain_error& exn) { + PyErr_SetString(PyExc_ValueError, exn.what()); + } catch (const std::invalid_argument& exn) { + PyErr_SetString(PyExc_ValueError, exn.what()); + } catch (const std::ios_base::failure& exn) { + PyErr_SetString(PyExc_IOError, exn.what()); + } catch (const std::out_of_range& exn) { + PyErr_SetString(PyExc_IndexError, exn.what()); + } catch (const std::overflow_error& exn) { + PyErr_SetString(PyExc_OverflowError, exn.what()); + } catch (const std::range_error& exn) { + PyErr_SetString(PyExc_ArithmeticError, exn.what()); + } catch (const std::underflow_error& exn) { + PyErr_SetString(PyExc_ArithmeticError, exn.what()); + } catch (const std::exception& exn) { + PyErr_SetString(PyExc_RuntimeError, exn.what()); + } + catch (...) + { + PyErr_SetString(PyExc_RuntimeError, "Unknown exception"); + } +} +#endif + +/* RealImag.proto */ +#if CYTHON_CCOMPLEX + #ifdef __cplusplus + #define __Pyx_CREAL(z) ((z).real()) + #define __Pyx_CIMAG(z) ((z).imag()) + #else + #define __Pyx_CREAL(z) (__real__(z)) + #define __Pyx_CIMAG(z) (__imag__(z)) + #endif +#else + #define __Pyx_CREAL(z) ((z).real) + #define __Pyx_CIMAG(z) ((z).imag) +#endif +#if defined(__cplusplus) && CYTHON_CCOMPLEX\ + && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) + #define __Pyx_SET_CREAL(z,x) ((z).real(x)) + #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) +#else + #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) + #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_float(a, b) ((a)==(b)) + #define __Pyx_c_sum_float(a, b) ((a)+(b)) + #define __Pyx_c_diff_float(a, b) ((a)-(b)) + #define __Pyx_c_prod_float(a, b) ((a)*(b)) + #define __Pyx_c_quot_float(a, b) ((a)/(b)) + #define __Pyx_c_neg_float(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_float(z) ((z)==(float)0) + #define __Pyx_c_conj_float(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_float(z) (::std::abs(z)) + #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_float(z) ((z)==0) + #define __Pyx_c_conj_float(z) (conjf(z)) + #if 1 + #define __Pyx_c_abs_float(z) (cabsf(z)) + #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); + #endif +#endif + +/* Arithmetic.proto */ +#if CYTHON_CCOMPLEX + #define __Pyx_c_eq_double(a, b) ((a)==(b)) + #define __Pyx_c_sum_double(a, b) ((a)+(b)) + #define __Pyx_c_diff_double(a, b) ((a)-(b)) + #define __Pyx_c_prod_double(a, b) ((a)*(b)) + #define __Pyx_c_quot_double(a, b) ((a)/(b)) + #define __Pyx_c_neg_double(a) (-(a)) + #ifdef __cplusplus + #define __Pyx_c_is_zero_double(z) ((z)==(double)0) + #define __Pyx_c_conj_double(z) (::std::conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (::std::abs(z)) + #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) + #endif + #else + #define __Pyx_c_is_zero_double(z) ((z)==0) + #define __Pyx_c_conj_double(z) (conj(z)) + #if 1 + #define __Pyx_c_abs_double(z) (cabs(z)) + #define __Pyx_c_pow_double(a, b) (cpow(a, b)) + #endif + #endif +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); + #endif +#endif + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value); + +/* MemviewSliceCopyTemplate.proto */ +static __Pyx_memviewslice +__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, + const char *mode, int ndim, + size_t sizeof_dtype, int contig_flag, + int dtype_is_object); + +/* CIntFromPy.proto */ +static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); + +/* CIntFromPy.proto */ +static CYTHON_INLINE size_t __Pyx_PyInt_As_size_t(PyObject *); + +/* CIntFromPy.proto */ +static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); + +/* CIntToPy.proto */ +static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); + +/* CIntFromPy.proto */ +static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *, int writable_flag); + +/* ObjectToMemviewSlice.proto */ +static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_long(PyObject *, int writable_flag); + +/* CheckBinaryVersion.proto */ +static int __Pyx_check_binary_version(void); + +/* InitStrings.proto */ +static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); + +static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self); /* proto*/ +static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto*/ +static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj); /* proto*/ +static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src); /* proto*/ +static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value); /* proto*/ +static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto*/ +static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ +static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ +static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ +static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ + +/* Module declarations from 'libcpp.vector' */ + +/* Module declarations from 'cpython.buffer' */ + +/* Module declarations from 'libc.string' */ + +/* Module declarations from 'libc.stdio' */ + +/* Module declarations from '__builtin__' */ + +/* Module declarations from 'cpython.type' */ +static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; + +/* Module declarations from 'cpython' */ + +/* Module declarations from 'cpython.object' */ + +/* Module declarations from 'cpython.ref' */ + +/* Module declarations from 'cpython.mem' */ + +/* Module declarations from 'numpy' */ + +/* Module declarations from 'numpy' */ +static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; +static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; +static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; +static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; +static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; +static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/ + +/* Module declarations from 'im2mesh.utils.libsimplify.simplify_mesh' */ +static PyTypeObject *__pyx_array_type = 0; +static PyTypeObject *__pyx_MemviewEnum_type = 0; +static PyTypeObject *__pyx_memoryview_type = 0; +static PyTypeObject *__pyx_memoryviewslice_type = 0; +static PyObject *generic = 0; +static PyObject *strided = 0; +static PyObject *indirect = 0; +static PyObject *contiguous = 0; +static PyObject *indirect_contiguous = 0; +static int __pyx_memoryview_thread_locks_used; +static PyThread_type_lock __pyx_memoryview_thread_locks[8]; +static PyObject *__pyx_f_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify(__Pyx_memviewslice, __Pyx_memviewslice, int, int __pyx_skip_dispatch, struct __pyx_opt_args_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify *__pyx_optional_args); /*proto*/ +static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ +static void *__pyx_align_pointer(void *, size_t); /*proto*/ +static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ +static CYTHON_INLINE int __pyx_memoryview_check(PyObject *); /*proto*/ +static PyObject *_unellipsify(PyObject *, int); /*proto*/ +static PyObject *assert_direct_dimensions(Py_ssize_t *, int); /*proto*/ +static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *, PyObject *); /*proto*/ +static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int); /*proto*/ +static char *__pyx_pybuffer_index(Py_buffer *, char *, Py_ssize_t, Py_ssize_t); /*proto*/ +static int __pyx_memslice_transpose(__Pyx_memviewslice *); /*proto*/ +static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int); /*proto*/ +static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ +static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ +static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *); /*proto*/ +static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ +static Py_ssize_t abs_py_ssize_t(Py_ssize_t); /*proto*/ +static char __pyx_get_best_slice_order(__Pyx_memviewslice *, int); /*proto*/ +static void _copy_strided_to_strided(char *, Py_ssize_t *, char *, Py_ssize_t *, Py_ssize_t *, Py_ssize_t *, int, size_t); /*proto*/ +static void copy_strided_to_strided(__Pyx_memviewslice *, __Pyx_memviewslice *, int, size_t); /*proto*/ +static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *, int); /*proto*/ +static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char); /*proto*/ +static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int); /*proto*/ +static int __pyx_memoryview_err_extents(int, Py_ssize_t, Py_ssize_t); /*proto*/ +static int __pyx_memoryview_err_dim(PyObject *, char *, int); /*proto*/ +static int __pyx_memoryview_err(PyObject *, char *); /*proto*/ +static int __pyx_memoryview_copy_contents(__Pyx_memviewslice, __Pyx_memviewslice, int, int, int); /*proto*/ +static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *, int, int); /*proto*/ +static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *, int, int, int); /*proto*/ +static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ +static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ +static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ +static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ +static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *, PyObject *); /*proto*/ +static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; +static __Pyx_TypeInfo __Pyx_TypeInfo_long = { "long", NULL, sizeof(long), { 0 }, 0, IS_UNSIGNED(long) ? 'U' : 'I', IS_UNSIGNED(long), 0 }; +#define __Pyx_MODULE_NAME "im2mesh.utils.libsimplify.simplify_mesh" +extern int __pyx_module_is_main_im2mesh__utils__libsimplify__simplify_mesh; +int __pyx_module_is_main_im2mesh__utils__libsimplify__simplify_mesh = 0; + +/* Implementation of 'im2mesh.utils.libsimplify.simplify_mesh' */ +static PyObject *__pyx_builtin_range; +static PyObject *__pyx_builtin_ValueError; +static PyObject *__pyx_builtin_RuntimeError; +static PyObject *__pyx_builtin_ImportError; +static PyObject *__pyx_builtin_MemoryError; +static PyObject *__pyx_builtin_enumerate; +static PyObject *__pyx_builtin_TypeError; +static PyObject *__pyx_builtin_Ellipsis; +static PyObject *__pyx_builtin_id; +static PyObject *__pyx_builtin_IndexError; +static const char __pyx_k_O[] = "O"; +static const char __pyx_k_c[] = "c"; +static const char __pyx_k_id[] = "id"; +static const char __pyx_k_np[] = "np"; +static const char __pyx_k_new[] = "__new__"; +static const char __pyx_k_obj[] = "obj"; +static const char __pyx_k_base[] = "base"; +static const char __pyx_k_dict[] = "__dict__"; +static const char __pyx_k_main[] = "__main__"; +static const char __pyx_k_mode[] = "mode"; +static const char __pyx_k_name[] = "name"; +static const char __pyx_k_ndim[] = "ndim"; +static const char __pyx_k_pack[] = "pack"; +static const char __pyx_k_size[] = "size"; +static const char __pyx_k_step[] = "step"; +static const char __pyx_k_stop[] = "stop"; +static const char __pyx_k_test[] = "__test__"; +static const char __pyx_k_ASCII[] = "ASCII"; +static const char __pyx_k_class[] = "__class__"; +static const char __pyx_k_dtype[] = "dtype"; +static const char __pyx_k_empty[] = "empty"; +static const char __pyx_k_error[] = "error"; +static const char __pyx_k_flags[] = "flags"; +static const char __pyx_k_int64[] = "int64"; +static const char __pyx_k_numpy[] = "numpy"; +static const char __pyx_k_range[] = "range"; +static const char __pyx_k_shape[] = "shape"; +static const char __pyx_k_start[] = "start"; +static const char __pyx_k_encode[] = "encode"; +static const char __pyx_k_format[] = "format"; +static const char __pyx_k_import[] = "__import__"; +static const char __pyx_k_name_2[] = "__name__"; +static const char __pyx_k_pickle[] = "pickle"; +static const char __pyx_k_reduce[] = "__reduce__"; +static const char __pyx_k_struct[] = "struct"; +static const char __pyx_k_unpack[] = "unpack"; +static const char __pyx_k_update[] = "update"; +static const char __pyx_k_float64[] = "float64"; +static const char __pyx_k_fortran[] = "fortran"; +static const char __pyx_k_memview[] = "memview"; +static const char __pyx_k_Ellipsis[] = "Ellipsis"; +static const char __pyx_k_f_target[] = "f_target"; +static const char __pyx_k_getstate[] = "__getstate__"; +static const char __pyx_k_itemsize[] = "itemsize"; +static const char __pyx_k_pyx_type[] = "__pyx_type"; +static const char __pyx_k_setstate[] = "__setstate__"; +static const char __pyx_k_TypeError[] = "TypeError"; +static const char __pyx_k_enumerate[] = "enumerate"; +static const char __pyx_k_pyx_state[] = "__pyx_state"; +static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; +static const char __pyx_k_IndexError[] = "IndexError"; +static const char __pyx_k_ValueError[] = "ValueError"; +static const char __pyx_k_pyx_result[] = "__pyx_result"; +static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; +static const char __pyx_k_ImportError[] = "ImportError"; +static const char __pyx_k_MemoryError[] = "MemoryError"; +static const char __pyx_k_PickleError[] = "PickleError"; +static const char __pyx_k_vertices_in[] = "vertices_in"; +static const char __pyx_k_RuntimeError[] = "RuntimeError"; +static const char __pyx_k_pyx_checksum[] = "__pyx_checksum"; +static const char __pyx_k_stringsource[] = "stringsource"; +static const char __pyx_k_triangles_in[] = "triangles_in"; +static const char __pyx_k_agressiveness[] = "agressiveness"; +static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; +static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; +static const char __pyx_k_View_MemoryView[] = "View.MemoryView"; +static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; +static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; +static const char __pyx_k_pyx_PickleError[] = "__pyx_PickleError"; +static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; +static const char __pyx_k_pyx_unpickle_Enum[] = "__pyx_unpickle_Enum"; +static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; +static const char __pyx_k_strided_and_direct[] = ""; +static const char __pyx_k_strided_and_indirect[] = ""; +static const char __pyx_k_contiguous_and_direct[] = ""; +static const char __pyx_k_MemoryView_of_r_object[] = ""; +static const char __pyx_k_MemoryView_of_r_at_0x_x[] = ""; +static const char __pyx_k_contiguous_and_indirect[] = ""; +static const char __pyx_k_Cannot_index_with_type_s[] = "Cannot index with type '%s'"; +static const char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis %d: %d."; +static const char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; +static const char __pyx_k_ndarray_is_not_C_contiguous[] = "ndarray is not C contiguous"; +static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; +static const char __pyx_k_strided_and_direct_or_indirect[] = ""; +static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; +static const char __pyx_k_unknown_dtype_code_in_numpy_pxd[] = "unknown dtype code in numpy.pxd (%d)"; +static const char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; +static const char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; +static const char __pyx_k_Cannot_assign_to_read_only_memor[] = "Cannot assign to read-only memoryview"; +static const char __pyx_k_Cannot_create_writable_memory_vi[] = "Cannot create writable memory view from read-only memoryview"; +static const char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; +static const char __pyx_k_Format_string_allocated_too_shor[] = "Format string allocated too short, see comment in numpy.pxd"; +static const char __pyx_k_Incompatible_checksums_s_vs_0xb0[] = "Incompatible checksums (%s vs 0xb068931 = (name))"; +static const char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; +static const char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; +static const char __pyx_k_Non_native_byte_order_not_suppor[] = "Non-native byte order not supported"; +static const char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; +static const char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; +static const char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; +static const char __pyx_k_ndarray_is_not_Fortran_contiguou[] = "ndarray is not Fortran contiguous"; +static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; +static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; +static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; +static const char __pyx_k_Format_string_allocated_too_shor_2[] = "Format string allocated too short."; +static PyObject *__pyx_n_s_ASCII; +static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; +static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; +static PyObject *__pyx_kp_s_Cannot_assign_to_read_only_memor; +static PyObject *__pyx_kp_s_Cannot_create_writable_memory_vi; +static PyObject *__pyx_kp_s_Cannot_index_with_type_s; +static PyObject *__pyx_n_s_Ellipsis; +static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; +static PyObject *__pyx_kp_u_Format_string_allocated_too_shor; +static PyObject *__pyx_kp_u_Format_string_allocated_too_shor_2; +static PyObject *__pyx_n_s_ImportError; +static PyObject *__pyx_kp_s_Incompatible_checksums_s_vs_0xb0; +static PyObject *__pyx_n_s_IndexError; +static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; +static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; +static PyObject *__pyx_kp_s_Invalid_shape_in_axis_d_d; +static PyObject *__pyx_n_s_MemoryError; +static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; +static PyObject *__pyx_kp_s_MemoryView_of_r_object; +static PyObject *__pyx_kp_u_Non_native_byte_order_not_suppor; +static PyObject *__pyx_n_b_O; +static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; +static PyObject *__pyx_n_s_PickleError; +static PyObject *__pyx_n_s_RuntimeError; +static PyObject *__pyx_n_s_TypeError; +static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; +static PyObject *__pyx_n_s_ValueError; +static PyObject *__pyx_n_s_View_MemoryView; +static PyObject *__pyx_n_s_agressiveness; +static PyObject *__pyx_n_s_allocate_buffer; +static PyObject *__pyx_n_s_base; +static PyObject *__pyx_n_s_c; +static PyObject *__pyx_n_u_c; +static PyObject *__pyx_n_s_class; +static PyObject *__pyx_n_s_cline_in_traceback; +static PyObject *__pyx_kp_s_contiguous_and_direct; +static PyObject *__pyx_kp_s_contiguous_and_indirect; +static PyObject *__pyx_n_s_dict; +static PyObject *__pyx_n_s_dtype; +static PyObject *__pyx_n_s_dtype_is_object; +static PyObject *__pyx_n_s_empty; +static PyObject *__pyx_n_s_encode; +static PyObject *__pyx_n_s_enumerate; +static PyObject *__pyx_n_s_error; +static PyObject *__pyx_n_s_f_target; +static PyObject *__pyx_n_s_flags; +static PyObject *__pyx_n_s_float64; +static PyObject *__pyx_n_s_format; +static PyObject *__pyx_n_s_fortran; +static PyObject *__pyx_n_u_fortran; +static PyObject *__pyx_n_s_getstate; +static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; +static PyObject *__pyx_n_s_id; +static PyObject *__pyx_n_s_import; +static PyObject *__pyx_n_s_int64; +static PyObject *__pyx_n_s_itemsize; +static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; +static PyObject *__pyx_n_s_main; +static PyObject *__pyx_n_s_memview; +static PyObject *__pyx_n_s_mode; +static PyObject *__pyx_n_s_name; +static PyObject *__pyx_n_s_name_2; +static PyObject *__pyx_kp_u_ndarray_is_not_C_contiguous; +static PyObject *__pyx_kp_u_ndarray_is_not_Fortran_contiguou; +static PyObject *__pyx_n_s_ndim; +static PyObject *__pyx_n_s_new; +static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; +static PyObject *__pyx_n_s_np; +static PyObject *__pyx_n_s_numpy; +static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; +static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; +static PyObject *__pyx_n_s_obj; +static PyObject *__pyx_n_s_pack; +static PyObject *__pyx_n_s_pickle; +static PyObject *__pyx_n_s_pyx_PickleError; +static PyObject *__pyx_n_s_pyx_checksum; +static PyObject *__pyx_n_s_pyx_getbuffer; +static PyObject *__pyx_n_s_pyx_result; +static PyObject *__pyx_n_s_pyx_state; +static PyObject *__pyx_n_s_pyx_type; +static PyObject *__pyx_n_s_pyx_unpickle_Enum; +static PyObject *__pyx_n_s_pyx_vtable; +static PyObject *__pyx_n_s_range; +static PyObject *__pyx_n_s_reduce; +static PyObject *__pyx_n_s_reduce_cython; +static PyObject *__pyx_n_s_reduce_ex; +static PyObject *__pyx_n_s_setstate; +static PyObject *__pyx_n_s_setstate_cython; +static PyObject *__pyx_n_s_shape; +static PyObject *__pyx_n_s_size; +static PyObject *__pyx_n_s_start; +static PyObject *__pyx_n_s_step; +static PyObject *__pyx_n_s_stop; +static PyObject *__pyx_kp_s_strided_and_direct; +static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; +static PyObject *__pyx_kp_s_strided_and_indirect; +static PyObject *__pyx_kp_s_stringsource; +static PyObject *__pyx_n_s_struct; +static PyObject *__pyx_n_s_test; +static PyObject *__pyx_n_s_triangles_in; +static PyObject *__pyx_kp_s_unable_to_allocate_array_data; +static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; +static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd; +static PyObject *__pyx_n_s_unpack; +static PyObject *__pyx_n_s_update; +static PyObject *__pyx_n_s_vertices_in; +static PyObject *__pyx_pf_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_vertices_in, __Pyx_memviewslice __pyx_v_triangles_in, int __pyx_v_f_target, double __pyx_v_agressiveness); /* proto */ +static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ +static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ +static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ +static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ +static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state); /* proto */ +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ +static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto */ +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ +static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ +static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ +static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state); /* proto */ +static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ +static PyObject *__pyx_int_0; +static PyObject *__pyx_int_1; +static PyObject *__pyx_int_3; +static PyObject *__pyx_int_184977713; +static PyObject *__pyx_int_neg_1; +static PyObject *__pyx_tuple_; +static PyObject *__pyx_tuple__2; +static PyObject *__pyx_tuple__3; +static PyObject *__pyx_tuple__4; +static PyObject *__pyx_tuple__5; +static PyObject *__pyx_tuple__6; +static PyObject *__pyx_tuple__7; +static PyObject *__pyx_tuple__8; +static PyObject *__pyx_tuple__9; +static PyObject *__pyx_slice__22; +static PyObject *__pyx_tuple__10; +static PyObject *__pyx_tuple__11; +static PyObject *__pyx_tuple__12; +static PyObject *__pyx_tuple__13; +static PyObject *__pyx_tuple__14; +static PyObject *__pyx_tuple__15; +static PyObject *__pyx_tuple__16; +static PyObject *__pyx_tuple__17; +static PyObject *__pyx_tuple__18; +static PyObject *__pyx_tuple__19; +static PyObject *__pyx_tuple__20; +static PyObject *__pyx_tuple__21; +static PyObject *__pyx_tuple__23; +static PyObject *__pyx_tuple__24; +static PyObject *__pyx_tuple__25; +static PyObject *__pyx_tuple__26; +static PyObject *__pyx_tuple__27; +static PyObject *__pyx_tuple__28; +static PyObject *__pyx_tuple__29; +static PyObject *__pyx_tuple__30; +static PyObject *__pyx_tuple__31; +static PyObject *__pyx_codeobj__32; +/* Late includes */ + +/* "im2mesh/utils/libsimplify/simplify_mesh.pyx":34 + * + * + * cpdef mesh_simplify(double[:, ::1] vertices_in, long[:, ::1] triangles_in, # <<<<<<<<<<<<<< + * int f_target, double agressiveness=7.) except +: + * vertices.clear() + */ + +static PyObject *__pyx_pw_7im2mesh_5utils_11libsimplify_13simplify_mesh_1mesh_simplify(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static PyObject *__pyx_f_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify(__Pyx_memviewslice __pyx_v_vertices_in, __Pyx_memviewslice __pyx_v_triangles_in, int __pyx_v_f_target, CYTHON_UNUSED int __pyx_skip_dispatch, struct __pyx_opt_args_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify *__pyx_optional_args) { + double __pyx_v_agressiveness = ((double)7.); + struct Simplify::Vertex __pyx_v_v; + std::vector ::size_type __pyx_v_iv; + struct Simplify::Triangle __pyx_v_t; + std::vector ::size_type __pyx_v_it; + std::vector __pyx_v_triangles_notdel; + PyObject *__pyx_v_vertices_out = NULL; + PyObject *__pyx_v_triangles_out = NULL; + __Pyx_memviewslice __pyx_v_vertices_out_view = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_triangles_out_view = { 0, 0, { 0 }, { 0 }, { 0 } }; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + Py_ssize_t __pyx_t_2; + std::vector ::size_type __pyx_t_3; + struct Simplify::Vertex __pyx_t_4; + std::vector ::size_type __pyx_t_5; + Py_ssize_t __pyx_t_6; + int __pyx_t_7; + std::vector ::size_type __pyx_t_8; + Py_ssize_t __pyx_t_9; + std::vector ::size_type __pyx_t_10; + Py_ssize_t __pyx_t_11; + std::vector ::size_type __pyx_t_12; + struct Simplify::Triangle __pyx_t_13; + std::vector ::size_type __pyx_t_14; + Py_ssize_t __pyx_t_15; + std::vector ::size_type __pyx_t_16; + Py_ssize_t __pyx_t_17; + std::vector ::size_type __pyx_t_18; + Py_ssize_t __pyx_t_19; + std::vector ::iterator __pyx_t_20; + int __pyx_t_21; + PyObject *__pyx_t_22 = NULL; + PyObject *__pyx_t_23 = NULL; + PyObject *__pyx_t_24 = NULL; + PyObject *__pyx_t_25 = NULL; + PyObject *__pyx_t_26 = NULL; + __Pyx_memviewslice __pyx_t_27 = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_t_28 = { 0, 0, { 0 }, { 0 }, { 0 } }; + std::vector ::size_type __pyx_t_29; + std::vector ::size_type __pyx_t_30; + double __pyx_t_31; + std::vector ::size_type __pyx_t_32; + Py_ssize_t __pyx_t_33; + std::vector ::size_type __pyx_t_34; + Py_ssize_t __pyx_t_35; + std::vector ::size_type __pyx_t_36; + Py_ssize_t __pyx_t_37; + std::vector ::size_type __pyx_t_38; + std::vector ::size_type __pyx_t_39; + std::vector ::size_type __pyx_t_40; + Py_ssize_t __pyx_t_41; + std::vector ::size_type __pyx_t_42; + Py_ssize_t __pyx_t_43; + std::vector ::size_type __pyx_t_44; + Py_ssize_t __pyx_t_45; + __Pyx_RefNannySetupContext("mesh_simplify", 0); + if (__pyx_optional_args) { + if (__pyx_optional_args->__pyx_n > 0) { + __pyx_v_agressiveness = __pyx_optional_args->agressiveness; + } + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":36 + * cpdef mesh_simplify(double[:, ::1] vertices_in, long[:, ::1] triangles_in, + * int f_target, double agressiveness=7.) except +: + * vertices.clear() # <<<<<<<<<<<<<< + * triangles.clear() + * + */ + Simplify::vertices.clear(); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":37 + * int f_target, double agressiveness=7.) except +: + * vertices.clear() + * triangles.clear() # <<<<<<<<<<<<<< + * + * # Read in vertices and triangles + */ + Simplify::triangles.clear(); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":41 + * # Read in vertices and triangles + * cdef Vertex v + * for iv in range(vertices_in.shape[0]): # <<<<<<<<<<<<<< + * v = Vertex() + * v.p.x = vertices_in[iv, 0] + */ + __pyx_t_1 = (__pyx_v_vertices_in.shape[0]); + __pyx_t_2 = __pyx_t_1; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_iv = __pyx_t_3; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":42 + * cdef Vertex v + * for iv in range(vertices_in.shape[0]): + * v = Vertex() # <<<<<<<<<<<<<< + * v.p.x = vertices_in[iv, 0] + * v.p.y = vertices_in[iv, 1] + */ + __pyx_v_v = __pyx_t_4; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":43 + * for iv in range(vertices_in.shape[0]): + * v = Vertex() + * v.p.x = vertices_in[iv, 0] # <<<<<<<<<<<<<< + * v.p.y = vertices_in[iv, 1] + * v.p.z = vertices_in[iv, 2] + */ + __pyx_t_5 = __pyx_v_iv; + __pyx_t_6 = 0; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_5 >= (size_t)__pyx_v_vertices_in.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_6 < 0) { + __pyx_t_6 += __pyx_v_vertices_in.shape[1]; + if (unlikely(__pyx_t_6 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_6 >= __pyx_v_vertices_in.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 43, __pyx_L1_error) + } + __pyx_v_v.p.x = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_vertices_in.data + __pyx_t_5 * __pyx_v_vertices_in.strides[0]) )) + __pyx_t_6)) ))); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":44 + * v = Vertex() + * v.p.x = vertices_in[iv, 0] + * v.p.y = vertices_in[iv, 1] # <<<<<<<<<<<<<< + * v.p.z = vertices_in[iv, 2] + * vertices.push_back(v) + */ + __pyx_t_8 = __pyx_v_iv; + __pyx_t_9 = 1; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_8 >= (size_t)__pyx_v_vertices_in.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_9 < 0) { + __pyx_t_9 += __pyx_v_vertices_in.shape[1]; + if (unlikely(__pyx_t_9 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_9 >= __pyx_v_vertices_in.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 44, __pyx_L1_error) + } + __pyx_v_v.p.y = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_vertices_in.data + __pyx_t_8 * __pyx_v_vertices_in.strides[0]) )) + __pyx_t_9)) ))); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":45 + * v.p.x = vertices_in[iv, 0] + * v.p.y = vertices_in[iv, 1] + * v.p.z = vertices_in[iv, 2] # <<<<<<<<<<<<<< + * vertices.push_back(v) + * + */ + __pyx_t_10 = __pyx_v_iv; + __pyx_t_11 = 2; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_10 >= (size_t)__pyx_v_vertices_in.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_11 < 0) { + __pyx_t_11 += __pyx_v_vertices_in.shape[1]; + if (unlikely(__pyx_t_11 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_11 >= __pyx_v_vertices_in.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 45, __pyx_L1_error) + } + __pyx_v_v.p.z = (*((double *) ( /* dim=1 */ ((char *) (((double *) ( /* dim=0 */ (__pyx_v_vertices_in.data + __pyx_t_10 * __pyx_v_vertices_in.strides[0]) )) + __pyx_t_11)) ))); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":46 + * v.p.y = vertices_in[iv, 1] + * v.p.z = vertices_in[iv, 2] + * vertices.push_back(v) # <<<<<<<<<<<<<< + * + * cdef Triangle t + */ + try { + Simplify::vertices.push_back(__pyx_v_v); + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 46, __pyx_L1_error) + } + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":49 + * + * cdef Triangle t + * for it in range(triangles_in.shape[0]): # <<<<<<<<<<<<<< + * t = Triangle() + * t.v[0] = triangles_in[it, 0] + */ + __pyx_t_1 = (__pyx_v_triangles_in.shape[0]); + __pyx_t_2 = __pyx_t_1; + for (__pyx_t_12 = 0; __pyx_t_12 < __pyx_t_2; __pyx_t_12+=1) { + __pyx_v_it = __pyx_t_12; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":50 + * cdef Triangle t + * for it in range(triangles_in.shape[0]): + * t = Triangle() # <<<<<<<<<<<<<< + * t.v[0] = triangles_in[it, 0] + * t.v[1] = triangles_in[it, 1] + */ + __pyx_v_t = __pyx_t_13; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":51 + * for it in range(triangles_in.shape[0]): + * t = Triangle() + * t.v[0] = triangles_in[it, 0] # <<<<<<<<<<<<<< + * t.v[1] = triangles_in[it, 1] + * t.v[2] = triangles_in[it, 2] + */ + __pyx_t_14 = __pyx_v_it; + __pyx_t_15 = 0; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_14 >= (size_t)__pyx_v_triangles_in.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_15 < 0) { + __pyx_t_15 += __pyx_v_triangles_in.shape[1]; + if (unlikely(__pyx_t_15 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_15 >= __pyx_v_triangles_in.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 51, __pyx_L1_error) + } + (__pyx_v_t.v[0]) = (*((long *) ( /* dim=1 */ ((char *) (((long *) ( /* dim=0 */ (__pyx_v_triangles_in.data + __pyx_t_14 * __pyx_v_triangles_in.strides[0]) )) + __pyx_t_15)) ))); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":52 + * t = Triangle() + * t.v[0] = triangles_in[it, 0] + * t.v[1] = triangles_in[it, 1] # <<<<<<<<<<<<<< + * t.v[2] = triangles_in[it, 2] + * triangles.push_back(t) + */ + __pyx_t_16 = __pyx_v_it; + __pyx_t_17 = 1; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_16 >= (size_t)__pyx_v_triangles_in.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_17 < 0) { + __pyx_t_17 += __pyx_v_triangles_in.shape[1]; + if (unlikely(__pyx_t_17 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_17 >= __pyx_v_triangles_in.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 52, __pyx_L1_error) + } + (__pyx_v_t.v[1]) = (*((long *) ( /* dim=1 */ ((char *) (((long *) ( /* dim=0 */ (__pyx_v_triangles_in.data + __pyx_t_16 * __pyx_v_triangles_in.strides[0]) )) + __pyx_t_17)) ))); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":53 + * t.v[0] = triangles_in[it, 0] + * t.v[1] = triangles_in[it, 1] + * t.v[2] = triangles_in[it, 2] # <<<<<<<<<<<<<< + * triangles.push_back(t) + * + */ + __pyx_t_18 = __pyx_v_it; + __pyx_t_19 = 2; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_18 >= (size_t)__pyx_v_triangles_in.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_19 < 0) { + __pyx_t_19 += __pyx_v_triangles_in.shape[1]; + if (unlikely(__pyx_t_19 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_19 >= __pyx_v_triangles_in.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 53, __pyx_L1_error) + } + (__pyx_v_t.v[2]) = (*((long *) ( /* dim=1 */ ((char *) (((long *) ( /* dim=0 */ (__pyx_v_triangles_in.data + __pyx_t_18 * __pyx_v_triangles_in.strides[0]) )) + __pyx_t_19)) ))); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":54 + * t.v[1] = triangles_in[it, 1] + * t.v[2] = triangles_in[it, 2] + * triangles.push_back(t) # <<<<<<<<<<<<<< + * + * # Simplify + */ + try { + Simplify::triangles.push_back(__pyx_v_t); + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 54, __pyx_L1_error) + } + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":58 + * # Simplify + * # print('Simplify...') + * simplify_mesh(f_target, agressiveness) # <<<<<<<<<<<<<< + * + * # Only use triangles that are not deleted + */ + Simplify::simplify_mesh(__pyx_v_f_target, __pyx_v_agressiveness); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":62 + * # Only use triangles that are not deleted + * cdef vector[Triangle] triangles_notdel + * triangles_notdel.reserve(triangles.size()) # <<<<<<<<<<<<<< + * + * for t in triangles: + */ + __pyx_v_triangles_notdel.reserve(Simplify::triangles.size()); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":64 + * triangles_notdel.reserve(triangles.size()) + * + * for t in triangles: # <<<<<<<<<<<<<< + * if not t.deleted: + * triangles_notdel.push_back(t) + */ + __pyx_t_20 = Simplify::triangles.begin(); + for (;;) { + if (!(__pyx_t_20 != Simplify::triangles.end())) break; + __pyx_t_13 = *__pyx_t_20; + ++__pyx_t_20; + __pyx_v_t = __pyx_t_13; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":65 + * + * for t in triangles: + * if not t.deleted: # <<<<<<<<<<<<<< + * triangles_notdel.push_back(t) + * + */ + __pyx_t_21 = ((!(__pyx_v_t.deleted != 0)) != 0); + if (__pyx_t_21) { + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":66 + * for t in triangles: + * if not t.deleted: + * triangles_notdel.push_back(t) # <<<<<<<<<<<<<< + * + * # Read out triangles + */ + try { + __pyx_v_triangles_notdel.push_back(__pyx_v_t); + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 66, __pyx_L1_error) + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":65 + * + * for t in triangles: + * if not t.deleted: # <<<<<<<<<<<<<< + * triangles_notdel.push_back(t) + * + */ + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":64 + * triangles_notdel.reserve(triangles.size()) + * + * for t in triangles: # <<<<<<<<<<<<<< + * if not t.deleted: + * triangles_notdel.push_back(t) + */ + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":69 + * + * # Read out triangles + * vertices_out = np.empty((vertices.size(), 3), dtype=np.float64) # <<<<<<<<<<<<<< + * triangles_out = np.empty((triangles_notdel.size(), 3), dtype=np.int64) + * + */ + __Pyx_GetModuleGlobalName(__pyx_t_22, __pyx_n_s_np); if (unlikely(!__pyx_t_22)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_22); + __pyx_t_23 = __Pyx_PyObject_GetAttrStr(__pyx_t_22, __pyx_n_s_empty); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_23); + __Pyx_DECREF(__pyx_t_22); __pyx_t_22 = 0; + __pyx_t_22 = __Pyx_PyInt_FromSize_t(Simplify::vertices.size()); if (unlikely(!__pyx_t_22)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_22); + __pyx_t_24 = PyTuple_New(2); if (unlikely(!__pyx_t_24)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_24); + __Pyx_GIVEREF(__pyx_t_22); + PyTuple_SET_ITEM(__pyx_t_24, 0, __pyx_t_22); + __Pyx_INCREF(__pyx_int_3); + __Pyx_GIVEREF(__pyx_int_3); + PyTuple_SET_ITEM(__pyx_t_24, 1, __pyx_int_3); + __pyx_t_22 = 0; + __pyx_t_22 = PyTuple_New(1); if (unlikely(!__pyx_t_22)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_22); + __Pyx_GIVEREF(__pyx_t_24); + PyTuple_SET_ITEM(__pyx_t_22, 0, __pyx_t_24); + __pyx_t_24 = 0; + __pyx_t_24 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_24)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_24); + __Pyx_GetModuleGlobalName(__pyx_t_25, __pyx_n_s_np); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_25); + __pyx_t_26 = __Pyx_PyObject_GetAttrStr(__pyx_t_25, __pyx_n_s_float64); if (unlikely(!__pyx_t_26)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_26); + __Pyx_DECREF(__pyx_t_25); __pyx_t_25 = 0; + if (PyDict_SetItem(__pyx_t_24, __pyx_n_s_dtype, __pyx_t_26) < 0) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_26); __pyx_t_26 = 0; + __pyx_t_26 = __Pyx_PyObject_Call(__pyx_t_23, __pyx_t_22, __pyx_t_24); if (unlikely(!__pyx_t_26)) __PYX_ERR(0, 69, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_26); + __Pyx_DECREF(__pyx_t_23); __pyx_t_23 = 0; + __Pyx_DECREF(__pyx_t_22); __pyx_t_22 = 0; + __Pyx_DECREF(__pyx_t_24); __pyx_t_24 = 0; + __pyx_v_vertices_out = __pyx_t_26; + __pyx_t_26 = 0; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":70 + * # Read out triangles + * vertices_out = np.empty((vertices.size(), 3), dtype=np.float64) + * triangles_out = np.empty((triangles_notdel.size(), 3), dtype=np.int64) # <<<<<<<<<<<<<< + * + * cdef double[:, :] vertices_out_view = vertices_out + */ + __Pyx_GetModuleGlobalName(__pyx_t_26, __pyx_n_s_np); if (unlikely(!__pyx_t_26)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_26); + __pyx_t_24 = __Pyx_PyObject_GetAttrStr(__pyx_t_26, __pyx_n_s_empty); if (unlikely(!__pyx_t_24)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_24); + __Pyx_DECREF(__pyx_t_26); __pyx_t_26 = 0; + __pyx_t_26 = __Pyx_PyInt_FromSize_t(__pyx_v_triangles_notdel.size()); if (unlikely(!__pyx_t_26)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_26); + __pyx_t_22 = PyTuple_New(2); if (unlikely(!__pyx_t_22)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_22); + __Pyx_GIVEREF(__pyx_t_26); + PyTuple_SET_ITEM(__pyx_t_22, 0, __pyx_t_26); + __Pyx_INCREF(__pyx_int_3); + __Pyx_GIVEREF(__pyx_int_3); + PyTuple_SET_ITEM(__pyx_t_22, 1, __pyx_int_3); + __pyx_t_26 = 0; + __pyx_t_26 = PyTuple_New(1); if (unlikely(!__pyx_t_26)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_26); + __Pyx_GIVEREF(__pyx_t_22); + PyTuple_SET_ITEM(__pyx_t_26, 0, __pyx_t_22); + __pyx_t_22 = 0; + __pyx_t_22 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_22)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_22); + __Pyx_GetModuleGlobalName(__pyx_t_23, __pyx_n_s_np); if (unlikely(!__pyx_t_23)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_23); + __pyx_t_25 = __Pyx_PyObject_GetAttrStr(__pyx_t_23, __pyx_n_s_int64); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_25); + __Pyx_DECREF(__pyx_t_23); __pyx_t_23 = 0; + if (PyDict_SetItem(__pyx_t_22, __pyx_n_s_dtype, __pyx_t_25) < 0) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_25); __pyx_t_25 = 0; + __pyx_t_25 = __Pyx_PyObject_Call(__pyx_t_24, __pyx_t_26, __pyx_t_22); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 70, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_25); + __Pyx_DECREF(__pyx_t_24); __pyx_t_24 = 0; + __Pyx_DECREF(__pyx_t_26); __pyx_t_26 = 0; + __Pyx_DECREF(__pyx_t_22); __pyx_t_22 = 0; + __pyx_v_triangles_out = __pyx_t_25; + __pyx_t_25 = 0; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":72 + * triangles_out = np.empty((triangles_notdel.size(), 3), dtype=np.int64) + * + * cdef double[:, :] vertices_out_view = vertices_out # <<<<<<<<<<<<<< + * cdef long[:, :] triangles_out_view = triangles_out + * + */ + __pyx_t_27 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_v_vertices_out, PyBUF_WRITABLE); if (unlikely(!__pyx_t_27.memview)) __PYX_ERR(0, 72, __pyx_L1_error) + __pyx_v_vertices_out_view = __pyx_t_27; + __pyx_t_27.memview = NULL; + __pyx_t_27.data = NULL; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":73 + * + * cdef double[:, :] vertices_out_view = vertices_out + * cdef long[:, :] triangles_out_view = triangles_out # <<<<<<<<<<<<<< + * + * for iv in range(vertices.size()): + */ + __pyx_t_28 = __Pyx_PyObject_to_MemoryviewSlice_dsds_long(__pyx_v_triangles_out, PyBUF_WRITABLE); if (unlikely(!__pyx_t_28.memview)) __PYX_ERR(0, 73, __pyx_L1_error) + __pyx_v_triangles_out_view = __pyx_t_28; + __pyx_t_28.memview = NULL; + __pyx_t_28.data = NULL; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":75 + * cdef long[:, :] triangles_out_view = triangles_out + * + * for iv in range(vertices.size()): # <<<<<<<<<<<<<< + * vertices_out_view[iv, 0] = vertices[iv].p.x + * vertices_out_view[iv, 1] = vertices[iv].p.y + */ + __pyx_t_3 = Simplify::vertices.size(); + __pyx_t_29 = __pyx_t_3; + for (__pyx_t_30 = 0; __pyx_t_30 < __pyx_t_29; __pyx_t_30+=1) { + __pyx_v_iv = __pyx_t_30; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":76 + * + * for iv in range(vertices.size()): + * vertices_out_view[iv, 0] = vertices[iv].p.x # <<<<<<<<<<<<<< + * vertices_out_view[iv, 1] = vertices[iv].p.y + * vertices_out_view[iv, 2] = vertices[iv].p.z + */ + __pyx_t_31 = (Simplify::vertices[__pyx_v_iv]).p.x; + __pyx_t_32 = __pyx_v_iv; + __pyx_t_33 = 0; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_32 >= (size_t)__pyx_v_vertices_out_view.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_33 < 0) { + __pyx_t_33 += __pyx_v_vertices_out_view.shape[1]; + if (unlikely(__pyx_t_33 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_33 >= __pyx_v_vertices_out_view.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 76, __pyx_L1_error) + } + *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_vertices_out_view.data + __pyx_t_32 * __pyx_v_vertices_out_view.strides[0]) ) + __pyx_t_33 * __pyx_v_vertices_out_view.strides[1]) )) = __pyx_t_31; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":77 + * for iv in range(vertices.size()): + * vertices_out_view[iv, 0] = vertices[iv].p.x + * vertices_out_view[iv, 1] = vertices[iv].p.y # <<<<<<<<<<<<<< + * vertices_out_view[iv, 2] = vertices[iv].p.z + * + */ + __pyx_t_31 = (Simplify::vertices[__pyx_v_iv]).p.y; + __pyx_t_34 = __pyx_v_iv; + __pyx_t_35 = 1; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_34 >= (size_t)__pyx_v_vertices_out_view.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_35 < 0) { + __pyx_t_35 += __pyx_v_vertices_out_view.shape[1]; + if (unlikely(__pyx_t_35 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_35 >= __pyx_v_vertices_out_view.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 77, __pyx_L1_error) + } + *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_vertices_out_view.data + __pyx_t_34 * __pyx_v_vertices_out_view.strides[0]) ) + __pyx_t_35 * __pyx_v_vertices_out_view.strides[1]) )) = __pyx_t_31; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":78 + * vertices_out_view[iv, 0] = vertices[iv].p.x + * vertices_out_view[iv, 1] = vertices[iv].p.y + * vertices_out_view[iv, 2] = vertices[iv].p.z # <<<<<<<<<<<<<< + * + * for it in range(triangles_notdel.size()): + */ + __pyx_t_31 = (Simplify::vertices[__pyx_v_iv]).p.z; + __pyx_t_36 = __pyx_v_iv; + __pyx_t_37 = 2; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_36 >= (size_t)__pyx_v_vertices_out_view.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_37 < 0) { + __pyx_t_37 += __pyx_v_vertices_out_view.shape[1]; + if (unlikely(__pyx_t_37 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_37 >= __pyx_v_vertices_out_view.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 78, __pyx_L1_error) + } + *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_vertices_out_view.data + __pyx_t_36 * __pyx_v_vertices_out_view.strides[0]) ) + __pyx_t_37 * __pyx_v_vertices_out_view.strides[1]) )) = __pyx_t_31; + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":80 + * vertices_out_view[iv, 2] = vertices[iv].p.z + * + * for it in range(triangles_notdel.size()): # <<<<<<<<<<<<<< + * triangles_out_view[it, 0] = triangles_notdel[it].v[0] + * triangles_out_view[it, 1] = triangles_notdel[it].v[1] + */ + __pyx_t_12 = __pyx_v_triangles_notdel.size(); + __pyx_t_38 = __pyx_t_12; + for (__pyx_t_39 = 0; __pyx_t_39 < __pyx_t_38; __pyx_t_39+=1) { + __pyx_v_it = __pyx_t_39; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":81 + * + * for it in range(triangles_notdel.size()): + * triangles_out_view[it, 0] = triangles_notdel[it].v[0] # <<<<<<<<<<<<<< + * triangles_out_view[it, 1] = triangles_notdel[it].v[1] + * triangles_out_view[it, 2] = triangles_notdel[it].v[2] + */ + __pyx_t_40 = __pyx_v_it; + __pyx_t_41 = 0; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_40 >= (size_t)__pyx_v_triangles_out_view.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_41 < 0) { + __pyx_t_41 += __pyx_v_triangles_out_view.shape[1]; + if (unlikely(__pyx_t_41 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_41 >= __pyx_v_triangles_out_view.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 81, __pyx_L1_error) + } + *((long *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_triangles_out_view.data + __pyx_t_40 * __pyx_v_triangles_out_view.strides[0]) ) + __pyx_t_41 * __pyx_v_triangles_out_view.strides[1]) )) = ((__pyx_v_triangles_notdel[__pyx_v_it]).v[0]); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":82 + * for it in range(triangles_notdel.size()): + * triangles_out_view[it, 0] = triangles_notdel[it].v[0] + * triangles_out_view[it, 1] = triangles_notdel[it].v[1] # <<<<<<<<<<<<<< + * triangles_out_view[it, 2] = triangles_notdel[it].v[2] + * + */ + __pyx_t_42 = __pyx_v_it; + __pyx_t_43 = 1; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_42 >= (size_t)__pyx_v_triangles_out_view.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_43 < 0) { + __pyx_t_43 += __pyx_v_triangles_out_view.shape[1]; + if (unlikely(__pyx_t_43 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_43 >= __pyx_v_triangles_out_view.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 82, __pyx_L1_error) + } + *((long *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_triangles_out_view.data + __pyx_t_42 * __pyx_v_triangles_out_view.strides[0]) ) + __pyx_t_43 * __pyx_v_triangles_out_view.strides[1]) )) = ((__pyx_v_triangles_notdel[__pyx_v_it]).v[1]); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":83 + * triangles_out_view[it, 0] = triangles_notdel[it].v[0] + * triangles_out_view[it, 1] = triangles_notdel[it].v[1] + * triangles_out_view[it, 2] = triangles_notdel[it].v[2] # <<<<<<<<<<<<<< + * + * # Clear vertices and triangles + */ + __pyx_t_44 = __pyx_v_it; + __pyx_t_45 = 2; + __pyx_t_7 = -1; + if (unlikely(__pyx_t_44 >= (size_t)__pyx_v_triangles_out_view.shape[0])) __pyx_t_7 = 0; + if (__pyx_t_45 < 0) { + __pyx_t_45 += __pyx_v_triangles_out_view.shape[1]; + if (unlikely(__pyx_t_45 < 0)) __pyx_t_7 = 1; + } else if (unlikely(__pyx_t_45 >= __pyx_v_triangles_out_view.shape[1])) __pyx_t_7 = 1; + if (unlikely(__pyx_t_7 != -1)) { + __Pyx_RaiseBufferIndexError(__pyx_t_7); + __PYX_ERR(0, 83, __pyx_L1_error) + } + *((long *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_triangles_out_view.data + __pyx_t_44 * __pyx_v_triangles_out_view.strides[0]) ) + __pyx_t_45 * __pyx_v_triangles_out_view.strides[1]) )) = ((__pyx_v_triangles_notdel[__pyx_v_it]).v[2]); + } + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":86 + * + * # Clear vertices and triangles + * vertices.clear() # <<<<<<<<<<<<<< + * triangles.clear() + * + */ + Simplify::vertices.clear(); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":87 + * # Clear vertices and triangles + * vertices.clear() + * triangles.clear() # <<<<<<<<<<<<<< + * + * return vertices_out, triangles_out + */ + Simplify::triangles.clear(); + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":89 + * triangles.clear() + * + * return vertices_out, triangles_out # <<<<<<<<<<<<<< + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_25 = PyTuple_New(2); if (unlikely(!__pyx_t_25)) __PYX_ERR(0, 89, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_25); + __Pyx_INCREF(__pyx_v_vertices_out); + __Pyx_GIVEREF(__pyx_v_vertices_out); + PyTuple_SET_ITEM(__pyx_t_25, 0, __pyx_v_vertices_out); + __Pyx_INCREF(__pyx_v_triangles_out); + __Pyx_GIVEREF(__pyx_v_triangles_out); + PyTuple_SET_ITEM(__pyx_t_25, 1, __pyx_v_triangles_out); + __pyx_r = __pyx_t_25; + __pyx_t_25 = 0; + goto __pyx_L0; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":34 + * + * + * cpdef mesh_simplify(double[:, ::1] vertices_in, long[:, ::1] triangles_in, # <<<<<<<<<<<<<< + * int f_target, double agressiveness=7.) except +: + * vertices.clear() + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_22); + __Pyx_XDECREF(__pyx_t_23); + __Pyx_XDECREF(__pyx_t_24); + __Pyx_XDECREF(__pyx_t_25); + __Pyx_XDECREF(__pyx_t_26); + __PYX_XDEC_MEMVIEW(&__pyx_t_27, 1); + __PYX_XDEC_MEMVIEW(&__pyx_t_28, 1); + __Pyx_AddTraceback("im2mesh.utils.libsimplify.simplify_mesh.mesh_simplify", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_vertices_out); + __Pyx_XDECREF(__pyx_v_triangles_out); + __PYX_XDEC_MEMVIEW(&__pyx_v_vertices_out_view, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_triangles_out_view, 1); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* Python wrapper */ +static PyObject *__pyx_pw_7im2mesh_5utils_11libsimplify_13simplify_mesh_1mesh_simplify(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static PyObject *__pyx_pw_7im2mesh_5utils_11libsimplify_13simplify_mesh_1mesh_simplify(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + __Pyx_memviewslice __pyx_v_vertices_in = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_memviewslice __pyx_v_triangles_in = { 0, 0, { 0 }, { 0 }, { 0 } }; + int __pyx_v_f_target; + double __pyx_v_agressiveness; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("mesh_simplify (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_vertices_in,&__pyx_n_s_triangles_in,&__pyx_n_s_f_target,&__pyx_n_s_agressiveness,0}; + PyObject* values[4] = {0,0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_vertices_in)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_triangles_in)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("mesh_simplify", 0, 3, 4, 1); __PYX_ERR(0, 34, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_f_target)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("mesh_simplify", 0, 3, 4, 2); __PYX_ERR(0, 34, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 3: + if (kw_args > 0) { + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_agressiveness); + if (value) { values[3] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "mesh_simplify") < 0)) __PYX_ERR(0, 34, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_vertices_in = __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_vertices_in.memview)) __PYX_ERR(0, 34, __pyx_L3_error) + __pyx_v_triangles_in = __Pyx_PyObject_to_MemoryviewSlice_d_dc_long(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_triangles_in.memview)) __PYX_ERR(0, 34, __pyx_L3_error) + __pyx_v_f_target = __Pyx_PyInt_As_int(values[2]); if (unlikely((__pyx_v_f_target == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 35, __pyx_L3_error) + if (values[3]) { + __pyx_v_agressiveness = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_agressiveness == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 35, __pyx_L3_error) + } else { + __pyx_v_agressiveness = ((double)7.); + } + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("mesh_simplify", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 34, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("im2mesh.utils.libsimplify.simplify_mesh.mesh_simplify", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_pf_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify(__pyx_self, __pyx_v_vertices_in, __pyx_v_triangles_in, __pyx_v_f_target, __pyx_v_agressiveness); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_vertices_in, __Pyx_memviewslice __pyx_v_triangles_in, int __pyx_v_f_target, double __pyx_v_agressiveness) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + struct __pyx_opt_args_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify __pyx_t_2; + __Pyx_RefNannySetupContext("mesh_simplify", 0); + __Pyx_XDECREF(__pyx_r); + if (unlikely(!__pyx_v_vertices_in.memview)) { __Pyx_RaiseUnboundLocalError("vertices_in"); __PYX_ERR(0, 34, __pyx_L1_error) } + if (unlikely(!__pyx_v_triangles_in.memview)) { __Pyx_RaiseUnboundLocalError("triangles_in"); __PYX_ERR(0, 34, __pyx_L1_error) } + __pyx_t_2.__pyx_n = 1; + __pyx_t_2.agressiveness = __pyx_v_agressiveness; + try { + __pyx_t_1 = __pyx_f_7im2mesh_5utils_11libsimplify_13simplify_mesh_mesh_simplify(__pyx_v_vertices_in, __pyx_v_triangles_in, __pyx_v_f_target, 0, &__pyx_t_2); + if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 34, __pyx_L1_error) + } catch(...) { + __Pyx_CppExn2PyErr(); + __PYX_ERR(0, 34, __pyx_L1_error) + } + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("im2mesh.utils.libsimplify.simplify_mesh.mesh_simplify", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __PYX_XDEC_MEMVIEW(&__pyx_v_vertices_in, 1); + __PYX_XDEC_MEMVIEW(&__pyx_v_triangles_in, 1); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":258 + * # experimental exception made for __getbuffer__ and __releasebuffer__ + * # -- the details of this may change. + * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< + * # This implementation of getbuffer is geared towards Cython + * # requirements, and does not yet fulfill the PEP. + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_v_i; + int __pyx_v_ndim; + int __pyx_v_endian_detector; + int __pyx_v_little_endian; + int __pyx_v_t; + char *__pyx_v_f; + PyArray_Descr *__pyx_v_descr = 0; + int __pyx_v_offset; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + int __pyx_t_5; + int __pyx_t_6; + PyArray_Descr *__pyx_t_7; + PyObject *__pyx_t_8 = NULL; + char *__pyx_t_9; + if (__pyx_v_info == NULL) { + PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); + return -1; + } + __Pyx_RefNannySetupContext("__getbuffer__", 0); + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":265 + * + * cdef int i, ndim + * cdef int endian_detector = 1 # <<<<<<<<<<<<<< + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * + */ + __pyx_v_endian_detector = 1; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":266 + * cdef int i, ndim + * cdef int endian_detector = 1 + * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< + * + * ndim = PyArray_NDIM(self) + */ + __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":268 + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * + * ndim = PyArray_NDIM(self) # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + */ + __pyx_v_ndim = PyArray_NDIM(__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * ndim = PyArray_NDIM(self) + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + __pyx_t_2 = (((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L4_bool_binop_done; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":271 + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): # <<<<<<<<<<<<<< + * raise ValueError(u"ndarray is not C contiguous") + * + */ + __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_ARRAY_C_CONTIGUOUS) != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L4_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * ndim = PyArray_NDIM(self) + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + if (unlikely(__pyx_t_1)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":272 + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 272, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 + * ndim = PyArray_NDIM(self) + * + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + __pyx_t_2 = (((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L7_bool_binop_done; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":275 + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): # <<<<<<<<<<<<<< + * raise ValueError(u"ndarray is not Fortran contiguous") + * + */ + __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_ARRAY_F_CONTIGUOUS) != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L7_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + if (unlikely(__pyx_t_1)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":276 + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< + * + * info.buf = PyArray_DATA(self) + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 276, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 276, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 + * raise ValueError(u"ndarray is not C contiguous") + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":278 + * raise ValueError(u"ndarray is not Fortran contiguous") + * + * info.buf = PyArray_DATA(self) # <<<<<<<<<<<<<< + * info.ndim = ndim + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + __pyx_v_info->buf = PyArray_DATA(__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":279 + * + * info.buf = PyArray_DATA(self) + * info.ndim = ndim # <<<<<<<<<<<<<< + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * # Allocate new buffer for strides and shape info. + */ + __pyx_v_info->ndim = __pyx_v_ndim; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":280 + * info.buf = PyArray_DATA(self) + * info.ndim = ndim + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + */ + __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":283 + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) # <<<<<<<<<<<<<< + * info.shape = info.strides + ndim + * for i in range(ndim): + */ + __pyx_v_info->strides = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * 2) * ((size_t)__pyx_v_ndim)))); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":284 + * # This is allocated as one block, strides first. + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) + * info.shape = info.strides + ndim # <<<<<<<<<<<<<< + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] + */ + __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":285 + * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) + * info.shape = info.strides + ndim + * for i in range(ndim): # <<<<<<<<<<<<<< + * info.strides[i] = PyArray_STRIDES(self)[i] + * info.shape[i] = PyArray_DIMS(self)[i] + */ + __pyx_t_4 = __pyx_v_ndim; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":286 + * info.shape = info.strides + ndim + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] # <<<<<<<<<<<<<< + * info.shape[i] = PyArray_DIMS(self)[i] + * else: + */ + (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":287 + * for i in range(ndim): + * info.strides[i] = PyArray_STRIDES(self)[i] + * info.shape[i] = PyArray_DIMS(self)[i] # <<<<<<<<<<<<<< + * else: + * info.strides = PyArray_STRIDES(self) + */ + (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]); + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":280 + * info.buf = PyArray_DATA(self) + * info.ndim = ndim + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * # Allocate new buffer for strides and shape info. + * # This is allocated as one block, strides first. + */ + goto __pyx_L9; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":289 + * info.shape[i] = PyArray_DIMS(self)[i] + * else: + * info.strides = PyArray_STRIDES(self) # <<<<<<<<<<<<<< + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL + */ + /*else*/ { + __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":290 + * else: + * info.strides = PyArray_STRIDES(self) + * info.shape = PyArray_DIMS(self) # <<<<<<<<<<<<<< + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) + */ + __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self)); + } + __pyx_L9:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":291 + * info.strides = PyArray_STRIDES(self) + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * info.itemsize = PyArray_ITEMSIZE(self) + * info.readonly = not PyArray_ISWRITEABLE(self) + */ + __pyx_v_info->suboffsets = NULL; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":292 + * info.shape = PyArray_DIMS(self) + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) # <<<<<<<<<<<<<< + * info.readonly = not PyArray_ISWRITEABLE(self) + * + */ + __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":293 + * info.suboffsets = NULL + * info.itemsize = PyArray_ITEMSIZE(self) + * info.readonly = not PyArray_ISWRITEABLE(self) # <<<<<<<<<<<<<< + * + * cdef int t + */ + __pyx_v_info->readonly = (!(PyArray_ISWRITEABLE(__pyx_v_self) != 0)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":296 + * + * cdef int t + * cdef char* f = NULL # <<<<<<<<<<<<<< + * cdef dtype descr = PyArray_DESCR(self) + * cdef int offset + */ + __pyx_v_f = NULL; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":297 + * cdef int t + * cdef char* f = NULL + * cdef dtype descr = PyArray_DESCR(self) # <<<<<<<<<<<<<< + * cdef int offset + * + */ + __pyx_t_7 = PyArray_DESCR(__pyx_v_self); + __pyx_t_3 = ((PyObject *)__pyx_t_7); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_descr = ((PyArray_Descr *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":300 + * cdef int offset + * + * info.obj = self # <<<<<<<<<<<<<< + * + * if not PyDataType_HASFIELDS(descr): + */ + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":302 + * info.obj = self + * + * if not PyDataType_HASFIELDS(descr): # <<<<<<<<<<<<<< + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + */ + __pyx_t_1 = ((!(PyDataType_HASFIELDS(__pyx_v_descr) != 0)) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":303 + * + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num # <<<<<<<<<<<<<< + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + */ + __pyx_t_4 = __pyx_v_descr->type_num; + __pyx_v_t = __pyx_t_4; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + __pyx_t_2 = ((__pyx_v_descr->byteorder == '>') != 0); + if (!__pyx_t_2) { + goto __pyx_L15_next_or; + } else { + } + __pyx_t_2 = (__pyx_v_little_endian != 0); + if (!__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L14_bool_binop_done; + } + __pyx_L15_next_or:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":305 + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" + */ + __pyx_t_2 = ((__pyx_v_descr->byteorder == '<') != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L14_bool_binop_done; + } + __pyx_t_2 = ((!(__pyx_v_little_endian != 0)) != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L14_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + if (unlikely(__pyx_t_1)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":306 + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 306, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 306, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 + * if not PyDataType_HASFIELDS(descr): + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":307 + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" # <<<<<<<<<<<<<< + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" + */ + switch (__pyx_v_t) { + case NPY_BYTE: + __pyx_v_f = ((char *)"b"); + break; + case NPY_UBYTE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":308 + * raise ValueError(u"Non-native byte order not supported") + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" # <<<<<<<<<<<<<< + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" + */ + __pyx_v_f = ((char *)"B"); + break; + case NPY_SHORT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":309 + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" # <<<<<<<<<<<<<< + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" + */ + __pyx_v_f = ((char *)"h"); + break; + case NPY_USHORT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":310 + * elif t == NPY_UBYTE: f = "B" + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" # <<<<<<<<<<<<<< + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" + */ + __pyx_v_f = ((char *)"H"); + break; + case NPY_INT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":311 + * elif t == NPY_SHORT: f = "h" + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" # <<<<<<<<<<<<<< + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" + */ + __pyx_v_f = ((char *)"i"); + break; + case NPY_UINT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":312 + * elif t == NPY_USHORT: f = "H" + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" # <<<<<<<<<<<<<< + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" + */ + __pyx_v_f = ((char *)"I"); + break; + case NPY_LONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":313 + * elif t == NPY_INT: f = "i" + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" # <<<<<<<<<<<<<< + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" + */ + __pyx_v_f = ((char *)"l"); + break; + case NPY_ULONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":314 + * elif t == NPY_UINT: f = "I" + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" # <<<<<<<<<<<<<< + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" + */ + __pyx_v_f = ((char *)"L"); + break; + case NPY_LONGLONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":315 + * elif t == NPY_LONG: f = "l" + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" # <<<<<<<<<<<<<< + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" + */ + __pyx_v_f = ((char *)"q"); + break; + case NPY_ULONGLONG: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":316 + * elif t == NPY_ULONG: f = "L" + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" # <<<<<<<<<<<<<< + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" + */ + __pyx_v_f = ((char *)"Q"); + break; + case NPY_FLOAT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":317 + * elif t == NPY_LONGLONG: f = "q" + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" # <<<<<<<<<<<<<< + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" + */ + __pyx_v_f = ((char *)"f"); + break; + case NPY_DOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":318 + * elif t == NPY_ULONGLONG: f = "Q" + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" # <<<<<<<<<<<<<< + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" + */ + __pyx_v_f = ((char *)"d"); + break; + case NPY_LONGDOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":319 + * elif t == NPY_FLOAT: f = "f" + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" # <<<<<<<<<<<<<< + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" + */ + __pyx_v_f = ((char *)"g"); + break; + case NPY_CFLOAT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":320 + * elif t == NPY_DOUBLE: f = "d" + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" # <<<<<<<<<<<<<< + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" + */ + __pyx_v_f = ((char *)"Zf"); + break; + case NPY_CDOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":321 + * elif t == NPY_LONGDOUBLE: f = "g" + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" # <<<<<<<<<<<<<< + * elif t == NPY_CLONGDOUBLE: f = "Zg" + * elif t == NPY_OBJECT: f = "O" + */ + __pyx_v_f = ((char *)"Zd"); + break; + case NPY_CLONGDOUBLE: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":322 + * elif t == NPY_CFLOAT: f = "Zf" + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" # <<<<<<<<<<<<<< + * elif t == NPY_OBJECT: f = "O" + * else: + */ + __pyx_v_f = ((char *)"Zg"); + break; + case NPY_OBJECT: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":323 + * elif t == NPY_CDOUBLE: f = "Zd" + * elif t == NPY_CLONGDOUBLE: f = "Zg" + * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<< + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + */ + __pyx_v_f = ((char *)"O"); + break; + default: + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":325 + * elif t == NPY_OBJECT: f = "O" + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< + * info.format = f + * return + */ + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 325, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_8 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 325, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 325, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 325, __pyx_L1_error) + break; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":326 + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * info.format = f # <<<<<<<<<<<<<< + * return + * else: + */ + __pyx_v_info->format = __pyx_v_f; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":327 + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * info.format = f + * return # <<<<<<<<<<<<<< + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":302 + * info.obj = self + * + * if not PyDataType_HASFIELDS(descr): # <<<<<<<<<<<<<< + * t = descr.type_num + * if ((descr.byteorder == c'>' and little_endian) or + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":329 + * return + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) # <<<<<<<<<<<<<< + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 + */ + /*else*/ { + __pyx_v_info->format = ((char *)PyObject_Malloc(0xFF)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":330 + * else: + * info.format = PyObject_Malloc(_buffer_format_string_len) + * info.format[0] = c'^' # Native data types, manual alignment # <<<<<<<<<<<<<< + * offset = 0 + * f = _util_dtypestring(descr, info.format + 1, + */ + (__pyx_v_info->format[0]) = '^'; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":331 + * info.format = PyObject_Malloc(_buffer_format_string_len) + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 # <<<<<<<<<<<<<< + * f = _util_dtypestring(descr, info.format + 1, + * info.format + _buffer_format_string_len, + */ + __pyx_v_offset = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":332 + * info.format[0] = c'^' # Native data types, manual alignment + * offset = 0 + * f = _util_dtypestring(descr, info.format + 1, # <<<<<<<<<<<<<< + * info.format + _buffer_format_string_len, + * &offset) + */ + __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 0xFF), (&__pyx_v_offset)); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(1, 332, __pyx_L1_error) + __pyx_v_f = __pyx_t_9; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":335 + * info.format + _buffer_format_string_len, + * &offset) + * f[0] = c'\0' # Terminate format string # <<<<<<<<<<<<<< + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + */ + (__pyx_v_f[0]) = '\x00'; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":258 + * # experimental exception made for __getbuffer__ and __releasebuffer__ + * # -- the details of this may change. + * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< + * # This implementation of getbuffer is geared towards Cython + * # requirements, and does not yet fulfill the PEP. + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + __pyx_L2:; + __Pyx_XDECREF((PyObject *)__pyx_v_descr); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":337 + * f[0] = c'\0' # Terminate format string + * + * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + */ + +/* Python wrapper */ +static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/ +static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0); + __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) { + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__releasebuffer__", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":338 + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + __pyx_t_1 = (PyArray_HASFIELDS(__pyx_v_self) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":339 + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) # <<<<<<<<<<<<<< + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * PyObject_Free(info.strides) + */ + PyObject_Free(__pyx_v_info->format); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":338 + * + * def __releasebuffer__(ndarray self, Py_buffer* info): + * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":340 + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * PyObject_Free(info.strides) + * # info.shape was stored after info.strides in the same block + */ + __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":341 + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): + * PyObject_Free(info.strides) # <<<<<<<<<<<<<< + * # info.shape was stored after info.strides in the same block + * + */ + PyObject_Free(__pyx_v_info->strides); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":340 + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< + * PyObject_Free(info.strides) + * # info.shape was stored after info.strides in the same block + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":337 + * f[0] = c'\0' # Terminate format string + * + * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< + * if PyArray_HASFIELDS(self): + * PyObject_Free(info.format) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":821 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":822 + * + * cdef inline object PyArray_MultiIterNew1(a): + * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew2(a, b): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 822, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":821 + * ctypedef npy_cdouble complex_t + * + * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(1, a) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":824 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":825 + * + * cdef inline object PyArray_MultiIterNew2(a, b): + * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 825, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":824 + * return PyArray_MultiIterNew(1, a) + * + * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(2, a, b) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":827 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":828 + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): + * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 828, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":827 + * return PyArray_MultiIterNew(2, a, b) + * + * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(3, a, b, c) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":830 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":831 + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): + * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 831, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":830 + * return PyArray_MultiIterNew(3, a, b, c) + * + * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(4, a, b, c, d) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":833 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":834 + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 834, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":833 + * return PyArray_MultiIterNew(4, a, b, c, d) + * + * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":836 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":837 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":838 + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape # <<<<<<<<<<<<<< + * else: + * return () + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); + __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":837 + * + * cdef inline tuple PyDataType_SHAPE(dtype d): + * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< + * return d.subarray.shape + * else: + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":840 + * return d.subarray.shape + * else: + * return () # <<<<<<<<<<<<<< + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_empty_tuple); + __pyx_r = __pyx_empty_tuple; + goto __pyx_L0; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":836 + * return PyArray_MultiIterNew(5, a, b, c, d, e) + * + * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< + * if PyDataType_HASSUBARRAY(d): + * return d.subarray.shape + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":842 + * return () + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< + * # Recursive utility function used in __getbuffer__ to get format + * # string. The new location in the format string is returned. + */ + +static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx_v_descr, char *__pyx_v_f, char *__pyx_v_end, int *__pyx_v_offset) { + PyArray_Descr *__pyx_v_child = 0; + int __pyx_v_endian_detector; + int __pyx_v_little_endian; + PyObject *__pyx_v_fields = 0; + PyObject *__pyx_v_childname = NULL; + PyObject *__pyx_v_new_offset = NULL; + PyObject *__pyx_v_t = NULL; + char *__pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + int __pyx_t_5; + int __pyx_t_6; + int __pyx_t_7; + long __pyx_t_8; + char *__pyx_t_9; + __Pyx_RefNannySetupContext("_util_dtypestring", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":847 + * + * cdef dtype child + * cdef int endian_detector = 1 # <<<<<<<<<<<<<< + * cdef bint little_endian = ((&endian_detector)[0] != 0) + * cdef tuple fields + */ + __pyx_v_endian_detector = 1; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":848 + * cdef dtype child + * cdef int endian_detector = 1 + * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< + * cdef tuple fields + * + */ + __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":851 + * cdef tuple fields + * + * for childname in descr.names: # <<<<<<<<<<<<<< + * fields = descr.fields[childname] + * child, new_offset = fields + */ + if (unlikely(__pyx_v_descr->names == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); + __PYX_ERR(1, 851, __pyx_L1_error) + } + __pyx_t_1 = __pyx_v_descr->names; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; + for (;;) { + if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(1, 851, __pyx_L1_error) + #else + __pyx_t_3 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 851, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + #endif + __Pyx_XDECREF_SET(__pyx_v_childname, __pyx_t_3); + __pyx_t_3 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":852 + * + * for childname in descr.names: + * fields = descr.fields[childname] # <<<<<<<<<<<<<< + * child, new_offset = fields + * + */ + if (unlikely(__pyx_v_descr->fields == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(1, 852, __pyx_L1_error) + } + __pyx_t_3 = __Pyx_PyDict_GetItem(__pyx_v_descr->fields, __pyx_v_childname); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 852, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(PyTuple_CheckExact(__pyx_t_3))||((__pyx_t_3) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_t_3)->tp_name), 0))) __PYX_ERR(1, 852, __pyx_L1_error) + __Pyx_XDECREF_SET(__pyx_v_fields, ((PyObject*)__pyx_t_3)); + __pyx_t_3 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":853 + * for childname in descr.names: + * fields = descr.fields[childname] + * child, new_offset = fields # <<<<<<<<<<<<<< + * + * if (end - f) - (new_offset - offset[0]) < 15: + */ + if (likely(__pyx_v_fields != Py_None)) { + PyObject* sequence = __pyx_v_fields; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(1, 853, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_3); + __Pyx_INCREF(__pyx_t_4); + #else + __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 853, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 853, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 853, __pyx_L1_error) + } + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_dtype))))) __PYX_ERR(1, 853, __pyx_L1_error) + __Pyx_XDECREF_SET(__pyx_v_child, ((PyArray_Descr *)__pyx_t_3)); + __pyx_t_3 = 0; + __Pyx_XDECREF_SET(__pyx_v_new_offset, __pyx_t_4); + __pyx_t_4 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":855 + * child, new_offset = fields + * + * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + */ + __pyx_t_4 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 855, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyNumber_Subtract(__pyx_v_new_offset, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 855, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 855, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = ((((__pyx_v_end - __pyx_v_f) - ((int)__pyx_t_5)) < 15) != 0); + if (unlikely(__pyx_t_6)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":856 + * + * if (end - f) - (new_offset - offset[0]) < 15: + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< + * + * if ((child.byteorder == c'>' and little_endian) or + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 856, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 856, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":855 + * child, new_offset = fields + * + * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + __pyx_t_7 = ((__pyx_v_child->byteorder == '>') != 0); + if (!__pyx_t_7) { + goto __pyx_L8_next_or; + } else { + } + __pyx_t_7 = (__pyx_v_little_endian != 0); + if (!__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L7_bool_binop_done; + } + __pyx_L8_next_or:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":859 + * + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< + * raise ValueError(u"Non-native byte order not supported") + * # One could encode it in the format string and have Cython + */ + __pyx_t_7 = ((__pyx_v_child->byteorder == '<') != 0); + if (__pyx_t_7) { + } else { + __pyx_t_6 = __pyx_t_7; + goto __pyx_L7_bool_binop_done; + } + __pyx_t_7 = ((!(__pyx_v_little_endian != 0)) != 0); + __pyx_t_6 = __pyx_t_7; + __pyx_L7_bool_binop_done:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + if (unlikely(__pyx_t_6)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":860 + * if ((child.byteorder == c'>' and little_endian) or + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * # One could encode it in the format string and have Cython + * # complain instead, BUT: < and > in format strings also imply + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__3, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 860, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(1, 860, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") + * + * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< + * (child.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":870 + * + * # Output padding bytes + * while offset[0] < new_offset: # <<<<<<<<<<<<<< + * f[0] = 120 # "x"; pad byte + * f += 1 + */ + while (1) { + __pyx_t_3 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 870, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_v_new_offset, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 870, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 870, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (!__pyx_t_6) break; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":871 + * # Output padding bytes + * while offset[0] < new_offset: + * f[0] = 120 # "x"; pad byte # <<<<<<<<<<<<<< + * f += 1 + * offset[0] += 1 + */ + (__pyx_v_f[0]) = 0x78; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":872 + * while offset[0] < new_offset: + * f[0] = 120 # "x"; pad byte + * f += 1 # <<<<<<<<<<<<<< + * offset[0] += 1 + * + */ + __pyx_v_f = (__pyx_v_f + 1); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":873 + * f[0] = 120 # "x"; pad byte + * f += 1 + * offset[0] += 1 # <<<<<<<<<<<<<< + * + * offset[0] += child.itemsize + */ + __pyx_t_8 = 0; + (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + 1); + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":875 + * offset[0] += 1 + * + * offset[0] += child.itemsize # <<<<<<<<<<<<<< + * + * if not PyDataType_HASFIELDS(child): + */ + __pyx_t_8 = 0; + (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + __pyx_v_child->elsize); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":877 + * offset[0] += child.itemsize + * + * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< + * t = child.type_num + * if end - f < 5: + */ + __pyx_t_6 = ((!(PyDataType_HASFIELDS(__pyx_v_child) != 0)) != 0); + if (__pyx_t_6) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":878 + * + * if not PyDataType_HASFIELDS(child): + * t = child.type_num # <<<<<<<<<<<<<< + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") + */ + __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_child->type_num); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 878, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); + __pyx_t_4 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":879 + * if not PyDataType_HASFIELDS(child): + * t = child.type_num + * if end - f < 5: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short.") + * + */ + __pyx_t_6 = (((__pyx_v_end - __pyx_v_f) < 5) != 0); + if (unlikely(__pyx_t_6)) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":880 + * t = child.type_num + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< + * + * # Until ticket #99 is fixed, use integers to avoid warnings + */ + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 880, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(1, 880, __pyx_L1_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":879 + * if not PyDataType_HASFIELDS(child): + * t = child.type_num + * if end - f < 5: # <<<<<<<<<<<<<< + * raise RuntimeError(u"Format string allocated too short.") + * + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":883 + * + * # Until ticket #99 is fixed, use integers to avoid warnings + * if t == NPY_BYTE: f[0] = 98 #"b" # <<<<<<<<<<<<<< + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_BYTE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 883, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 883, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 883, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 98; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":884 + * # Until ticket #99 is fixed, use integers to avoid warnings + * if t == NPY_BYTE: f[0] = 98 #"b" + * elif t == NPY_UBYTE: f[0] = 66 #"B" # <<<<<<<<<<<<<< + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UBYTE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 884, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 884, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 884, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 66; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":885 + * if t == NPY_BYTE: f[0] = 98 #"b" + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" # <<<<<<<<<<<<<< + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_SHORT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 885, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 885, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 885, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x68; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":886 + * elif t == NPY_UBYTE: f[0] = 66 #"B" + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" # <<<<<<<<<<<<<< + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_USHORT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 886, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 886, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 886, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 72; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":887 + * elif t == NPY_SHORT: f[0] = 104 #"h" + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" # <<<<<<<<<<<<<< + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_INT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 887, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 887, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 887, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x69; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":888 + * elif t == NPY_USHORT: f[0] = 72 #"H" + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" # <<<<<<<<<<<<<< + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UINT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 888, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 888, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 888, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 73; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":889 + * elif t == NPY_INT: f[0] = 105 #"i" + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" # <<<<<<<<<<<<<< + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 889, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 889, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 889, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x6C; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":890 + * elif t == NPY_UINT: f[0] = 73 #"I" + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" # <<<<<<<<<<<<<< + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 890, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 890, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 890, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 76; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":891 + * elif t == NPY_LONG: f[0] = 108 #"l" + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" # <<<<<<<<<<<<<< + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGLONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 891, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 891, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 891, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x71; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":892 + * elif t == NPY_ULONG: f[0] = 76 #"L" + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" # <<<<<<<<<<<<<< + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONGLONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 892, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 892, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 892, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 81; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":893 + * elif t == NPY_LONGLONG: f[0] = 113 #"q" + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" # <<<<<<<<<<<<<< + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_FLOAT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 893, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 893, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 893, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x66; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":894 + * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" # <<<<<<<<<<<<<< + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_DOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 894, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 894, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 894, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x64; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":895 + * elif t == NPY_FLOAT: f[0] = 102 #"f" + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" # <<<<<<<<<<<<<< + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 895, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 895, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 895, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 0x67; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":896 + * elif t == NPY_DOUBLE: f[0] = 100 #"d" + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf # <<<<<<<<<<<<<< + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CFLOAT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 896, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 896, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 896, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x66; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":897 + * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd # <<<<<<<<<<<<<< + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + * elif t == NPY_OBJECT: f[0] = 79 #"O" + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 897, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 897, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 897, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x64; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":898 + * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg # <<<<<<<<<<<<<< + * elif t == NPY_OBJECT: f[0] = 79 #"O" + * else: + */ + __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CLONGDOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 898, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 898, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 898, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (__pyx_t_6) { + (__pyx_v_f[0]) = 90; + (__pyx_v_f[1]) = 0x67; + __pyx_v_f = (__pyx_v_f + 1); + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":899 + * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd + * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg + * elif t == NPY_OBJECT: f[0] = 79 #"O" # <<<<<<<<<<<<<< + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + */ + __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_OBJECT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 899, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 899, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 899, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (likely(__pyx_t_6)) { + (__pyx_v_f[0]) = 79; + goto __pyx_L15; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":901 + * elif t == NPY_OBJECT: f[0] = 79 #"O" + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< + * f += 1 + * else: + */ + /*else*/ { + __pyx_t_3 = __Pyx_PyUnicode_FormatSafe(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 901, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 901, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(1, 901, __pyx_L1_error) + } + __pyx_L15:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":902 + * else: + * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) + * f += 1 # <<<<<<<<<<<<<< + * else: + * # Cython ignores struct boundary information ("T{...}"), + */ + __pyx_v_f = (__pyx_v_f + 1); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":877 + * offset[0] += child.itemsize + * + * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< + * t = child.type_num + * if end - f < 5: + */ + goto __pyx_L13; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":906 + * # Cython ignores struct boundary information ("T{...}"), + * # so don't output it + * f = _util_dtypestring(child, f, end, offset) # <<<<<<<<<<<<<< + * return f + * + */ + /*else*/ { + __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_child, __pyx_v_f, __pyx_v_end, __pyx_v_offset); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(1, 906, __pyx_L1_error) + __pyx_v_f = __pyx_t_9; + } + __pyx_L13:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":851 + * cdef tuple fields + * + * for childname in descr.names: # <<<<<<<<<<<<<< + * fields = descr.fields[childname] + * child, new_offset = fields + */ + } + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":907 + * # so don't output it + * f = _util_dtypestring(child, f, end, offset) + * return f # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_f; + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":842 + * return () + * + * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< + * # Recursive utility function used in __getbuffer__ to get format + * # string. The new location in the format string is returned. + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("numpy._util_dtypestring", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_child); + __Pyx_XDECREF(__pyx_v_fields); + __Pyx_XDECREF(__pyx_v_childname); + __Pyx_XDECREF(__pyx_v_new_offset); + __Pyx_XDECREF(__pyx_v_t); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * int _import_umath() except -1 + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) + */ + +static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("set_array_base", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1023 + * + * cdef inline void set_array_base(ndarray arr, object base): + * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< + * PyArray_SetBaseObject(arr, base) + * + */ + Py_INCREF(__pyx_v_base); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1024 + * cdef inline void set_array_base(ndarray arr, object base): + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< + * + * cdef inline object get_array_base(ndarray arr): + */ + (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1022 + * int _import_umath() except -1 + * + * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< + * Py_INCREF(base) # important to do this before stealing the reference below! + * PyArray_SetBaseObject(arr, base) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1026 + * PyArray_SetBaseObject(arr, base) + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * base = PyArray_BASE(arr) + * if base is NULL: + */ + +static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { + PyObject *__pyx_v_base; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("get_array_base", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1027 + * + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< + * if base is NULL: + * return None + */ + __pyx_v_base = PyArray_BASE(__pyx_v_arr); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1028 + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) + * if base is NULL: # <<<<<<<<<<<<<< + * return None + * return base + */ + __pyx_t_1 = ((__pyx_v_base == NULL) != 0); + if (__pyx_t_1) { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1029 + * base = PyArray_BASE(arr) + * if base is NULL: + * return None # <<<<<<<<<<<<<< + * return base + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1028 + * cdef inline object get_array_base(ndarray arr): + * base = PyArray_BASE(arr) + * if base is NULL: # <<<<<<<<<<<<<< + * return None + * return base + */ + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1030 + * if base is NULL: + * return None + * return base # <<<<<<<<<<<<<< + * + * # Versions of the import_* functions which are more suitable for + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_base)); + __pyx_r = ((PyObject *)__pyx_v_base); + goto __pyx_L0; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1026 + * PyArray_SetBaseObject(arr, base) + * + * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< + * base = PyArray_BASE(arr) + * if base is NULL: + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1034 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * _import_array() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_array", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1036 + * cdef inline int import_array() except -1: + * try: + * _import_array() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") + */ + __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1036, __pyx_L3_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1037 + * try: + * _import_array() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.multiarray failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1037, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1038 + * _import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1038, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 1038, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 + * # Cython code. + * cdef inline int import_array() except -1: + * try: # <<<<<<<<<<<<<< + * _import_array() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1034 + * # Versions of the import_* functions which are more suitable for + * # Cython code. + * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< + * try: + * _import_array() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1040 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_umath", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1042 + * cdef inline int import_umath() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1042, __pyx_L3_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1043 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + * + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1043, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1044 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1044, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 1044, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 + * + * cdef inline int import_umath() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1040 + * raise ImportError("numpy.core.multiarray failed to import") + * + * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + +static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("import_ufunc", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_1); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + /*try:*/ { + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1048 + * cdef inline int import_ufunc() except -1: + * try: + * _import_umath() # <<<<<<<<<<<<<< + * except Exception: + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1048, __pyx_L3_error) + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + } + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + goto __pyx_L8_try_end; + __pyx_L3_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1049 + * try: + * _import_umath() + * except Exception: # <<<<<<<<<<<<<< + * raise ImportError("numpy.core.umath failed to import") + */ + __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); + if (__pyx_t_4) { + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1049, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_6); + __Pyx_GOTREF(__pyx_t_7); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1050 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + */ + __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1050, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_Raise(__pyx_t_8, 0, 0, 0); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __PYX_ERR(1, 1050, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 + * + * cdef inline int import_ufunc() except -1: + * try: # <<<<<<<<<<<<<< + * _import_umath() + * except Exception: + */ + __Pyx_XGIVEREF(__pyx_t_1); + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); + goto __pyx_L1_error; + __pyx_L8_try_end:; + } + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 + * raise ImportError("numpy.core.umath failed to import") + * + * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< + * try: + * _import_umath() + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":122 + * cdef bint dtype_is_object + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< + * mode="c", bint allocate_buffer=True): + * + */ + +/* Python wrapper */ +static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_shape = 0; + Py_ssize_t __pyx_v_itemsize; + PyObject *__pyx_v_format = 0; + PyObject *__pyx_v_mode = 0; + int __pyx_v_allocate_buffer; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_itemsize,&__pyx_n_s_format,&__pyx_n_s_mode,&__pyx_n_s_allocate_buffer,0}; + PyObject* values[5] = {0,0,0,0,0}; + values[3] = ((PyObject *)__pyx_n_s_c); + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(2, 122, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(2, 122, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 3: + if (kw_args > 0) { + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mode); + if (value) { values[3] = value; kw_args--; } + } + CYTHON_FALLTHROUGH; + case 4: + if (kw_args > 0) { + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_allocate_buffer); + if (value) { values[4] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(2, 122, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); + CYTHON_FALLTHROUGH; + case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + CYTHON_FALLTHROUGH; + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_shape = ((PyObject*)values[0]); + __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 122, __pyx_L3_error) + __pyx_v_format = values[2]; + __pyx_v_mode = values[3]; + if (values[4]) { + __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 123, __pyx_L3_error) + } else { + + /* "View.MemoryView":123 + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, + * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< + * + * cdef int idx + */ + __pyx_v_allocate_buffer = ((int)1); + } + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 122, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(2, 122, __pyx_L1_error) + if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { + PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(2, 122, __pyx_L1_error) + } + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); + + /* "View.MemoryView":122 + * cdef bint dtype_is_object + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< + * mode="c", bint allocate_buffer=True): + * + */ + + /* function exit code */ + goto __pyx_L0; + __pyx_L1_error:; + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer) { + int __pyx_v_idx; + Py_ssize_t __pyx_v_i; + Py_ssize_t __pyx_v_dim; + PyObject **__pyx_v_p; + char __pyx_v_order; + int __pyx_r; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + char *__pyx_t_7; + int __pyx_t_8; + Py_ssize_t __pyx_t_9; + PyObject *__pyx_t_10 = NULL; + Py_ssize_t __pyx_t_11; + __Pyx_RefNannySetupContext("__cinit__", 0); + __Pyx_INCREF(__pyx_v_format); + + /* "View.MemoryView":129 + * cdef PyObject **p + * + * self.ndim = len(shape) # <<<<<<<<<<<<<< + * self.itemsize = itemsize + * + */ + if (unlikely(__pyx_v_shape == Py_None)) { + PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); + __PYX_ERR(2, 129, __pyx_L1_error) + } + __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(2, 129, __pyx_L1_error) + __pyx_v_self->ndim = ((int)__pyx_t_1); + + /* "View.MemoryView":130 + * + * self.ndim = len(shape) + * self.itemsize = itemsize # <<<<<<<<<<<<<< + * + * if not self.ndim: + */ + __pyx_v_self->itemsize = __pyx_v_itemsize; + + /* "View.MemoryView":132 + * self.itemsize = itemsize + * + * if not self.ndim: # <<<<<<<<<<<<<< + * raise ValueError("Empty shape tuple for cython.array") + * + */ + __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); + if (unlikely(__pyx_t_2)) { + + /* "View.MemoryView":133 + * + * if not self.ndim: + * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< + * + * if itemsize <= 0: + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 133, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 133, __pyx_L1_error) + + /* "View.MemoryView":132 + * self.itemsize = itemsize + * + * if not self.ndim: # <<<<<<<<<<<<<< + * raise ValueError("Empty shape tuple for cython.array") + * + */ + } + + /* "View.MemoryView":135 + * raise ValueError("Empty shape tuple for cython.array") + * + * if itemsize <= 0: # <<<<<<<<<<<<<< + * raise ValueError("itemsize <= 0 for cython.array") + * + */ + __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); + if (unlikely(__pyx_t_2)) { + + /* "View.MemoryView":136 + * + * if itemsize <= 0: + * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< + * + * if not isinstance(format, bytes): + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 136, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 136, __pyx_L1_error) + + /* "View.MemoryView":135 + * raise ValueError("Empty shape tuple for cython.array") + * + * if itemsize <= 0: # <<<<<<<<<<<<<< + * raise ValueError("itemsize <= 0 for cython.array") + * + */ + } + + /* "View.MemoryView":138 + * raise ValueError("itemsize <= 0 for cython.array") + * + * if not isinstance(format, bytes): # <<<<<<<<<<<<<< + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string + */ + __pyx_t_2 = PyBytes_Check(__pyx_v_format); + __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":139 + * + * if not isinstance(format, bytes): + * format = format.encode('ASCII') # <<<<<<<<<<<<<< + * self._format = format # keep a reference to the byte string + * self.format = self._format + */ + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 139, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_6 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { + __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); + if (likely(__pyx_t_6)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); + __Pyx_INCREF(__pyx_t_6); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_5, function); + } + } + __pyx_t_3 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_n_s_ASCII) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_n_s_ASCII); + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 139, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":138 + * raise ValueError("itemsize <= 0 for cython.array") + * + * if not isinstance(format, bytes): # <<<<<<<<<<<<<< + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string + */ + } + + /* "View.MemoryView":140 + * if not isinstance(format, bytes): + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< + * self.format = self._format + * + */ + if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(2, 140, __pyx_L1_error) + __pyx_t_3 = __pyx_v_format; + __Pyx_INCREF(__pyx_t_3); + __Pyx_GIVEREF(__pyx_t_3); + __Pyx_GOTREF(__pyx_v_self->_format); + __Pyx_DECREF(__pyx_v_self->_format); + __pyx_v_self->_format = ((PyObject*)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":141 + * format = format.encode('ASCII') + * self._format = format # keep a reference to the byte string + * self.format = self._format # <<<<<<<<<<<<<< + * + * + */ + if (unlikely(__pyx_v_self->_format == Py_None)) { + PyErr_SetString(PyExc_TypeError, "expected bytes, NoneType found"); + __PYX_ERR(2, 141, __pyx_L1_error) + } + __pyx_t_7 = __Pyx_PyBytes_AsWritableString(__pyx_v_self->_format); if (unlikely((!__pyx_t_7) && PyErr_Occurred())) __PYX_ERR(2, 141, __pyx_L1_error) + __pyx_v_self->format = __pyx_t_7; + + /* "View.MemoryView":144 + * + * + * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< + * self._strides = self._shape + self.ndim + * + */ + __pyx_v_self->_shape = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); + + /* "View.MemoryView":145 + * + * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) + * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< + * + * if not self._shape: + */ + __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); + + /* "View.MemoryView":147 + * self._strides = self._shape + self.ndim + * + * if not self._shape: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate shape and strides.") + * + */ + __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); + if (unlikely(__pyx_t_4)) { + + /* "View.MemoryView":148 + * + * if not self._shape: + * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 148, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 148, __pyx_L1_error) + + /* "View.MemoryView":147 + * self._strides = self._shape + self.ndim + * + * if not self._shape: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate shape and strides.") + * + */ + } + + /* "View.MemoryView":151 + * + * + * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + */ + __pyx_t_8 = 0; + __pyx_t_3 = __pyx_v_shape; __Pyx_INCREF(__pyx_t_3); __pyx_t_1 = 0; + for (;;) { + if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_3)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_1); __Pyx_INCREF(__pyx_t_5); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(2, 151, __pyx_L1_error) + #else + __pyx_t_5 = PySequence_ITEM(__pyx_t_3, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 151, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_5); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 151, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_dim = __pyx_t_9; + __pyx_v_idx = __pyx_t_8; + __pyx_t_8 = (__pyx_t_8 + 1); + + /* "View.MemoryView":152 + * + * for idx, dim in enumerate(shape): + * if dim <= 0: # <<<<<<<<<<<<<< + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + * self._shape[idx] = dim + */ + __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); + if (unlikely(__pyx_t_4)) { + + /* "View.MemoryView":153 + * for idx, dim in enumerate(shape): + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< + * self._shape[idx] = dim + * + */ + __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 153, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 153, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 153, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_5); + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_6); + __pyx_t_5 = 0; + __pyx_t_6 = 0; + __pyx_t_6 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 153, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_6); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 153, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_Raise(__pyx_t_10, 0, 0, 0); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __PYX_ERR(2, 153, __pyx_L1_error) + + /* "View.MemoryView":152 + * + * for idx, dim in enumerate(shape): + * if dim <= 0: # <<<<<<<<<<<<<< + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + * self._shape[idx] = dim + */ + } + + /* "View.MemoryView":154 + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + * self._shape[idx] = dim # <<<<<<<<<<<<<< + * + * cdef char order + */ + (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; + + /* "View.MemoryView":151 + * + * + * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< + * if dim <= 0: + * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) + */ + } + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":157 + * + * cdef char order + * if mode == 'fortran': # <<<<<<<<<<<<<< + * order = b'F' + * self.mode = u'fortran' + */ + __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(2, 157, __pyx_L1_error) + if (__pyx_t_4) { + + /* "View.MemoryView":158 + * cdef char order + * if mode == 'fortran': + * order = b'F' # <<<<<<<<<<<<<< + * self.mode = u'fortran' + * elif mode == 'c': + */ + __pyx_v_order = 'F'; + + /* "View.MemoryView":159 + * if mode == 'fortran': + * order = b'F' + * self.mode = u'fortran' # <<<<<<<<<<<<<< + * elif mode == 'c': + * order = b'C' + */ + __Pyx_INCREF(__pyx_n_u_fortran); + __Pyx_GIVEREF(__pyx_n_u_fortran); + __Pyx_GOTREF(__pyx_v_self->mode); + __Pyx_DECREF(__pyx_v_self->mode); + __pyx_v_self->mode = __pyx_n_u_fortran; + + /* "View.MemoryView":157 + * + * cdef char order + * if mode == 'fortran': # <<<<<<<<<<<<<< + * order = b'F' + * self.mode = u'fortran' + */ + goto __pyx_L10; + } + + /* "View.MemoryView":160 + * order = b'F' + * self.mode = u'fortran' + * elif mode == 'c': # <<<<<<<<<<<<<< + * order = b'C' + * self.mode = u'c' + */ + __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(2, 160, __pyx_L1_error) + if (likely(__pyx_t_4)) { + + /* "View.MemoryView":161 + * self.mode = u'fortran' + * elif mode == 'c': + * order = b'C' # <<<<<<<<<<<<<< + * self.mode = u'c' + * else: + */ + __pyx_v_order = 'C'; + + /* "View.MemoryView":162 + * elif mode == 'c': + * order = b'C' + * self.mode = u'c' # <<<<<<<<<<<<<< + * else: + * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) + */ + __Pyx_INCREF(__pyx_n_u_c); + __Pyx_GIVEREF(__pyx_n_u_c); + __Pyx_GOTREF(__pyx_v_self->mode); + __Pyx_DECREF(__pyx_v_self->mode); + __pyx_v_self->mode = __pyx_n_u_c; + + /* "View.MemoryView":160 + * order = b'F' + * self.mode = u'fortran' + * elif mode == 'c': # <<<<<<<<<<<<<< + * order = b'C' + * self.mode = u'c' + */ + goto __pyx_L10; + } + + /* "View.MemoryView":164 + * self.mode = u'c' + * else: + * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< + * + * self.len = fill_contig_strides_array(self._shape, self._strides, + */ + /*else*/ { + __pyx_t_3 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 164, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 164, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_10, 0, 0, 0); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __PYX_ERR(2, 164, __pyx_L1_error) + } + __pyx_L10:; + + /* "View.MemoryView":166 + * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) + * + * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< + * itemsize, self.ndim, order) + * + */ + __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); + + /* "View.MemoryView":169 + * itemsize, self.ndim, order) + * + * self.free_data = allocate_buffer # <<<<<<<<<<<<<< + * self.dtype_is_object = format == b'O' + * if allocate_buffer: + */ + __pyx_v_self->free_data = __pyx_v_allocate_buffer; + + /* "View.MemoryView":170 + * + * self.free_data = allocate_buffer + * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< + * if allocate_buffer: + * + */ + __pyx_t_10 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_10); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 170, __pyx_L1_error) + __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 170, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __pyx_v_self->dtype_is_object = __pyx_t_4; + + /* "View.MemoryView":171 + * self.free_data = allocate_buffer + * self.dtype_is_object = format == b'O' + * if allocate_buffer: # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_4 = (__pyx_v_allocate_buffer != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":174 + * + * + * self.data = malloc(self.len) # <<<<<<<<<<<<<< + * if not self.data: + * raise MemoryError("unable to allocate array data.") + */ + __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); + + /* "View.MemoryView":175 + * + * self.data = malloc(self.len) + * if not self.data: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate array data.") + * + */ + __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); + if (unlikely(__pyx_t_4)) { + + /* "View.MemoryView":176 + * self.data = malloc(self.len) + * if not self.data: + * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< + * + * if self.dtype_is_object: + */ + __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 176, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_10); + __Pyx_Raise(__pyx_t_10, 0, 0, 0); + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + __PYX_ERR(2, 176, __pyx_L1_error) + + /* "View.MemoryView":175 + * + * self.data = malloc(self.len) + * if not self.data: # <<<<<<<<<<<<<< + * raise MemoryError("unable to allocate array data.") + * + */ + } + + /* "View.MemoryView":178 + * raise MemoryError("unable to allocate array data.") + * + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * p = self.data + * for i in range(self.len / itemsize): + */ + __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":179 + * + * if self.dtype_is_object: + * p = self.data # <<<<<<<<<<<<<< + * for i in range(self.len / itemsize): + * p[i] = Py_None + */ + __pyx_v_p = ((PyObject **)__pyx_v_self->data); + + /* "View.MemoryView":180 + * if self.dtype_is_object: + * p = self.data + * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< + * p[i] = Py_None + * Py_INCREF(Py_None) + */ + if (unlikely(__pyx_v_itemsize == 0)) { + PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); + __PYX_ERR(2, 180, __pyx_L1_error) + } + else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { + PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); + __PYX_ERR(2, 180, __pyx_L1_error) + } + __pyx_t_1 = __Pyx_div_Py_ssize_t(__pyx_v_self->len, __pyx_v_itemsize); + __pyx_t_9 = __pyx_t_1; + for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_9; __pyx_t_11+=1) { + __pyx_v_i = __pyx_t_11; + + /* "View.MemoryView":181 + * p = self.data + * for i in range(self.len / itemsize): + * p[i] = Py_None # <<<<<<<<<<<<<< + * Py_INCREF(Py_None) + * + */ + (__pyx_v_p[__pyx_v_i]) = Py_None; + + /* "View.MemoryView":182 + * for i in range(self.len / itemsize): + * p[i] = Py_None + * Py_INCREF(Py_None) # <<<<<<<<<<<<<< + * + * @cname('getbuffer') + */ + Py_INCREF(Py_None); + } + + /* "View.MemoryView":178 + * raise MemoryError("unable to allocate array data.") + * + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * p = self.data + * for i in range(self.len / itemsize): + */ + } + + /* "View.MemoryView":171 + * self.free_data = allocate_buffer + * self.dtype_is_object = format == b'O' + * if allocate_buffer: # <<<<<<<<<<<<<< + * + * + */ + } + + /* "View.MemoryView":122 + * cdef bint dtype_is_object + * + * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< + * mode="c", bint allocate_buffer=True): + * + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_10); + __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_format); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":185 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * cdef int bufmode = -1 + * if self.mode == u"c": + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(((struct __pyx_array_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_v_bufmode; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + char *__pyx_t_4; + Py_ssize_t __pyx_t_5; + int __pyx_t_6; + Py_ssize_t *__pyx_t_7; + if (__pyx_v_info == NULL) { + PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); + return -1; + } + __Pyx_RefNannySetupContext("__getbuffer__", 0); + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + + /* "View.MemoryView":186 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * cdef int bufmode = -1 # <<<<<<<<<<<<<< + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + */ + __pyx_v_bufmode = -1; + + /* "View.MemoryView":187 + * def __getbuffer__(self, Py_buffer *info, int flags): + * cdef int bufmode = -1 + * if self.mode == u"c": # <<<<<<<<<<<<<< + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": + */ + __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 187, __pyx_L1_error) + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":188 + * cdef int bufmode = -1 + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + */ + __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); + + /* "View.MemoryView":187 + * def __getbuffer__(self, Py_buffer *info, int flags): + * cdef int bufmode = -1 + * if self.mode == u"c": # <<<<<<<<<<<<<< + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": + */ + goto __pyx_L3; + } + + /* "View.MemoryView":189 + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": # <<<<<<<<<<<<<< + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + */ + __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 189, __pyx_L1_error) + __pyx_t_1 = (__pyx_t_2 != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":190 + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") + */ + __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); + + /* "View.MemoryView":189 + * if self.mode == u"c": + * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * elif self.mode == u"fortran": # <<<<<<<<<<<<<< + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + */ + } + __pyx_L3:; + + /* "View.MemoryView":191 + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): # <<<<<<<<<<<<<< + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data + */ + __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":192 + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< + * info.buf = self.data + * info.len = self.len + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 192, __pyx_L1_error) + + /* "View.MemoryView":191 + * elif self.mode == u"fortran": + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): # <<<<<<<<<<<<<< + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data + */ + } + + /* "View.MemoryView":193 + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data # <<<<<<<<<<<<<< + * info.len = self.len + * info.ndim = self.ndim + */ + __pyx_t_4 = __pyx_v_self->data; + __pyx_v_info->buf = __pyx_t_4; + + /* "View.MemoryView":194 + * raise ValueError("Can only create a buffer that is contiguous in memory.") + * info.buf = self.data + * info.len = self.len # <<<<<<<<<<<<<< + * info.ndim = self.ndim + * info.shape = self._shape + */ + __pyx_t_5 = __pyx_v_self->len; + __pyx_v_info->len = __pyx_t_5; + + /* "View.MemoryView":195 + * info.buf = self.data + * info.len = self.len + * info.ndim = self.ndim # <<<<<<<<<<<<<< + * info.shape = self._shape + * info.strides = self._strides + */ + __pyx_t_6 = __pyx_v_self->ndim; + __pyx_v_info->ndim = __pyx_t_6; + + /* "View.MemoryView":196 + * info.len = self.len + * info.ndim = self.ndim + * info.shape = self._shape # <<<<<<<<<<<<<< + * info.strides = self._strides + * info.suboffsets = NULL + */ + __pyx_t_7 = __pyx_v_self->_shape; + __pyx_v_info->shape = __pyx_t_7; + + /* "View.MemoryView":197 + * info.ndim = self.ndim + * info.shape = self._shape + * info.strides = self._strides # <<<<<<<<<<<<<< + * info.suboffsets = NULL + * info.itemsize = self.itemsize + */ + __pyx_t_7 = __pyx_v_self->_strides; + __pyx_v_info->strides = __pyx_t_7; + + /* "View.MemoryView":198 + * info.shape = self._shape + * info.strides = self._strides + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * info.itemsize = self.itemsize + * info.readonly = 0 + */ + __pyx_v_info->suboffsets = NULL; + + /* "View.MemoryView":199 + * info.strides = self._strides + * info.suboffsets = NULL + * info.itemsize = self.itemsize # <<<<<<<<<<<<<< + * info.readonly = 0 + * + */ + __pyx_t_5 = __pyx_v_self->itemsize; + __pyx_v_info->itemsize = __pyx_t_5; + + /* "View.MemoryView":200 + * info.suboffsets = NULL + * info.itemsize = self.itemsize + * info.readonly = 0 # <<<<<<<<<<<<<< + * + * if flags & PyBUF_FORMAT: + */ + __pyx_v_info->readonly = 0; + + /* "View.MemoryView":202 + * info.readonly = 0 + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.format + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":203 + * + * if flags & PyBUF_FORMAT: + * info.format = self.format # <<<<<<<<<<<<<< + * else: + * info.format = NULL + */ + __pyx_t_4 = __pyx_v_self->format; + __pyx_v_info->format = __pyx_t_4; + + /* "View.MemoryView":202 + * info.readonly = 0 + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.format + * else: + */ + goto __pyx_L5; + } + + /* "View.MemoryView":205 + * info.format = self.format + * else: + * info.format = NULL # <<<<<<<<<<<<<< + * + * info.obj = self + */ + /*else*/ { + __pyx_v_info->format = NULL; + } + __pyx_L5:; + + /* "View.MemoryView":207 + * info.format = NULL + * + * info.obj = self # <<<<<<<<<<<<<< + * + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") + */ + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + + /* "View.MemoryView":185 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * cdef int bufmode = -1 + * if self.mode == u"c": + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + __pyx_L2:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":211 + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") + * + * def __dealloc__(array self): # <<<<<<<<<<<<<< + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + */ + +/* Python wrapper */ +static void __pyx_array___dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_array___dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self) { + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "View.MemoryView":212 + * + * def __dealloc__(array self): + * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< + * self.callback_free_data(self.data) + * elif self.free_data: + */ + __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":213 + * def __dealloc__(array self): + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) # <<<<<<<<<<<<<< + * elif self.free_data: + * if self.dtype_is_object: + */ + __pyx_v_self->callback_free_data(__pyx_v_self->data); + + /* "View.MemoryView":212 + * + * def __dealloc__(array self): + * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< + * self.callback_free_data(self.data) + * elif self.free_data: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":214 + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + * elif self.free_data: # <<<<<<<<<<<<<< + * if self.dtype_is_object: + * refcount_objects_in_slice(self.data, self._shape, + */ + __pyx_t_1 = (__pyx_v_self->free_data != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":215 + * self.callback_free_data(self.data) + * elif self.free_data: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice(self.data, self._shape, + * self._strides, self.ndim, False) + */ + __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":216 + * elif self.free_data: + * if self.dtype_is_object: + * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< + * self._strides, self.ndim, False) + * free(self.data) + */ + __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); + + /* "View.MemoryView":215 + * self.callback_free_data(self.data) + * elif self.free_data: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice(self.data, self._shape, + * self._strides, self.ndim, False) + */ + } + + /* "View.MemoryView":218 + * refcount_objects_in_slice(self.data, self._shape, + * self._strides, self.ndim, False) + * free(self.data) # <<<<<<<<<<<<<< + * PyObject_Free(self._shape) + * + */ + free(__pyx_v_self->data); + + /* "View.MemoryView":214 + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + * elif self.free_data: # <<<<<<<<<<<<<< + * if self.dtype_is_object: + * refcount_objects_in_slice(self.data, self._shape, + */ + } + __pyx_L3:; + + /* "View.MemoryView":219 + * self._strides, self.ndim, False) + * free(self.data) + * PyObject_Free(self._shape) # <<<<<<<<<<<<<< + * + * @property + */ + PyObject_Free(__pyx_v_self->_shape); + + /* "View.MemoryView":211 + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") + * + * def __dealloc__(array self): # <<<<<<<<<<<<<< + * if self.callback_free_data != NULL: + * self.callback_free_data(self.data) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":222 + * + * @property + * def memview(self): # <<<<<<<<<<<<<< + * return self.get_memview() + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_5array_7memview___get__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":223 + * @property + * def memview(self): + * return self.get_memview() # <<<<<<<<<<<<<< + * + * @cname('get_memview') + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 223, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":222 + * + * @property + * def memview(self): # <<<<<<<<<<<<<< + * return self.get_memview() + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.memview.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":226 + * + * @cname('get_memview') + * cdef get_memview(self): # <<<<<<<<<<<<<< + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE + * return memoryview(self, flags, self.dtype_is_object) + */ + +static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { + int __pyx_v_flags; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("get_memview", 0); + + /* "View.MemoryView":227 + * @cname('get_memview') + * cdef get_memview(self): + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< + * return memoryview(self, flags, self.dtype_is_object) + * + */ + __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); + + /* "View.MemoryView":228 + * cdef get_memview(self): + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE + * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< + * + * def __len__(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 228, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":226 + * + * @cname('get_memview') + * cdef get_memview(self): # <<<<<<<<<<<<<< + * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE + * return memoryview(self, flags, self.dtype_is_object) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.array.get_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":230 + * return memoryview(self, flags, self.dtype_is_object) + * + * def __len__(self): # <<<<<<<<<<<<<< + * return self._shape[0] + * + */ + +/* Python wrapper */ +static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self); /*proto*/ +static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__len__", 0); + + /* "View.MemoryView":231 + * + * def __len__(self): + * return self._shape[0] # <<<<<<<<<<<<<< + * + * def __getattr__(self, attr): + */ + __pyx_r = (__pyx_v_self->_shape[0]); + goto __pyx_L0; + + /* "View.MemoryView":230 + * return memoryview(self, flags, self.dtype_is_object) + * + * def __len__(self): # <<<<<<<<<<<<<< + * return self._shape[0] + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":233 + * return self._shape[0] + * + * def __getattr__(self, attr): # <<<<<<<<<<<<<< + * return getattr(self.memview, attr) + * + */ + +/* Python wrapper */ +static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr); /*proto*/ +static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("__getattr__", 0); + + /* "View.MemoryView":234 + * + * def __getattr__(self, attr): + * return getattr(self.memview, attr) # <<<<<<<<<<<<<< + * + * def __getitem__(self, item): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 234, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 234, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":233 + * return self._shape[0] + * + * def __getattr__(self, attr): # <<<<<<<<<<<<<< + * return getattr(self.memview, attr) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.array.__getattr__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":236 + * return getattr(self.memview, attr) + * + * def __getitem__(self, item): # <<<<<<<<<<<<<< + * return self.memview[item] + * + */ + +/* Python wrapper */ +static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item); /*proto*/ +static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("__getitem__", 0); + + /* "View.MemoryView":237 + * + * def __getitem__(self, item): + * return self.memview[item] # <<<<<<<<<<<<<< + * + * def __setitem__(self, item, value): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 237, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 237, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":236 + * return getattr(self.memview, attr) + * + * def __getitem__(self, item): # <<<<<<<<<<<<<< + * return self.memview[item] + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.array.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":239 + * return self.memview[item] + * + * def __setitem__(self, item, value): # <<<<<<<<<<<<<< + * self.memview[item] = value + * + */ + +/* Python wrapper */ +static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /*proto*/ +static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); + __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setitem__", 0); + + /* "View.MemoryView":240 + * + * def __setitem__(self, item, value): + * self.memview[item] = value # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 240, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(2, 240, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "View.MemoryView":239 + * return self.memview[item] + * + * def __setitem__(self, item, value): # <<<<<<<<<<<<<< + * self.memview[item] = value + * + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_array___reduce_cython__(((struct __pyx_array_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 2, __pyx_L1_error) + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_array_2__setstate_cython__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.array.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":244 + * + * @cname("__pyx_array_new") + * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< + * char *mode, char *buf): + * cdef array result + */ + +static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, char *__pyx_v_format, char *__pyx_v_mode, char *__pyx_v_buf) { + struct __pyx_array_obj *__pyx_v_result = 0; + struct __pyx_array_obj *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("array_cwrapper", 0); + + /* "View.MemoryView":248 + * cdef array result + * + * if buf == NULL: # <<<<<<<<<<<<<< + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + */ + __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":249 + * + * if buf == NULL: + * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), + */ + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 249, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 249, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 249, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 249, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_INCREF(__pyx_v_shape); + __Pyx_GIVEREF(__pyx_v_shape); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_shape); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 3, __pyx_t_4); + __pyx_t_2 = 0; + __pyx_t_3 = 0; + __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 249, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); + __pyx_t_4 = 0; + + /* "View.MemoryView":248 + * cdef array result + * + * if buf == NULL: # <<<<<<<<<<<<<< + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":251 + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< + * allocate_buffer=False) + * result.data = buf + */ + /*else*/ { + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 251, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 251, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 251, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 251, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_v_shape); + __Pyx_GIVEREF(__pyx_v_shape); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_4); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_5); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_2, 3, __pyx_t_3); + __pyx_t_4 = 0; + __pyx_t_5 = 0; + __pyx_t_3 = 0; + + /* "View.MemoryView":252 + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), + * allocate_buffer=False) # <<<<<<<<<<<<<< + * result.data = buf + * + */ + __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 252, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(2, 252, __pyx_L1_error) + + /* "View.MemoryView":251 + * result = array(shape, itemsize, format, mode.decode('ASCII')) + * else: + * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< + * allocate_buffer=False) + * result.data = buf + */ + __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 251, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); + __pyx_t_5 = 0; + + /* "View.MemoryView":253 + * result = array(shape, itemsize, format, mode.decode('ASCII'), + * allocate_buffer=False) + * result.data = buf # <<<<<<<<<<<<<< + * + * return result + */ + __pyx_v_result->data = __pyx_v_buf; + } + __pyx_L3:; + + /* "View.MemoryView":255 + * result.data = buf + * + * return result # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(((PyObject *)__pyx_r)); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = __pyx_v_result; + goto __pyx_L0; + + /* "View.MemoryView":244 + * + * @cname("__pyx_array_new") + * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< + * char *mode, char *buf): + * cdef array result + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.array_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XGIVEREF((PyObject *)__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":281 + * cdef class Enum(object): + * cdef object name + * def __init__(self, name): # <<<<<<<<<<<<<< + * self.name = name + * def __repr__(self): + */ + +/* Python wrapper */ +static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_name = 0; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_name,0}; + PyObject* values[1] = {0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(2, 281, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + } + __pyx_v_name = values[0]; + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 281, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), __pyx_v_name); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__init__", 0); + + /* "View.MemoryView":282 + * cdef object name + * def __init__(self, name): + * self.name = name # <<<<<<<<<<<<<< + * def __repr__(self): + * return self.name + */ + __Pyx_INCREF(__pyx_v_name); + __Pyx_GIVEREF(__pyx_v_name); + __Pyx_GOTREF(__pyx_v_self->name); + __Pyx_DECREF(__pyx_v_self->name); + __pyx_v_self->name = __pyx_v_name; + + /* "View.MemoryView":281 + * cdef class Enum(object): + * cdef object name + * def __init__(self, name): # <<<<<<<<<<<<<< + * self.name = name + * def __repr__(self): + */ + + /* function exit code */ + __pyx_r = 0; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":283 + * def __init__(self, name): + * self.name = name + * def __repr__(self): # <<<<<<<<<<<<<< + * return self.name + * + */ + +/* Python wrapper */ +static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); + __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__repr__", 0); + + /* "View.MemoryView":284 + * self.name = name + * def __repr__(self): + * return self.name # <<<<<<<<<<<<<< + * + * cdef generic = Enum("") + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->name); + __pyx_r = __pyx_v_self->name; + goto __pyx_L0; + + /* "View.MemoryView":283 + * def __init__(self, name): + * self.name = name + * def __repr__(self): # <<<<<<<<<<<<<< + * return self.name + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * cdef tuple state + * cdef object _dict + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_MemviewEnum___reduce_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { + PyObject *__pyx_v_state = 0; + PyObject *__pyx_v__dict = 0; + int __pyx_v_use_setstate; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":5 + * cdef object _dict + * cdef bint use_setstate + * state = (self.name,) # <<<<<<<<<<<<<< + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: + */ + __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v_self->name); + __Pyx_GIVEREF(__pyx_v_self->name); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_self->name); + __pyx_v_state = ((PyObject*)__pyx_t_1); + __pyx_t_1 = 0; + + /* "(tree fragment)":6 + * cdef bint use_setstate + * state = (self.name,) + * _dict = getattr(self, '__dict__', None) # <<<<<<<<<<<<<< + * if _dict is not None: + * state += (_dict,) + */ + __pyx_t_1 = __Pyx_GetAttr3(((PyObject *)__pyx_v_self), __pyx_n_s_dict, Py_None); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v__dict = __pyx_t_1; + __pyx_t_1 = 0; + + /* "(tree fragment)":7 + * state = (self.name,) + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: # <<<<<<<<<<<<<< + * state += (_dict,) + * use_setstate = True + */ + __pyx_t_2 = (__pyx_v__dict != Py_None); + __pyx_t_3 = (__pyx_t_2 != 0); + if (__pyx_t_3) { + + /* "(tree fragment)":8 + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: + * state += (_dict,) # <<<<<<<<<<<<<< + * use_setstate = True + * else: + */ + __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 8, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(__pyx_v__dict); + __Pyx_GIVEREF(__pyx_v__dict); + PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v__dict); + __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_state, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 8, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF_SET(__pyx_v_state, ((PyObject*)__pyx_t_4)); + __pyx_t_4 = 0; + + /* "(tree fragment)":9 + * if _dict is not None: + * state += (_dict,) + * use_setstate = True # <<<<<<<<<<<<<< + * else: + * use_setstate = self.name is not None + */ + __pyx_v_use_setstate = 1; + + /* "(tree fragment)":7 + * state = (self.name,) + * _dict = getattr(self, '__dict__', None) + * if _dict is not None: # <<<<<<<<<<<<<< + * state += (_dict,) + * use_setstate = True + */ + goto __pyx_L3; + } + + /* "(tree fragment)":11 + * use_setstate = True + * else: + * use_setstate = self.name is not None # <<<<<<<<<<<<<< + * if use_setstate: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + */ + /*else*/ { + __pyx_t_3 = (__pyx_v_self->name != Py_None); + __pyx_v_use_setstate = __pyx_t_3; + } + __pyx_L3:; + + /* "(tree fragment)":12 + * else: + * use_setstate = self.name is not None + * if use_setstate: # <<<<<<<<<<<<<< + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + * else: + */ + __pyx_t_3 = (__pyx_v_use_setstate != 0); + if (__pyx_t_3) { + + /* "(tree fragment)":13 + * use_setstate = self.name is not None + * if use_setstate: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state # <<<<<<<<<<<<<< + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 13, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 13, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_INCREF(__pyx_int_184977713); + __Pyx_GIVEREF(__pyx_int_184977713); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); + __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(Py_None); + PyTuple_SET_ITEM(__pyx_t_1, 2, Py_None); + __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 13, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_1); + __Pyx_INCREF(__pyx_v_state); + __Pyx_GIVEREF(__pyx_v_state); + PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_v_state); + __pyx_t_4 = 0; + __pyx_t_1 = 0; + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "(tree fragment)":12 + * else: + * use_setstate = self.name is not None + * if use_setstate: # <<<<<<<<<<<<<< + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + * else: + */ + } + + /* "(tree fragment)":15 + * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * __pyx_unpickle_Enum__set_state(self, __pyx_state) + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 15, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 15, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); + __Pyx_INCREF(__pyx_int_184977713); + __Pyx_GIVEREF(__pyx_int_184977713); + PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); + __Pyx_INCREF(__pyx_v_state); + __Pyx_GIVEREF(__pyx_v_state); + PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_state); + __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 15, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_5); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_1); + __pyx_t_5 = 0; + __pyx_t_1 = 0; + __pyx_r = __pyx_t_4; + __pyx_t_4 = 0; + goto __pyx_L0; + } + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * cdef tuple state + * cdef object _dict + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.Enum.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_state); + __Pyx_XDECREF(__pyx_v__dict); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":16 + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state(self, __pyx_state) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_MemviewEnum_2__setstate_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":17 + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + * def __setstate_cython__(self, __pyx_state): + * __pyx_unpickle_Enum__set_state(self, __pyx_state) # <<<<<<<<<<<<<< + */ + if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(2, 17, __pyx_L1_error) + __pyx_t_1 = __pyx_unpickle_Enum__set_state(__pyx_v_self, ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 17, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "(tree fragment)":16 + * else: + * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state(self, __pyx_state) + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.Enum.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":298 + * + * @cname('__pyx_align_pointer') + * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory + */ + +static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { + Py_intptr_t __pyx_v_aligned_p; + size_t __pyx_v_offset; + void *__pyx_r; + int __pyx_t_1; + + /* "View.MemoryView":300 + * cdef void *align_pointer(void *memory, size_t alignment) nogil: + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory # <<<<<<<<<<<<<< + * cdef size_t offset + * + */ + __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); + + /* "View.MemoryView":304 + * + * with cython.cdivision(True): + * offset = aligned_p % alignment # <<<<<<<<<<<<<< + * + * if offset > 0: + */ + __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); + + /* "View.MemoryView":306 + * offset = aligned_p % alignment + * + * if offset > 0: # <<<<<<<<<<<<<< + * aligned_p += alignment - offset + * + */ + __pyx_t_1 = ((__pyx_v_offset > 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":307 + * + * if offset > 0: + * aligned_p += alignment - offset # <<<<<<<<<<<<<< + * + * return aligned_p + */ + __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); + + /* "View.MemoryView":306 + * offset = aligned_p % alignment + * + * if offset > 0: # <<<<<<<<<<<<<< + * aligned_p += alignment - offset + * + */ + } + + /* "View.MemoryView":309 + * aligned_p += alignment - offset + * + * return aligned_p # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = ((void *)__pyx_v_aligned_p); + goto __pyx_L0; + + /* "View.MemoryView":298 + * + * @cname('__pyx_align_pointer') + * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< + * "Align pointer memory on a given boundary" + * cdef Py_intptr_t aligned_p = memory + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":345 + * cdef __Pyx_TypeInfo *typeinfo + * + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< + * self.obj = obj + * self.flags = flags + */ + +/* Python wrapper */ +static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v_obj = 0; + int __pyx_v_flags; + int __pyx_v_dtype_is_object; + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_obj,&__pyx_n_s_flags,&__pyx_n_s_dtype_is_object,0}; + PyObject* values[3] = {0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(2, 345, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (kw_args > 0) { + PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dtype_is_object); + if (value) { values[2] = value; kw_args--; } + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(2, 345, __pyx_L3_error) + } + } else { + switch (PyTuple_GET_SIZE(__pyx_args)) { + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + break; + default: goto __pyx_L5_argtuple_error; + } + } + __pyx_v_obj = values[0]; + __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 345, __pyx_L3_error) + if (values[2]) { + __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 345, __pyx_L3_error) + } else { + __pyx_v_dtype_is_object = ((int)0); + } + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 345, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return -1; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_obj, __pyx_v_flags, __pyx_v_dtype_is_object); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + __Pyx_RefNannySetupContext("__cinit__", 0); + + /* "View.MemoryView":346 + * + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): + * self.obj = obj # <<<<<<<<<<<<<< + * self.flags = flags + * if type(self) is memoryview or obj is not None: + */ + __Pyx_INCREF(__pyx_v_obj); + __Pyx_GIVEREF(__pyx_v_obj); + __Pyx_GOTREF(__pyx_v_self->obj); + __Pyx_DECREF(__pyx_v_self->obj); + __pyx_v_self->obj = __pyx_v_obj; + + /* "View.MemoryView":347 + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): + * self.obj = obj + * self.flags = flags # <<<<<<<<<<<<<< + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) + */ + __pyx_v_self->flags = __pyx_v_flags; + + /* "View.MemoryView":348 + * self.obj = obj + * self.flags = flags + * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: + */ + __pyx_t_2 = (((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self))) == ((PyObject *)__pyx_memoryview_type)); + __pyx_t_3 = (__pyx_t_2 != 0); + if (!__pyx_t_3) { + } else { + __pyx_t_1 = __pyx_t_3; + goto __pyx_L4_bool_binop_done; + } + __pyx_t_3 = (__pyx_v_obj != Py_None); + __pyx_t_2 = (__pyx_t_3 != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L4_bool_binop_done:; + if (__pyx_t_1) { + + /* "View.MemoryView":349 + * self.flags = flags + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< + * if self.view.obj == NULL: + * (<__pyx_buffer *> &self.view).obj = Py_None + */ + __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 349, __pyx_L1_error) + + /* "View.MemoryView":350 + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: # <<<<<<<<<<<<<< + * (<__pyx_buffer *> &self.view).obj = Py_None + * Py_INCREF(Py_None) + */ + __pyx_t_1 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":351 + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: + * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< + * Py_INCREF(Py_None) + * + */ + ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; + + /* "View.MemoryView":352 + * if self.view.obj == NULL: + * (<__pyx_buffer *> &self.view).obj = Py_None + * Py_INCREF(Py_None) # <<<<<<<<<<<<<< + * + * global __pyx_memoryview_thread_locks_used + */ + Py_INCREF(Py_None); + + /* "View.MemoryView":350 + * if type(self) is memoryview or obj is not None: + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: # <<<<<<<<<<<<<< + * (<__pyx_buffer *> &self.view).obj = Py_None + * Py_INCREF(Py_None) + */ + } + + /* "View.MemoryView":348 + * self.obj = obj + * self.flags = flags + * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< + * __Pyx_GetBuffer(obj, &self.view, flags) + * if self.view.obj == NULL: + */ + } + + /* "View.MemoryView":355 + * + * global __pyx_memoryview_thread_locks_used + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + */ + __pyx_t_1 = ((__pyx_memoryview_thread_locks_used < 8) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":356 + * global __pyx_memoryview_thread_locks_used + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: + */ + __pyx_v_self->lock = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); + + /* "View.MemoryView":357 + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 # <<<<<<<<<<<<<< + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() + */ + __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used + 1); + + /* "View.MemoryView":355 + * + * global __pyx_memoryview_thread_locks_used + * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + */ + } + + /* "View.MemoryView":358 + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: # <<<<<<<<<<<<<< + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: + */ + __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":359 + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< + * if self.lock is NULL: + * raise MemoryError + */ + __pyx_v_self->lock = PyThread_allocate_lock(); + + /* "View.MemoryView":360 + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * + */ + __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":361 + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: + * raise MemoryError # <<<<<<<<<<<<<< + * + * if flags & PyBUF_FORMAT: + */ + PyErr_NoMemory(); __PYX_ERR(2, 361, __pyx_L1_error) + + /* "View.MemoryView":360 + * if self.lock is NULL: + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * + */ + } + + /* "View.MemoryView":358 + * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] + * __pyx_memoryview_thread_locks_used += 1 + * if self.lock is NULL: # <<<<<<<<<<<<<< + * self.lock = PyThread_allocate_lock() + * if self.lock is NULL: + */ + } + + /* "View.MemoryView":363 + * raise MemoryError + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":364 + * + * if flags & PyBUF_FORMAT: + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') # <<<<<<<<<<<<<< + * else: + * self.dtype_is_object = dtype_is_object + */ + __pyx_t_2 = (((__pyx_v_self->view.format[0]) == 'O') != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_2 = (((__pyx_v_self->view.format[1]) == '\x00') != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L11_bool_binop_done:; + __pyx_v_self->dtype_is_object = __pyx_t_1; + + /* "View.MemoryView":363 + * raise MemoryError + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') + * else: + */ + goto __pyx_L10; + } + + /* "View.MemoryView":366 + * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') + * else: + * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< + * + * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( + */ + /*else*/ { + __pyx_v_self->dtype_is_object = __pyx_v_dtype_is_object; + } + __pyx_L10:; + + /* "View.MemoryView":368 + * self.dtype_is_object = dtype_is_object + * + * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< + * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) + * self.typeinfo = NULL + */ + __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); + + /* "View.MemoryView":370 + * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( + * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) + * self.typeinfo = NULL # <<<<<<<<<<<<<< + * + * def __dealloc__(memoryview self): + */ + __pyx_v_self->typeinfo = NULL; + + /* "View.MemoryView":345 + * cdef __Pyx_TypeInfo *typeinfo + * + * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< + * self.obj = obj + * self.flags = flags + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":372 + * self.typeinfo = NULL + * + * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) + */ + +/* Python wrapper */ +static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self) { + int __pyx_v_i; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + int __pyx_t_5; + PyThread_type_lock __pyx_t_6; + PyThread_type_lock __pyx_t_7; + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "View.MemoryView":373 + * + * def __dealloc__(memoryview self): + * if self.obj is not None: # <<<<<<<<<<<<<< + * __Pyx_ReleaseBuffer(&self.view) + * elif (<__pyx_buffer *> &self.view).obj == Py_None: + */ + __pyx_t_1 = (__pyx_v_self->obj != Py_None); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":374 + * def __dealloc__(memoryview self): + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< + * elif (<__pyx_buffer *> &self.view).obj == Py_None: + * + */ + __Pyx_ReleaseBuffer((&__pyx_v_self->view)); + + /* "View.MemoryView":373 + * + * def __dealloc__(memoryview self): + * if self.obj is not None: # <<<<<<<<<<<<<< + * __Pyx_ReleaseBuffer(&self.view) + * elif (<__pyx_buffer *> &self.view).obj == Py_None: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":375 + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) + * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< + * + * (<__pyx_buffer *> &self.view).obj = NULL + */ + __pyx_t_2 = ((((Py_buffer *)(&__pyx_v_self->view))->obj == Py_None) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":377 + * elif (<__pyx_buffer *> &self.view).obj == Py_None: + * + * (<__pyx_buffer *> &self.view).obj = NULL # <<<<<<<<<<<<<< + * Py_DECREF(Py_None) + * + */ + ((Py_buffer *)(&__pyx_v_self->view))->obj = NULL; + + /* "View.MemoryView":378 + * + * (<__pyx_buffer *> &self.view).obj = NULL + * Py_DECREF(Py_None) # <<<<<<<<<<<<<< + * + * cdef int i + */ + Py_DECREF(Py_None); + + /* "View.MemoryView":375 + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) + * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< + * + * (<__pyx_buffer *> &self.view).obj = NULL + */ + } + __pyx_L3:; + + /* "View.MemoryView":382 + * cdef int i + * global __pyx_memoryview_thread_locks_used + * if self.lock != NULL: # <<<<<<<<<<<<<< + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: + */ + __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":383 + * global __pyx_memoryview_thread_locks_used + * if self.lock != NULL: + * for i in range(__pyx_memoryview_thread_locks_used): # <<<<<<<<<<<<<< + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 + */ + __pyx_t_3 = __pyx_memoryview_thread_locks_used; + __pyx_t_4 = __pyx_t_3; + for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { + __pyx_v_i = __pyx_t_5; + + /* "View.MemoryView":384 + * if self.lock != NULL: + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: + */ + __pyx_t_2 = (((__pyx_memoryview_thread_locks[__pyx_v_i]) == __pyx_v_self->lock) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":385 + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 # <<<<<<<<<<<<<< + * if i != __pyx_memoryview_thread_locks_used: + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + */ + __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used - 1); + + /* "View.MemoryView":386 + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + */ + __pyx_t_2 = ((__pyx_v_i != __pyx_memoryview_thread_locks_used) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":388 + * if i != __pyx_memoryview_thread_locks_used: + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) # <<<<<<<<<<<<<< + * break + * else: + */ + __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); + __pyx_t_7 = (__pyx_memoryview_thread_locks[__pyx_v_i]); + + /* "View.MemoryView":387 + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + * break + */ + (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_6; + (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_7; + + /* "View.MemoryView":386 + * if __pyx_memoryview_thread_locks[i] is self.lock: + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + */ + } + + /* "View.MemoryView":389 + * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( + * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) + * break # <<<<<<<<<<<<<< + * else: + * PyThread_free_lock(self.lock) + */ + goto __pyx_L6_break; + + /* "View.MemoryView":384 + * if self.lock != NULL: + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< + * __pyx_memoryview_thread_locks_used -= 1 + * if i != __pyx_memoryview_thread_locks_used: + */ + } + } + /*else*/ { + + /* "View.MemoryView":391 + * break + * else: + * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< + * + * cdef char *get_item_pointer(memoryview self, object index) except NULL: + */ + PyThread_free_lock(__pyx_v_self->lock); + } + __pyx_L6_break:; + + /* "View.MemoryView":382 + * cdef int i + * global __pyx_memoryview_thread_locks_used + * if self.lock != NULL: # <<<<<<<<<<<<<< + * for i in range(__pyx_memoryview_thread_locks_used): + * if __pyx_memoryview_thread_locks[i] is self.lock: + */ + } + + /* "View.MemoryView":372 + * self.typeinfo = NULL + * + * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< + * if self.obj is not None: + * __Pyx_ReleaseBuffer(&self.view) + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":393 + * PyThread_free_lock(self.lock) + * + * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< + * cdef Py_ssize_t dim + * cdef char *itemp = self.view.buf + */ + +static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { + Py_ssize_t __pyx_v_dim; + char *__pyx_v_itemp; + PyObject *__pyx_v_idx = NULL; + char *__pyx_r; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + Py_ssize_t __pyx_t_3; + PyObject *(*__pyx_t_4)(PyObject *); + PyObject *__pyx_t_5 = NULL; + Py_ssize_t __pyx_t_6; + char *__pyx_t_7; + __Pyx_RefNannySetupContext("get_item_pointer", 0); + + /* "View.MemoryView":395 + * cdef char *get_item_pointer(memoryview self, object index) except NULL: + * cdef Py_ssize_t dim + * cdef char *itemp = self.view.buf # <<<<<<<<<<<<<< + * + * for dim, idx in enumerate(index): + */ + __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); + + /* "View.MemoryView":397 + * cdef char *itemp = self.view.buf + * + * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< + * itemp = pybuffer_index(&self.view, itemp, idx, dim) + * + */ + __pyx_t_1 = 0; + if (likely(PyList_CheckExact(__pyx_v_index)) || PyTuple_CheckExact(__pyx_v_index)) { + __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; + __pyx_t_4 = NULL; + } else { + __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 397, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 397, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_4)) { + if (likely(PyList_CheckExact(__pyx_t_2))) { + if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(2, 397, __pyx_L1_error) + #else + __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 397, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + } else { + if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(2, 397, __pyx_L1_error) + #else + __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 397, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + } + } else { + __pyx_t_5 = __pyx_t_4(__pyx_t_2); + if (unlikely(!__pyx_t_5)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(2, 397, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_5); + } + __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_5); + __pyx_t_5 = 0; + __pyx_v_dim = __pyx_t_1; + __pyx_t_1 = (__pyx_t_1 + 1); + + /* "View.MemoryView":398 + * + * for dim, idx in enumerate(index): + * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< + * + * return itemp + */ + __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 398, __pyx_L1_error) + __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == ((char *)NULL))) __PYX_ERR(2, 398, __pyx_L1_error) + __pyx_v_itemp = __pyx_t_7; + + /* "View.MemoryView":397 + * cdef char *itemp = self.view.buf + * + * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< + * itemp = pybuffer_index(&self.view, itemp, idx, dim) + * + */ + } + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":400 + * itemp = pybuffer_index(&self.view, itemp, idx, dim) + * + * return itemp # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_itemp; + goto __pyx_L0; + + /* "View.MemoryView":393 + * PyThread_free_lock(self.lock) + * + * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< + * cdef Py_ssize_t dim + * cdef char *itemp = self.view.buf + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview.get_item_pointer", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_idx); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":403 + * + * + * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< + * if index is Ellipsis: + * return self + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index); /*proto*/ +static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { + PyObject *__pyx_v_have_slices = NULL; + PyObject *__pyx_v_indices = NULL; + char *__pyx_v_itemp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + char *__pyx_t_6; + __Pyx_RefNannySetupContext("__getitem__", 0); + + /* "View.MemoryView":404 + * + * def __getitem__(memoryview self, object index): + * if index is Ellipsis: # <<<<<<<<<<<<<< + * return self + * + */ + __pyx_t_1 = (__pyx_v_index == __pyx_builtin_Ellipsis); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":405 + * def __getitem__(memoryview self, object index): + * if index is Ellipsis: + * return self # <<<<<<<<<<<<<< + * + * have_slices, indices = _unellipsify(index, self.view.ndim) + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __pyx_r = ((PyObject *)__pyx_v_self); + goto __pyx_L0; + + /* "View.MemoryView":404 + * + * def __getitem__(memoryview self, object index): + * if index is Ellipsis: # <<<<<<<<<<<<<< + * return self + * + */ + } + + /* "View.MemoryView":407 + * return self + * + * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< + * + * cdef char *itemp + */ + __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 407, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (likely(__pyx_t_3 != Py_None)) { + PyObject* sequence = __pyx_t_3; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(2, 407, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); + #else + __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 407, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 407, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + #endif + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 407, __pyx_L1_error) + } + __pyx_v_have_slices = __pyx_t_4; + __pyx_t_4 = 0; + __pyx_v_indices = __pyx_t_5; + __pyx_t_5 = 0; + + /* "View.MemoryView":410 + * + * cdef char *itemp + * if have_slices: # <<<<<<<<<<<<<< + * return memview_slice(self, indices) + * else: + */ + __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 410, __pyx_L1_error) + if (__pyx_t_2) { + + /* "View.MemoryView":411 + * cdef char *itemp + * if have_slices: + * return memview_slice(self, indices) # <<<<<<<<<<<<<< + * else: + * itemp = self.get_item_pointer(indices) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 411, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":410 + * + * cdef char *itemp + * if have_slices: # <<<<<<<<<<<<<< + * return memview_slice(self, indices) + * else: + */ + } + + /* "View.MemoryView":413 + * return memview_slice(self, indices) + * else: + * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< + * return self.convert_item_to_object(itemp) + * + */ + /*else*/ { + __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == ((char *)NULL))) __PYX_ERR(2, 413, __pyx_L1_error) + __pyx_v_itemp = __pyx_t_6; + + /* "View.MemoryView":414 + * else: + * itemp = self.get_item_pointer(indices) + * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< + * + * def __setitem__(memoryview self, object index, object value): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 414, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + } + + /* "View.MemoryView":403 + * + * + * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< + * if index is Ellipsis: + * return self + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_have_slices); + __Pyx_XDECREF(__pyx_v_indices); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":416 + * return self.convert_item_to_object(itemp) + * + * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") + */ + +/* Python wrapper */ +static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /*proto*/ +static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index), ((PyObject *)__pyx_v_value)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { + PyObject *__pyx_v_have_slices = NULL; + PyObject *__pyx_v_obj = NULL; + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + __Pyx_RefNannySetupContext("__setitem__", 0); + __Pyx_INCREF(__pyx_v_index); + + /* "View.MemoryView":417 + * + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: # <<<<<<<<<<<<<< + * raise TypeError("Cannot assign to read-only memoryview") + * + */ + __pyx_t_1 = (__pyx_v_self->view.readonly != 0); + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":418 + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< + * + * have_slices, index = _unellipsify(index, self.view.ndim) + */ + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 418, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(2, 418, __pyx_L1_error) + + /* "View.MemoryView":417 + * + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: # <<<<<<<<<<<<<< + * raise TypeError("Cannot assign to read-only memoryview") + * + */ + } + + /* "View.MemoryView":420 + * raise TypeError("Cannot assign to read-only memoryview") + * + * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< + * + * if have_slices: + */ + __pyx_t_2 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 420, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + if (likely(__pyx_t_2 != Py_None)) { + PyObject* sequence = __pyx_t_2; + Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); + if (unlikely(size != 2)) { + if (size > 2) __Pyx_RaiseTooManyValuesError(2); + else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); + __PYX_ERR(2, 420, __pyx_L1_error) + } + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); + __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); + __Pyx_INCREF(__pyx_t_3); + __Pyx_INCREF(__pyx_t_4); + #else + __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 420, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 420, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + #endif + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + } else { + __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 420, __pyx_L1_error) + } + __pyx_v_have_slices = __pyx_t_3; + __pyx_t_3 = 0; + __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_4); + __pyx_t_4 = 0; + + /* "View.MemoryView":422 + * have_slices, index = _unellipsify(index, self.view.ndim) + * + * if have_slices: # <<<<<<<<<<<<<< + * obj = self.is_slice(value) + * if obj: + */ + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 422, __pyx_L1_error) + if (__pyx_t_1) { + + /* "View.MemoryView":423 + * + * if have_slices: + * obj = self.is_slice(value) # <<<<<<<<<<<<<< + * if obj: + * self.setitem_slice_assignment(self[index], obj) + */ + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 423, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_v_obj = __pyx_t_2; + __pyx_t_2 = 0; + + /* "View.MemoryView":424 + * if have_slices: + * obj = self.is_slice(value) + * if obj: # <<<<<<<<<<<<<< + * self.setitem_slice_assignment(self[index], obj) + * else: + */ + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 424, __pyx_L1_error) + if (__pyx_t_1) { + + /* "View.MemoryView":425 + * obj = self.is_slice(value) + * if obj: + * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< + * else: + * self.setitem_slice_assign_scalar(self[index], value) + */ + __pyx_t_2 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 425, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_2, __pyx_v_obj); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 425, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + + /* "View.MemoryView":424 + * if have_slices: + * obj = self.is_slice(value) + * if obj: # <<<<<<<<<<<<<< + * self.setitem_slice_assignment(self[index], obj) + * else: + */ + goto __pyx_L5; + } + + /* "View.MemoryView":427 + * self.setitem_slice_assignment(self[index], obj) + * else: + * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< + * else: + * self.setitem_indexed(index, value) + */ + /*else*/ { + __pyx_t_4 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 427, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + if (!(likely(((__pyx_t_4) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_4, __pyx_memoryview_type))))) __PYX_ERR(2, 427, __pyx_L1_error) + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_4), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 427, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + } + __pyx_L5:; + + /* "View.MemoryView":422 + * have_slices, index = _unellipsify(index, self.view.ndim) + * + * if have_slices: # <<<<<<<<<<<<<< + * obj = self.is_slice(value) + * if obj: + */ + goto __pyx_L4; + } + + /* "View.MemoryView":429 + * self.setitem_slice_assign_scalar(self[index], value) + * else: + * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< + * + * cdef is_slice(self, obj): + */ + /*else*/ { + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 429, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + } + __pyx_L4:; + + /* "View.MemoryView":416 + * return self.convert_item_to_object(itemp) + * + * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_have_slices); + __Pyx_XDECREF(__pyx_v_obj); + __Pyx_XDECREF(__pyx_v_index); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":431 + * self.setitem_indexed(index, value) + * + * cdef is_slice(self, obj): # <<<<<<<<<<<<<< + * if not isinstance(obj, memoryview): + * try: + */ + +static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + int __pyx_t_9; + __Pyx_RefNannySetupContext("is_slice", 0); + __Pyx_INCREF(__pyx_v_obj); + + /* "View.MemoryView":432 + * + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< + * try: + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + */ + __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_obj, __pyx_memoryview_type); + __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":433 + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): + * try: # <<<<<<<<<<<<<< + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_3, &__pyx_t_4, &__pyx_t_5); + __Pyx_XGOTREF(__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_4); + __Pyx_XGOTREF(__pyx_t_5); + /*try:*/ { + + /* "View.MemoryView":434 + * if not isinstance(obj, memoryview): + * try: + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< + * self.dtype_is_object) + * except TypeError: + */ + __pyx_t_6 = __Pyx_PyInt_From_int(((__pyx_v_self->flags & (~PyBUF_WRITABLE)) | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 434, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_6); + + /* "View.MemoryView":435 + * try: + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) # <<<<<<<<<<<<<< + * except TypeError: + * return None + */ + __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 435, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_7); + + /* "View.MemoryView":434 + * if not isinstance(obj, memoryview): + * try: + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< + * self.dtype_is_object) + * except TypeError: + */ + __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 434, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_8); + __Pyx_INCREF(__pyx_v_obj); + __Pyx_GIVEREF(__pyx_v_obj); + PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_obj); + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_6); + __Pyx_GIVEREF(__pyx_t_7); + PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); + __pyx_t_6 = 0; + __pyx_t_7 = 0; + __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 434, __pyx_L4_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); + __pyx_t_7 = 0; + + /* "View.MemoryView":433 + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): + * try: # <<<<<<<<<<<<<< + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + */ + } + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + goto __pyx_L9_try_end; + __pyx_L4_error:; + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + + /* "View.MemoryView":436 + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + * except TypeError: # <<<<<<<<<<<<<< + * return None + * + */ + __pyx_t_9 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); + if (__pyx_t_9) { + __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(2, 436, __pyx_L6_except_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_GOTREF(__pyx_t_8); + __Pyx_GOTREF(__pyx_t_6); + + /* "View.MemoryView":437 + * self.dtype_is_object) + * except TypeError: + * return None # <<<<<<<<<<<<<< + * + * return obj + */ + __Pyx_XDECREF(__pyx_r); + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + goto __pyx_L7_except_return; + } + goto __pyx_L6_except_error; + __pyx_L6_except_error:; + + /* "View.MemoryView":433 + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): + * try: # <<<<<<<<<<<<<< + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + * self.dtype_is_object) + */ + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_XGIVEREF(__pyx_t_5); + __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); + goto __pyx_L1_error; + __pyx_L7_except_return:; + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_XGIVEREF(__pyx_t_5); + __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); + goto __pyx_L0; + __pyx_L9_try_end:; + } + + /* "View.MemoryView":432 + * + * cdef is_slice(self, obj): + * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< + * try: + * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, + */ + } + + /* "View.MemoryView":439 + * return None + * + * return obj # <<<<<<<<<<<<<< + * + * cdef setitem_slice_assignment(self, dst, src): + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_obj); + __pyx_r = __pyx_v_obj; + goto __pyx_L0; + + /* "View.MemoryView":431 + * self.setitem_indexed(index, value) + * + * cdef is_slice(self, obj): # <<<<<<<<<<<<<< + * if not isinstance(obj, memoryview): + * try: + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_obj); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":441 + * return obj + * + * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice dst_slice + * cdef __Pyx_memviewslice src_slice + */ + +static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src) { + __Pyx_memviewslice __pyx_v_dst_slice; + __Pyx_memviewslice __pyx_v_src_slice; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice *__pyx_t_1; + __Pyx_memviewslice *__pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + int __pyx_t_5; + int __pyx_t_6; + __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); + + /* "View.MemoryView":445 + * cdef __Pyx_memviewslice src_slice + * + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< + * get_slice_from_memview(dst, &dst_slice)[0], + * src.ndim, dst.ndim, self.dtype_is_object) + */ + if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(2, 445, __pyx_L1_error) + __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 445, __pyx_L1_error) + + /* "View.MemoryView":446 + * + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], + * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< + * src.ndim, dst.ndim, self.dtype_is_object) + * + */ + if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(2, 446, __pyx_L1_error) + __pyx_t_2 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice)); if (unlikely(__pyx_t_2 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 446, __pyx_L1_error) + + /* "View.MemoryView":447 + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], + * get_slice_from_memview(dst, &dst_slice)[0], + * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< + * + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): + */ + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 447, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 447, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 447, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 447, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":445 + * cdef __Pyx_memviewslice src_slice + * + * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< + * get_slice_from_memview(dst, &dst_slice)[0], + * src.ndim, dst.ndim, self.dtype_is_object) + */ + __pyx_t_6 = __pyx_memoryview_copy_contents((__pyx_t_1[0]), (__pyx_t_2[0]), __pyx_t_4, __pyx_t_5, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 445, __pyx_L1_error) + + /* "View.MemoryView":441 + * return obj + * + * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice dst_slice + * cdef __Pyx_memviewslice src_slice + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assignment", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":449 + * src.ndim, dst.ndim, self.dtype_is_object) + * + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< + * cdef int array[128] + * cdef void *tmp = NULL + */ + +static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value) { + int __pyx_v_array[0x80]; + void *__pyx_v_tmp; + void *__pyx_v_item; + __Pyx_memviewslice *__pyx_v_dst_slice; + __Pyx_memviewslice __pyx_v_tmp_slice; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice *__pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + int __pyx_t_4; + int __pyx_t_5; + char const *__pyx_t_6; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + PyObject *__pyx_t_9 = NULL; + PyObject *__pyx_t_10 = NULL; + PyObject *__pyx_t_11 = NULL; + PyObject *__pyx_t_12 = NULL; + __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); + + /* "View.MemoryView":451 + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): + * cdef int array[128] + * cdef void *tmp = NULL # <<<<<<<<<<<<<< + * cdef void *item + * + */ + __pyx_v_tmp = NULL; + + /* "View.MemoryView":456 + * cdef __Pyx_memviewslice *dst_slice + * cdef __Pyx_memviewslice tmp_slice + * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< + * + * if self.view.itemsize > sizeof(array): + */ + __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 456, __pyx_L1_error) + __pyx_v_dst_slice = __pyx_t_1; + + /* "View.MemoryView":458 + * dst_slice = get_slice_from_memview(dst, &tmp_slice) + * + * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: + */ + __pyx_t_2 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":459 + * + * if self.view.itemsize > sizeof(array): + * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< + * if tmp == NULL: + * raise MemoryError + */ + __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); + + /* "View.MemoryView":460 + * if self.view.itemsize > sizeof(array): + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * item = tmp + */ + __pyx_t_2 = ((__pyx_v_tmp == NULL) != 0); + if (unlikely(__pyx_t_2)) { + + /* "View.MemoryView":461 + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: + * raise MemoryError # <<<<<<<<<<<<<< + * item = tmp + * else: + */ + PyErr_NoMemory(); __PYX_ERR(2, 461, __pyx_L1_error) + + /* "View.MemoryView":460 + * if self.view.itemsize > sizeof(array): + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: # <<<<<<<<<<<<<< + * raise MemoryError + * item = tmp + */ + } + + /* "View.MemoryView":462 + * if tmp == NULL: + * raise MemoryError + * item = tmp # <<<<<<<<<<<<<< + * else: + * item = array + */ + __pyx_v_item = __pyx_v_tmp; + + /* "View.MemoryView":458 + * dst_slice = get_slice_from_memview(dst, &tmp_slice) + * + * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< + * tmp = PyMem_Malloc(self.view.itemsize) + * if tmp == NULL: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":464 + * item = tmp + * else: + * item = array # <<<<<<<<<<<<<< + * + * try: + */ + /*else*/ { + __pyx_v_item = ((void *)__pyx_v_array); + } + __pyx_L3:; + + /* "View.MemoryView":466 + * item = array + * + * try: # <<<<<<<<<<<<<< + * if self.dtype_is_object: + * ( item)[0] = value + */ + /*try:*/ { + + /* "View.MemoryView":467 + * + * try: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * ( item)[0] = value + * else: + */ + __pyx_t_2 = (__pyx_v_self->dtype_is_object != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":468 + * try: + * if self.dtype_is_object: + * ( item)[0] = value # <<<<<<<<<<<<<< + * else: + * self.assign_item_from_object( item, value) + */ + (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); + + /* "View.MemoryView":467 + * + * try: + * if self.dtype_is_object: # <<<<<<<<<<<<<< + * ( item)[0] = value + * else: + */ + goto __pyx_L8; + } + + /* "View.MemoryView":470 + * ( item)[0] = value + * else: + * self.assign_item_from_object( item, value) # <<<<<<<<<<<<<< + * + * + */ + /*else*/ { + __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 470, __pyx_L6_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } + __pyx_L8:; + + /* "View.MemoryView":474 + * + * + * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, + */ + __pyx_t_2 = ((__pyx_v_self->view.suboffsets != NULL) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":475 + * + * if self.view.suboffsets != NULL: + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, + * item, self.dtype_is_object) + */ + __pyx_t_3 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 475, __pyx_L6_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":474 + * + * + * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, + */ + } + + /* "View.MemoryView":476 + * if self.view.suboffsets != NULL: + * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) + * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< + * item, self.dtype_is_object) + * finally: + */ + __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); + } + + /* "View.MemoryView":479 + * item, self.dtype_is_object) + * finally: + * PyMem_Free(tmp) # <<<<<<<<<<<<<< + * + * cdef setitem_indexed(self, index, value): + */ + /*finally:*/ { + /*normal exit:*/{ + PyMem_Free(__pyx_v_tmp); + goto __pyx_L7; + } + __pyx_L6_error:; + /*exception exit:*/{ + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; + __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; + if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_10, &__pyx_t_11, &__pyx_t_12); + if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9) < 0)) __Pyx_ErrFetch(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); + __Pyx_XGOTREF(__pyx_t_7); + __Pyx_XGOTREF(__pyx_t_8); + __Pyx_XGOTREF(__pyx_t_9); + __Pyx_XGOTREF(__pyx_t_10); + __Pyx_XGOTREF(__pyx_t_11); + __Pyx_XGOTREF(__pyx_t_12); + __pyx_t_4 = __pyx_lineno; __pyx_t_5 = __pyx_clineno; __pyx_t_6 = __pyx_filename; + { + PyMem_Free(__pyx_v_tmp); + } + if (PY_MAJOR_VERSION >= 3) { + __Pyx_XGIVEREF(__pyx_t_10); + __Pyx_XGIVEREF(__pyx_t_11); + __Pyx_XGIVEREF(__pyx_t_12); + __Pyx_ExceptionReset(__pyx_t_10, __pyx_t_11, __pyx_t_12); + } + __Pyx_XGIVEREF(__pyx_t_7); + __Pyx_XGIVEREF(__pyx_t_8); + __Pyx_XGIVEREF(__pyx_t_9); + __Pyx_ErrRestore(__pyx_t_7, __pyx_t_8, __pyx_t_9); + __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; + __pyx_lineno = __pyx_t_4; __pyx_clineno = __pyx_t_5; __pyx_filename = __pyx_t_6; + goto __pyx_L1_error; + } + __pyx_L7:; + } + + /* "View.MemoryView":449 + * src.ndim, dst.ndim, self.dtype_is_object) + * + * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< + * cdef int array[128] + * cdef void *tmp = NULL + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assign_scalar", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":481 + * PyMem_Free(tmp) + * + * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< + * cdef char *itemp = self.get_item_pointer(index) + * self.assign_item_from_object(itemp, value) + */ + +static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { + char *__pyx_v_itemp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + char *__pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("setitem_indexed", 0); + + /* "View.MemoryView":482 + * + * cdef setitem_indexed(self, index, value): + * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< + * self.assign_item_from_object(itemp, value) + * + */ + __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == ((char *)NULL))) __PYX_ERR(2, 482, __pyx_L1_error) + __pyx_v_itemp = __pyx_t_1; + + /* "View.MemoryView":483 + * cdef setitem_indexed(self, index, value): + * cdef char *itemp = self.get_item_pointer(index) + * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< + * + * cdef convert_item_to_object(self, char *itemp): + */ + __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 483, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":481 + * PyMem_Free(tmp) + * + * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< + * cdef char *itemp = self.get_item_pointer(index) + * self.assign_item_from_object(itemp, value) + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_indexed", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":485 + * self.assign_item_from_object(itemp, value) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + +static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp) { + PyObject *__pyx_v_struct = NULL; + PyObject *__pyx_v_bytesitem = 0; + PyObject *__pyx_v_result = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + int __pyx_t_8; + PyObject *__pyx_t_9 = NULL; + size_t __pyx_t_10; + int __pyx_t_11; + __Pyx_RefNannySetupContext("convert_item_to_object", 0); + + /* "View.MemoryView":488 + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + * import struct # <<<<<<<<<<<<<< + * cdef bytes bytesitem + * + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 488, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_struct = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":491 + * cdef bytes bytesitem + * + * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< + * try: + * result = struct.unpack(self.view.format, bytesitem) + */ + __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 491, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":492 + * + * bytesitem = itemp[:self.view.itemsize] + * try: # <<<<<<<<<<<<<< + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + */ + { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ExceptionSave(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4); + __Pyx_XGOTREF(__pyx_t_2); + __Pyx_XGOTREF(__pyx_t_3); + __Pyx_XGOTREF(__pyx_t_4); + /*try:*/ { + + /* "View.MemoryView":493 + * bytesitem = itemp[:self.view.itemsize] + * try: + * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< + * except struct.error: + * raise ValueError("Unable to convert item to object") + */ + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 493, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 493, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_7 = NULL; + __pyx_t_8 = 0; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { + __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_5); + if (likely(__pyx_t_7)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); + __Pyx_INCREF(__pyx_t_7); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_5, function); + __pyx_t_8 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_5)) { + PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; + __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 493, __pyx_L3_error) + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { + PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; + __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 493, __pyx_L3_error) + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } else + #endif + { + __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 493, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_9); + if (__pyx_t_7) { + __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_7); __pyx_t_7 = NULL; + } + __Pyx_GIVEREF(__pyx_t_6); + PyTuple_SET_ITEM(__pyx_t_9, 0+__pyx_t_8, __pyx_t_6); + __Pyx_INCREF(__pyx_v_bytesitem); + __Pyx_GIVEREF(__pyx_v_bytesitem); + PyTuple_SET_ITEM(__pyx_t_9, 1+__pyx_t_8, __pyx_v_bytesitem); + __pyx_t_6 = 0; + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 493, __pyx_L3_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_v_result = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":492 + * + * bytesitem = itemp[:self.view.itemsize] + * try: # <<<<<<<<<<<<<< + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + */ + } + + /* "View.MemoryView":497 + * raise ValueError("Unable to convert item to object") + * else: + * if len(self.view.format) == 1: # <<<<<<<<<<<<<< + * return result[0] + * return result + */ + /*else:*/ { + __pyx_t_10 = strlen(__pyx_v_self->view.format); + __pyx_t_11 = ((__pyx_t_10 == 1) != 0); + if (__pyx_t_11) { + + /* "View.MemoryView":498 + * else: + * if len(self.view.format) == 1: + * return result[0] # <<<<<<<<<<<<<< + * return result + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 498, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L6_except_return; + + /* "View.MemoryView":497 + * raise ValueError("Unable to convert item to object") + * else: + * if len(self.view.format) == 1: # <<<<<<<<<<<<<< + * return result[0] + * return result + */ + } + + /* "View.MemoryView":499 + * if len(self.view.format) == 1: + * return result[0] + * return result # <<<<<<<<<<<<<< + * + * cdef assign_item_from_object(self, char *itemp, object value): + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_result); + __pyx_r = __pyx_v_result; + goto __pyx_L6_except_return; + } + __pyx_L3_error:; + __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; + + /* "View.MemoryView":494 + * try: + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: # <<<<<<<<<<<<<< + * raise ValueError("Unable to convert item to object") + * else: + */ + __Pyx_ErrFetch(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9); + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 494, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_8 = __Pyx_PyErr_GivenExceptionMatches(__pyx_t_1, __pyx_t_6); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __Pyx_ErrRestore(__pyx_t_1, __pyx_t_5, __pyx_t_9); + __pyx_t_1 = 0; __pyx_t_5 = 0; __pyx_t_9 = 0; + if (__pyx_t_8) { + __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + if (__Pyx_GetException(&__pyx_t_9, &__pyx_t_5, &__pyx_t_1) < 0) __PYX_ERR(2, 494, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_9); + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_1); + + /* "View.MemoryView":495 + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< + * else: + * if len(self.view.format) == 1: + */ + __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 495, __pyx_L5_except_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_Raise(__pyx_t_6, 0, 0, 0); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + __PYX_ERR(2, 495, __pyx_L5_except_error) + } + goto __pyx_L5_except_error; + __pyx_L5_except_error:; + + /* "View.MemoryView":492 + * + * bytesitem = itemp[:self.view.itemsize] + * try: # <<<<<<<<<<<<<< + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + */ + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); + goto __pyx_L1_error; + __pyx_L6_except_return:; + __Pyx_XGIVEREF(__pyx_t_2); + __Pyx_XGIVEREF(__pyx_t_3); + __Pyx_XGIVEREF(__pyx_t_4); + __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); + goto __pyx_L0; + } + + /* "View.MemoryView":485 + * self.assign_item_from_object(itemp, value) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_9); + __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_struct); + __Pyx_XDECREF(__pyx_v_bytesitem); + __Pyx_XDECREF(__pyx_v_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":501 + * return result + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + +static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { + PyObject *__pyx_v_struct = NULL; + char __pyx_v_c; + PyObject *__pyx_v_bytesvalue = 0; + Py_ssize_t __pyx_v_i; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + int __pyx_t_3; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + PyObject *__pyx_t_6 = NULL; + int __pyx_t_7; + PyObject *__pyx_t_8 = NULL; + Py_ssize_t __pyx_t_9; + PyObject *__pyx_t_10 = NULL; + char *__pyx_t_11; + char *__pyx_t_12; + char *__pyx_t_13; + char *__pyx_t_14; + __Pyx_RefNannySetupContext("assign_item_from_object", 0); + + /* "View.MemoryView":504 + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + * import struct # <<<<<<<<<<<<<< + * cdef char c + * cdef bytes bytesvalue + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 504, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_v_struct = __pyx_t_1; + __pyx_t_1 = 0; + + /* "View.MemoryView":509 + * cdef Py_ssize_t i + * + * if isinstance(value, tuple): # <<<<<<<<<<<<<< + * bytesvalue = struct.pack(self.view.format, *value) + * else: + */ + __pyx_t_2 = PyTuple_Check(__pyx_v_value); + __pyx_t_3 = (__pyx_t_2 != 0); + if (__pyx_t_3) { + + /* "View.MemoryView":510 + * + * if isinstance(value, tuple): + * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< + * else: + * bytesvalue = struct.pack(self.view.format, value) + */ + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 510, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 510, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 510, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); + __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 510, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 510, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 510, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(2, 510, __pyx_L1_error) + __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); + __pyx_t_4 = 0; + + /* "View.MemoryView":509 + * cdef Py_ssize_t i + * + * if isinstance(value, tuple): # <<<<<<<<<<<<<< + * bytesvalue = struct.pack(self.view.format, *value) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":512 + * bytesvalue = struct.pack(self.view.format, *value) + * else: + * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< + * + * for i, c in enumerate(bytesvalue): + */ + /*else*/ { + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 512, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 512, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_5 = NULL; + __pyx_t_7 = 0; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_6); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_6, function); + __pyx_t_7 = 1; + } + } + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(__pyx_t_6)) { + PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; + __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { + PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; + __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + } else + #endif + { + __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 512, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_8); + if (__pyx_t_5) { + __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; + } + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_t_1); + __Pyx_INCREF(__pyx_v_value); + __Pyx_GIVEREF(__pyx_v_value); + PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_value); + __pyx_t_1 = 0; + __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; + } + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(2, 512, __pyx_L1_error) + __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); + __pyx_t_4 = 0; + } + __pyx_L3:; + + /* "View.MemoryView":514 + * bytesvalue = struct.pack(self.view.format, value) + * + * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< + * itemp[i] = c + * + */ + __pyx_t_9 = 0; + if (unlikely(__pyx_v_bytesvalue == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); + __PYX_ERR(2, 514, __pyx_L1_error) + } + __Pyx_INCREF(__pyx_v_bytesvalue); + __pyx_t_10 = __pyx_v_bytesvalue; + __pyx_t_12 = PyBytes_AS_STRING(__pyx_t_10); + __pyx_t_13 = (__pyx_t_12 + PyBytes_GET_SIZE(__pyx_t_10)); + for (__pyx_t_14 = __pyx_t_12; __pyx_t_14 < __pyx_t_13; __pyx_t_14++) { + __pyx_t_11 = __pyx_t_14; + __pyx_v_c = (__pyx_t_11[0]); + + /* "View.MemoryView":515 + * + * for i, c in enumerate(bytesvalue): + * itemp[i] = c # <<<<<<<<<<<<<< + * + * @cname('getbuffer') + */ + __pyx_v_i = __pyx_t_9; + + /* "View.MemoryView":514 + * bytesvalue = struct.pack(self.view.format, value) + * + * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< + * itemp[i] = c + * + */ + __pyx_t_9 = (__pyx_t_9 + 1); + + /* "View.MemoryView":515 + * + * for i, c in enumerate(bytesvalue): + * itemp[i] = c # <<<<<<<<<<<<<< + * + * @cname('getbuffer') + */ + (__pyx_v_itemp[__pyx_v_i]) = __pyx_v_c; + } + __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; + + /* "View.MemoryView":501 + * return result + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * """Only used if instantiated manually by the user, or if Cython doesn't + * know how to convert the type""" + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_XDECREF(__pyx_t_10); + __Pyx_AddTraceback("View.MemoryView.memoryview.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_struct); + __Pyx_XDECREF(__pyx_v_bytesvalue); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":518 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") + */ + +/* Python wrapper */ +static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ +static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + Py_ssize_t *__pyx_t_4; + char *__pyx_t_5; + void *__pyx_t_6; + int __pyx_t_7; + Py_ssize_t __pyx_t_8; + if (__pyx_v_info == NULL) { + PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); + return -1; + } + __Pyx_RefNannySetupContext("__getbuffer__", 0); + __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(__pyx_v_info->obj); + + /* "View.MemoryView":519 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * + */ + __pyx_t_2 = ((__pyx_v_flags & PyBUF_WRITABLE) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L4_bool_binop_done; + } + __pyx_t_2 = (__pyx_v_self->view.readonly != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L4_bool_binop_done:; + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":520 + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< + * + * if flags & PyBUF_ND: + */ + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 520, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 520, __pyx_L1_error) + + /* "View.MemoryView":519 + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * + */ + } + + /* "View.MemoryView":522 + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * + * if flags & PyBUF_ND: # <<<<<<<<<<<<<< + * info.shape = self.view.shape + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_ND) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":523 + * + * if flags & PyBUF_ND: + * info.shape = self.view.shape # <<<<<<<<<<<<<< + * else: + * info.shape = NULL + */ + __pyx_t_4 = __pyx_v_self->view.shape; + __pyx_v_info->shape = __pyx_t_4; + + /* "View.MemoryView":522 + * raise ValueError("Cannot create writable memory view from read-only memoryview") + * + * if flags & PyBUF_ND: # <<<<<<<<<<<<<< + * info.shape = self.view.shape + * else: + */ + goto __pyx_L6; + } + + /* "View.MemoryView":525 + * info.shape = self.view.shape + * else: + * info.shape = NULL # <<<<<<<<<<<<<< + * + * if flags & PyBUF_STRIDES: + */ + /*else*/ { + __pyx_v_info->shape = NULL; + } + __pyx_L6:; + + /* "View.MemoryView":527 + * info.shape = NULL + * + * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< + * info.strides = self.view.strides + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":528 + * + * if flags & PyBUF_STRIDES: + * info.strides = self.view.strides # <<<<<<<<<<<<<< + * else: + * info.strides = NULL + */ + __pyx_t_4 = __pyx_v_self->view.strides; + __pyx_v_info->strides = __pyx_t_4; + + /* "View.MemoryView":527 + * info.shape = NULL + * + * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< + * info.strides = self.view.strides + * else: + */ + goto __pyx_L7; + } + + /* "View.MemoryView":530 + * info.strides = self.view.strides + * else: + * info.strides = NULL # <<<<<<<<<<<<<< + * + * if flags & PyBUF_INDIRECT: + */ + /*else*/ { + __pyx_v_info->strides = NULL; + } + __pyx_L7:; + + /* "View.MemoryView":532 + * info.strides = NULL + * + * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< + * info.suboffsets = self.view.suboffsets + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":533 + * + * if flags & PyBUF_INDIRECT: + * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< + * else: + * info.suboffsets = NULL + */ + __pyx_t_4 = __pyx_v_self->view.suboffsets; + __pyx_v_info->suboffsets = __pyx_t_4; + + /* "View.MemoryView":532 + * info.strides = NULL + * + * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< + * info.suboffsets = self.view.suboffsets + * else: + */ + goto __pyx_L8; + } + + /* "View.MemoryView":535 + * info.suboffsets = self.view.suboffsets + * else: + * info.suboffsets = NULL # <<<<<<<<<<<<<< + * + * if flags & PyBUF_FORMAT: + */ + /*else*/ { + __pyx_v_info->suboffsets = NULL; + } + __pyx_L8:; + + /* "View.MemoryView":537 + * info.suboffsets = NULL + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.view.format + * else: + */ + __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":538 + * + * if flags & PyBUF_FORMAT: + * info.format = self.view.format # <<<<<<<<<<<<<< + * else: + * info.format = NULL + */ + __pyx_t_5 = __pyx_v_self->view.format; + __pyx_v_info->format = __pyx_t_5; + + /* "View.MemoryView":537 + * info.suboffsets = NULL + * + * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< + * info.format = self.view.format + * else: + */ + goto __pyx_L9; + } + + /* "View.MemoryView":540 + * info.format = self.view.format + * else: + * info.format = NULL # <<<<<<<<<<<<<< + * + * info.buf = self.view.buf + */ + /*else*/ { + __pyx_v_info->format = NULL; + } + __pyx_L9:; + + /* "View.MemoryView":542 + * info.format = NULL + * + * info.buf = self.view.buf # <<<<<<<<<<<<<< + * info.ndim = self.view.ndim + * info.itemsize = self.view.itemsize + */ + __pyx_t_6 = __pyx_v_self->view.buf; + __pyx_v_info->buf = __pyx_t_6; + + /* "View.MemoryView":543 + * + * info.buf = self.view.buf + * info.ndim = self.view.ndim # <<<<<<<<<<<<<< + * info.itemsize = self.view.itemsize + * info.len = self.view.len + */ + __pyx_t_7 = __pyx_v_self->view.ndim; + __pyx_v_info->ndim = __pyx_t_7; + + /* "View.MemoryView":544 + * info.buf = self.view.buf + * info.ndim = self.view.ndim + * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< + * info.len = self.view.len + * info.readonly = self.view.readonly + */ + __pyx_t_8 = __pyx_v_self->view.itemsize; + __pyx_v_info->itemsize = __pyx_t_8; + + /* "View.MemoryView":545 + * info.ndim = self.view.ndim + * info.itemsize = self.view.itemsize + * info.len = self.view.len # <<<<<<<<<<<<<< + * info.readonly = self.view.readonly + * info.obj = self + */ + __pyx_t_8 = __pyx_v_self->view.len; + __pyx_v_info->len = __pyx_t_8; + + /* "View.MemoryView":546 + * info.itemsize = self.view.itemsize + * info.len = self.view.len + * info.readonly = self.view.readonly # <<<<<<<<<<<<<< + * info.obj = self + * + */ + __pyx_t_1 = __pyx_v_self->view.readonly; + __pyx_v_info->readonly = __pyx_t_1; + + /* "View.MemoryView":547 + * info.len = self.view.len + * info.readonly = self.view.readonly + * info.obj = self # <<<<<<<<<<<<<< + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") + */ + __Pyx_INCREF(((PyObject *)__pyx_v_self)); + __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); + __pyx_v_info->obj = ((PyObject *)__pyx_v_self); + + /* "View.MemoryView":518 + * + * @cname('getbuffer') + * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") + */ + + /* function exit code */ + __pyx_r = 0; + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + if (__pyx_v_info->obj != NULL) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + goto __pyx_L2; + __pyx_L0:; + if (__pyx_v_info->obj == Py_None) { + __Pyx_GOTREF(__pyx_v_info->obj); + __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; + } + __pyx_L2:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":553 + * + * @property + * def T(self): # <<<<<<<<<<<<<< + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":554 + * @property + * def T(self): + * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< + * transpose_memslice(&result.from_slice) + * return result + */ + __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 554, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(2, 554, __pyx_L1_error) + __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":555 + * def T(self): + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< + * return result + * + */ + __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(2, 555, __pyx_L1_error) + + /* "View.MemoryView":556 + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) + * return result # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = ((PyObject *)__pyx_v_result); + goto __pyx_L0; + + /* "View.MemoryView":553 + * + * @property + * def T(self): # <<<<<<<<<<<<<< + * cdef _memoryviewslice result = memoryview_copy(self) + * transpose_memslice(&result.from_slice) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.T.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":559 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.obj + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":560 + * @property + * def base(self): + * return self.obj # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->obj); + __pyx_r = __pyx_v_self->obj; + goto __pyx_L0; + + /* "View.MemoryView":559 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.obj + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":563 + * + * @property + * def shape(self): # <<<<<<<<<<<<<< + * return tuple([length for length in self.view.shape[:self.view.ndim]]) + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_v_length; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + Py_ssize_t *__pyx_t_2; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":564 + * @property + * def shape(self): + * return tuple([length for length in self.view.shape[:self.view.ndim]]) # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 564, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_3 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); + for (__pyx_t_4 = __pyx_v_self->view.shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { + __pyx_t_2 = __pyx_t_4; + __pyx_v_length = (__pyx_t_2[0]); + __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 564, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(2, 564, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + } + __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 564, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "View.MemoryView":563 + * + * @property + * def shape(self): # <<<<<<<<<<<<<< + * return tuple([length for length in self.view.shape[:self.view.ndim]]) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview.shape.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":567 + * + * @property + * def strides(self): # <<<<<<<<<<<<<< + * if self.view.strides == NULL: + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_v_stride; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + Py_ssize_t *__pyx_t_5; + PyObject *__pyx_t_6 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":568 + * @property + * def strides(self): + * if self.view.strides == NULL: # <<<<<<<<<<<<<< + * + * raise ValueError("Buffer view does not expose strides") + */ + __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":570 + * if self.view.strides == NULL: + * + * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< + * + * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) + */ + __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 570, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(2, 570, __pyx_L1_error) + + /* "View.MemoryView":568 + * @property + * def strides(self): + * if self.view.strides == NULL: # <<<<<<<<<<<<<< + * + * raise ValueError("Buffer view does not expose strides") + */ + } + + /* "View.MemoryView":572 + * raise ValueError("Buffer view does not expose strides") + * + * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 572, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = (__pyx_v_self->view.strides + __pyx_v_self->view.ndim); + for (__pyx_t_5 = __pyx_v_self->view.strides; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { + __pyx_t_3 = __pyx_t_5; + __pyx_v_stride = (__pyx_t_3[0]); + __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 572, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(2, 572, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + } + __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 572, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_6; + __pyx_t_6 = 0; + goto __pyx_L0; + + /* "View.MemoryView":567 + * + * @property + * def strides(self): # <<<<<<<<<<<<<< + * if self.view.strides == NULL: + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("View.MemoryView.memoryview.strides.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":575 + * + * @property + * def suboffsets(self): # <<<<<<<<<<<<<< + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + Py_ssize_t *__pyx_t_4; + Py_ssize_t *__pyx_t_5; + Py_ssize_t *__pyx_t_6; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":576 + * @property + * def suboffsets(self): + * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< + * return (-1,) * self.view.ndim + * + */ + __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":577 + * def suboffsets(self): + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< + * + * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 577, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__19, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 577, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":576 + * @property + * def suboffsets(self): + * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< + * return (-1,) * self.view.ndim + * + */ + } + + /* "View.MemoryView":579 + * return (-1,) * self.view.ndim + * + * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 579, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = (__pyx_v_self->view.suboffsets + __pyx_v_self->view.ndim); + for (__pyx_t_6 = __pyx_v_self->view.suboffsets; __pyx_t_6 < __pyx_t_5; __pyx_t_6++) { + __pyx_t_4 = __pyx_t_6; + __pyx_v_suboffset = (__pyx_t_4[0]); + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 579, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(2, 579, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + } + __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 579, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":575 + * + * @property + * def suboffsets(self): # <<<<<<<<<<<<<< + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.suboffsets.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":582 + * + * @property + * def ndim(self): # <<<<<<<<<<<<<< + * return self.view.ndim + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":583 + * @property + * def ndim(self): + * return self.view.ndim # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 583, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":582 + * + * @property + * def ndim(self): # <<<<<<<<<<<<<< + * return self.view.ndim + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":586 + * + * @property + * def itemsize(self): # <<<<<<<<<<<<<< + * return self.view.itemsize + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":587 + * @property + * def itemsize(self): + * return self.view.itemsize # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 587, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":586 + * + * @property + * def itemsize(self): # <<<<<<<<<<<<<< + * return self.view.itemsize + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.itemsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":590 + * + * @property + * def nbytes(self): # <<<<<<<<<<<<<< + * return self.size * self.view.itemsize + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":591 + * @property + * def nbytes(self): + * return self.size * self.view.itemsize # <<<<<<<<<<<<<< + * + * @property + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 591, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 591, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 591, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":590 + * + * @property + * def nbytes(self): # <<<<<<<<<<<<<< + * return self.size * self.view.itemsize + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.nbytes.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":594 + * + * @property + * def size(self): # <<<<<<<<<<<<<< + * if self._size is None: + * result = 1 + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_v_result = NULL; + PyObject *__pyx_v_length = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + Py_ssize_t *__pyx_t_5; + PyObject *__pyx_t_6 = NULL; + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":595 + * @property + * def size(self): + * if self._size is None: # <<<<<<<<<<<<<< + * result = 1 + * + */ + __pyx_t_1 = (__pyx_v_self->_size == Py_None); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":596 + * def size(self): + * if self._size is None: + * result = 1 # <<<<<<<<<<<<<< + * + * for length in self.view.shape[:self.view.ndim]: + */ + __Pyx_INCREF(__pyx_int_1); + __pyx_v_result = __pyx_int_1; + + /* "View.MemoryView":598 + * result = 1 + * + * for length in self.view.shape[:self.view.ndim]: # <<<<<<<<<<<<<< + * result *= length + * + */ + __pyx_t_4 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); + for (__pyx_t_5 = __pyx_v_self->view.shape; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { + __pyx_t_3 = __pyx_t_5; + __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 598, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_6); + __pyx_t_6 = 0; + + /* "View.MemoryView":599 + * + * for length in self.view.shape[:self.view.ndim]: + * result *= length # <<<<<<<<<<<<<< + * + * self._size = result + */ + __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 599, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_6); + __pyx_t_6 = 0; + } + + /* "View.MemoryView":601 + * result *= length + * + * self._size = result # <<<<<<<<<<<<<< + * + * return self._size + */ + __Pyx_INCREF(__pyx_v_result); + __Pyx_GIVEREF(__pyx_v_result); + __Pyx_GOTREF(__pyx_v_self->_size); + __Pyx_DECREF(__pyx_v_self->_size); + __pyx_v_self->_size = __pyx_v_result; + + /* "View.MemoryView":595 + * @property + * def size(self): + * if self._size is None: # <<<<<<<<<<<<<< + * result = 1 + * + */ + } + + /* "View.MemoryView":603 + * self._size = result + * + * return self._size # <<<<<<<<<<<<<< + * + * def __len__(self): + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->_size); + __pyx_r = __pyx_v_self->_size; + goto __pyx_L0; + + /* "View.MemoryView":594 + * + * @property + * def size(self): # <<<<<<<<<<<<<< + * if self._size is None: + * result = 1 + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_6); + __Pyx_AddTraceback("View.MemoryView.memoryview.size.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_result); + __Pyx_XDECREF(__pyx_v_length); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":605 + * return self._size + * + * def __len__(self): # <<<<<<<<<<<<<< + * if self.view.ndim >= 1: + * return self.view.shape[0] + */ + +/* Python wrapper */ +static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self); /*proto*/ +static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self) { + Py_ssize_t __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("__len__", 0); + + /* "View.MemoryView":606 + * + * def __len__(self): + * if self.view.ndim >= 1: # <<<<<<<<<<<<<< + * return self.view.shape[0] + * + */ + __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":607 + * def __len__(self): + * if self.view.ndim >= 1: + * return self.view.shape[0] # <<<<<<<<<<<<<< + * + * return 0 + */ + __pyx_r = (__pyx_v_self->view.shape[0]); + goto __pyx_L0; + + /* "View.MemoryView":606 + * + * def __len__(self): + * if self.view.ndim >= 1: # <<<<<<<<<<<<<< + * return self.view.shape[0] + * + */ + } + + /* "View.MemoryView":609 + * return self.view.shape[0] + * + * return 0 # <<<<<<<<<<<<<< + * + * def __repr__(self): + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":605 + * return self._size + * + * def __len__(self): # <<<<<<<<<<<<<< + * if self.view.ndim >= 1: + * return self.view.shape[0] + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":611 + * return 0 + * + * def __repr__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__, + * id(self)) + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("__repr__", 0); + + /* "View.MemoryView":612 + * + * def __repr__(self): + * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< + * id(self)) + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 612, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 612, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 612, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + + /* "View.MemoryView":613 + * def __repr__(self): + * return "" % (self.base.__class__.__name__, + * id(self)) # <<<<<<<<<<<<<< + * + * def __str__(self): + */ + __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_builtin_id, ((PyObject *)__pyx_v_self)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 613, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + + /* "View.MemoryView":612 + * + * def __repr__(self): + * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< + * id(self)) + * + */ + __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 612, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 612, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":611 + * return 0 + * + * def __repr__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__, + * id(self)) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":615 + * id(self)) + * + * def __str__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__,) + * + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("__str__", 0); + + /* "View.MemoryView":616 + * + * def __str__(self): + * return "" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 616, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 616, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 616, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 616, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); + __pyx_t_1 = 0; + __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 616, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":615 + * id(self)) + * + * def __str__(self): # <<<<<<<<<<<<<< + * return "" % (self.base.__class__.__name__,) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":619 + * + * + * def is_c_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("is_c_contig (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice *__pyx_v_mslice; + __Pyx_memviewslice __pyx_v_tmp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice *__pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("is_c_contig", 0); + + /* "View.MemoryView":622 + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< + * return slice_is_contig(mslice[0], 'C', self.view.ndim) + * + */ + __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 622, __pyx_L1_error) + __pyx_v_mslice = __pyx_t_1; + + /* "View.MemoryView":623 + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) + * return slice_is_contig(mslice[0], 'C', self.view.ndim) # <<<<<<<<<<<<<< + * + * def is_f_contig(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 623, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":619 + * + * + * def is_c_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.is_c_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":625 + * return slice_is_contig(mslice[0], 'C', self.view.ndim) + * + * def is_f_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("is_f_contig (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice *__pyx_v_mslice; + __Pyx_memviewslice __pyx_v_tmp; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice *__pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("is_f_contig", 0); + + /* "View.MemoryView":628 + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< + * return slice_is_contig(mslice[0], 'F', self.view.ndim) + * + */ + __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 628, __pyx_L1_error) + __pyx_v_mslice = __pyx_t_1; + + /* "View.MemoryView":629 + * cdef __Pyx_memviewslice tmp + * mslice = get_slice_from_memview(self, &tmp) + * return slice_is_contig(mslice[0], 'F', self.view.ndim) # <<<<<<<<<<<<<< + * + * def copy(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 629, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":625 + * return slice_is_contig(mslice[0], 'C', self.view.ndim) + * + * def is_f_contig(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice *mslice + * cdef __Pyx_memviewslice tmp + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.is_f_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":631 + * return slice_is_contig(mslice[0], 'F', self.view.ndim) + * + * def copy(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice mslice + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("copy (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice __pyx_v_mslice; + int __pyx_v_flags; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("copy", 0); + + /* "View.MemoryView":633 + * def copy(self): + * cdef __Pyx_memviewslice mslice + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< + * + * slice_copy(self, &mslice) + */ + __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); + + /* "View.MemoryView":635 + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS + * + * slice_copy(self, &mslice) # <<<<<<<<<<<<<< + * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, + * self.view.itemsize, + */ + __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); + + /* "View.MemoryView":636 + * + * slice_copy(self, &mslice) + * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< + * self.view.itemsize, + * flags|PyBUF_C_CONTIGUOUS, + */ + __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(2, 636, __pyx_L1_error) + __pyx_v_mslice = __pyx_t_1; + + /* "View.MemoryView":641 + * self.dtype_is_object) + * + * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< + * + * def copy_fortran(self): + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 641, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":631 + * return slice_is_contig(mslice[0], 'F', self.view.ndim) + * + * def copy(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice mslice + * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.copy", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":643 + * return memoryview_copy_from_slice(self, &mslice) + * + * def copy_fortran(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice src, dst + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS + */ + +/* Python wrapper */ +static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("copy_fortran (wrapper)", 0); + __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self) { + __Pyx_memviewslice __pyx_v_src; + __Pyx_memviewslice __pyx_v_dst; + int __pyx_v_flags; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_memviewslice __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("copy_fortran", 0); + + /* "View.MemoryView":645 + * def copy_fortran(self): + * cdef __Pyx_memviewslice src, dst + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< + * + * slice_copy(self, &src) + */ + __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); + + /* "View.MemoryView":647 + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS + * + * slice_copy(self, &src) # <<<<<<<<<<<<<< + * dst = slice_copy_contig(&src, "fortran", self.view.ndim, + * self.view.itemsize, + */ + __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); + + /* "View.MemoryView":648 + * + * slice_copy(self, &src) + * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< + * self.view.itemsize, + * flags|PyBUF_F_CONTIGUOUS, + */ + __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(2, 648, __pyx_L1_error) + __pyx_v_dst = __pyx_t_1; + + /* "View.MemoryView":653 + * self.dtype_is_object) + * + * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 653, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":643 + * return memoryview_copy_from_slice(self, &mslice) + * + * def copy_fortran(self): # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice src, dst + * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView.memoryview.copy_fortran", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryview___reduce_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 2, __pyx_L1_error) + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryview_2__setstate_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":657 + * + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + */ + +static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { + struct __pyx_memoryview_obj *__pyx_v_result = 0; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); + + /* "View.MemoryView":658 + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): + * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< + * result.typeinfo = typeinfo + * return result + */ + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 658, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 658, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 658, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_o); + __Pyx_GIVEREF(__pyx_v_o); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 658, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":659 + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo # <<<<<<<<<<<<<< + * return result + * + */ + __pyx_v_result->typeinfo = __pyx_v_typeinfo; + + /* "View.MemoryView":660 + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + * return result # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_check') + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = ((PyObject *)__pyx_v_result); + goto __pyx_L0; + + /* "View.MemoryView":657 + * + * @cname('__pyx_memoryview_new') + * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< + * cdef memoryview result = memoryview(o, flags, dtype_is_object) + * result.typeinfo = typeinfo + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":663 + * + * @cname('__pyx_memoryview_check') + * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< + * return isinstance(o, memoryview) + * + */ + +static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + __Pyx_RefNannySetupContext("memoryview_check", 0); + + /* "View.MemoryView":664 + * @cname('__pyx_memoryview_check') + * cdef inline bint memoryview_check(object o): + * return isinstance(o, memoryview) # <<<<<<<<<<<<<< + * + * cdef tuple _unellipsify(object index, int ndim): + */ + __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_o, __pyx_memoryview_type); + __pyx_r = __pyx_t_1; + goto __pyx_L0; + + /* "View.MemoryView":663 + * + * @cname('__pyx_memoryview_check') + * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< + * return isinstance(o, memoryview) + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":666 + * return isinstance(o, memoryview) + * + * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< + * """ + * Replace all ellipses with full slices and fill incomplete indices with + */ + +static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { + PyObject *__pyx_v_tup = NULL; + PyObject *__pyx_v_result = NULL; + int __pyx_v_have_slices; + int __pyx_v_seen_ellipsis; + CYTHON_UNUSED PyObject *__pyx_v_idx = NULL; + PyObject *__pyx_v_item = NULL; + Py_ssize_t __pyx_v_nslices; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + Py_ssize_t __pyx_t_5; + PyObject *(*__pyx_t_6)(PyObject *); + PyObject *__pyx_t_7 = NULL; + Py_ssize_t __pyx_t_8; + int __pyx_t_9; + int __pyx_t_10; + PyObject *__pyx_t_11 = NULL; + __Pyx_RefNannySetupContext("_unellipsify", 0); + + /* "View.MemoryView":671 + * full slices. + * """ + * if not isinstance(index, tuple): # <<<<<<<<<<<<<< + * tup = (index,) + * else: + */ + __pyx_t_1 = PyTuple_Check(__pyx_v_index); + __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":672 + * """ + * if not isinstance(index, tuple): + * tup = (index,) # <<<<<<<<<<<<<< + * else: + * tup = index + */ + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 672, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_index); + __Pyx_GIVEREF(__pyx_v_index); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_index); + __pyx_v_tup = __pyx_t_3; + __pyx_t_3 = 0; + + /* "View.MemoryView":671 + * full slices. + * """ + * if not isinstance(index, tuple): # <<<<<<<<<<<<<< + * tup = (index,) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":674 + * tup = (index,) + * else: + * tup = index # <<<<<<<<<<<<<< + * + * result = [] + */ + /*else*/ { + __Pyx_INCREF(__pyx_v_index); + __pyx_v_tup = __pyx_v_index; + } + __pyx_L3:; + + /* "View.MemoryView":676 + * tup = index + * + * result = [] # <<<<<<<<<<<<<< + * have_slices = False + * seen_ellipsis = False + */ + __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 676, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_v_result = ((PyObject*)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":677 + * + * result = [] + * have_slices = False # <<<<<<<<<<<<<< + * seen_ellipsis = False + * for idx, item in enumerate(tup): + */ + __pyx_v_have_slices = 0; + + /* "View.MemoryView":678 + * result = [] + * have_slices = False + * seen_ellipsis = False # <<<<<<<<<<<<<< + * for idx, item in enumerate(tup): + * if item is Ellipsis: + */ + __pyx_v_seen_ellipsis = 0; + + /* "View.MemoryView":679 + * have_slices = False + * seen_ellipsis = False + * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< + * if item is Ellipsis: + * if not seen_ellipsis: + */ + __Pyx_INCREF(__pyx_int_0); + __pyx_t_3 = __pyx_int_0; + if (likely(PyList_CheckExact(__pyx_v_tup)) || PyTuple_CheckExact(__pyx_v_tup)) { + __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; + __pyx_t_6 = NULL; + } else { + __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 679, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 679, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_6)) { + if (likely(PyList_CheckExact(__pyx_t_4))) { + if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(2, 679, __pyx_L1_error) + #else + __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 679, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + #endif + } else { + if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(2, 679, __pyx_L1_error) + #else + __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 679, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + #endif + } + } else { + __pyx_t_7 = __pyx_t_6(__pyx_t_4); + if (unlikely(!__pyx_t_7)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(2, 679, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_7); + } + __Pyx_XDECREF_SET(__pyx_v_item, __pyx_t_7); + __pyx_t_7 = 0; + __Pyx_INCREF(__pyx_t_3); + __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); + __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 679, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_3); + __pyx_t_3 = __pyx_t_7; + __pyx_t_7 = 0; + + /* "View.MemoryView":680 + * seen_ellipsis = False + * for idx, item in enumerate(tup): + * if item is Ellipsis: # <<<<<<<<<<<<<< + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + */ + __pyx_t_2 = (__pyx_v_item == __pyx_builtin_Ellipsis); + __pyx_t_1 = (__pyx_t_2 != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":681 + * for idx, item in enumerate(tup): + * if item is Ellipsis: + * if not seen_ellipsis: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + * seen_ellipsis = True + */ + __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":682 + * if item is Ellipsis: + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< + * seen_ellipsis = True + * else: + */ + __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == ((Py_ssize_t)-1))) __PYX_ERR(2, 682, __pyx_L1_error) + __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 682, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + { Py_ssize_t __pyx_temp; + for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { + __Pyx_INCREF(__pyx_slice__22); + __Pyx_GIVEREF(__pyx_slice__22); + PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__22); + } + } + __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 682, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + + /* "View.MemoryView":683 + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + * seen_ellipsis = True # <<<<<<<<<<<<<< + * else: + * result.append(slice(None)) + */ + __pyx_v_seen_ellipsis = 1; + + /* "View.MemoryView":681 + * for idx, item in enumerate(tup): + * if item is Ellipsis: + * if not seen_ellipsis: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + * seen_ellipsis = True + */ + goto __pyx_L7; + } + + /* "View.MemoryView":685 + * seen_ellipsis = True + * else: + * result.append(slice(None)) # <<<<<<<<<<<<<< + * have_slices = True + * else: + */ + /*else*/ { + __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__22); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 685, __pyx_L1_error) + } + __pyx_L7:; + + /* "View.MemoryView":686 + * else: + * result.append(slice(None)) + * have_slices = True # <<<<<<<<<<<<<< + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): + */ + __pyx_v_have_slices = 1; + + /* "View.MemoryView":680 + * seen_ellipsis = False + * for idx, item in enumerate(tup): + * if item is Ellipsis: # <<<<<<<<<<<<<< + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) + */ + goto __pyx_L6; + } + + /* "View.MemoryView":688 + * have_slices = True + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< + * raise TypeError("Cannot index with type '%s'" % type(item)) + * + */ + /*else*/ { + __pyx_t_2 = PySlice_Check(__pyx_v_item); + __pyx_t_10 = ((!(__pyx_t_2 != 0)) != 0); + if (__pyx_t_10) { + } else { + __pyx_t_1 = __pyx_t_10; + goto __pyx_L9_bool_binop_done; + } + __pyx_t_10 = ((!(PyIndex_Check(__pyx_v_item) != 0)) != 0); + __pyx_t_1 = __pyx_t_10; + __pyx_L9_bool_binop_done:; + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":689 + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): + * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< + * + * have_slices = have_slices or isinstance(item, slice) + */ + __pyx_t_7 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 689, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __pyx_t_11 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_7); if (unlikely(!__pyx_t_11)) __PYX_ERR(2, 689, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_Raise(__pyx_t_11, 0, 0, 0); + __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; + __PYX_ERR(2, 689, __pyx_L1_error) + + /* "View.MemoryView":688 + * have_slices = True + * else: + * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< + * raise TypeError("Cannot index with type '%s'" % type(item)) + * + */ + } + + /* "View.MemoryView":691 + * raise TypeError("Cannot index with type '%s'" % type(item)) + * + * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< + * result.append(item) + * + */ + __pyx_t_10 = (__pyx_v_have_slices != 0); + if (!__pyx_t_10) { + } else { + __pyx_t_1 = __pyx_t_10; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_10 = PySlice_Check(__pyx_v_item); + __pyx_t_2 = (__pyx_t_10 != 0); + __pyx_t_1 = __pyx_t_2; + __pyx_L11_bool_binop_done:; + __pyx_v_have_slices = __pyx_t_1; + + /* "View.MemoryView":692 + * + * have_slices = have_slices or isinstance(item, slice) + * result.append(item) # <<<<<<<<<<<<<< + * + * nslices = ndim - len(result) + */ + __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 692, __pyx_L1_error) + } + __pyx_L6:; + + /* "View.MemoryView":679 + * have_slices = False + * seen_ellipsis = False + * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< + * if item is Ellipsis: + * if not seen_ellipsis: + */ + } + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":694 + * result.append(item) + * + * nslices = ndim - len(result) # <<<<<<<<<<<<<< + * if nslices: + * result.extend([slice(None)] * nslices) + */ + __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(2, 694, __pyx_L1_error) + __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); + + /* "View.MemoryView":695 + * + * nslices = ndim - len(result) + * if nslices: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * nslices) + * + */ + __pyx_t_1 = (__pyx_v_nslices != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":696 + * nslices = ndim - len(result) + * if nslices: + * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< + * + * return have_slices or nslices, tuple(result) + */ + __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 696, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + { Py_ssize_t __pyx_temp; + for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { + __Pyx_INCREF(__pyx_slice__22); + __Pyx_GIVEREF(__pyx_slice__22); + PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__22); + } + } + __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 696, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":695 + * + * nslices = ndim - len(result) + * if nslices: # <<<<<<<<<<<<<< + * result.extend([slice(None)] * nslices) + * + */ + } + + /* "View.MemoryView":698 + * result.extend([slice(None)] * nslices) + * + * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + */ + __Pyx_XDECREF(__pyx_r); + if (!__pyx_v_have_slices) { + } else { + __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 698, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __pyx_t_4; + __pyx_t_4 = 0; + goto __pyx_L14_bool_binop_done; + } + __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 698, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_3 = __pyx_t_4; + __pyx_t_4 = 0; + __pyx_L14_bool_binop_done:; + __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 698, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __pyx_t_11 = PyTuple_New(2); if (unlikely(!__pyx_t_11)) __PYX_ERR(2, 698, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_11); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_3); + __Pyx_GIVEREF(__pyx_t_4); + PyTuple_SET_ITEM(__pyx_t_11, 1, __pyx_t_4); + __pyx_t_3 = 0; + __pyx_t_4 = 0; + __pyx_r = ((PyObject*)__pyx_t_11); + __pyx_t_11 = 0; + goto __pyx_L0; + + /* "View.MemoryView":666 + * return isinstance(o, memoryview) + * + * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< + * """ + * Replace all ellipses with full slices and fill incomplete indices with + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_11); + __Pyx_AddTraceback("View.MemoryView._unellipsify", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v_tup); + __Pyx_XDECREF(__pyx_v_result); + __Pyx_XDECREF(__pyx_v_idx); + __Pyx_XDECREF(__pyx_v_item); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":700 + * return have_slices or nslices, tuple(result) + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + */ + +static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __pyx_v_ndim) { + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + Py_ssize_t *__pyx_t_1; + Py_ssize_t *__pyx_t_2; + Py_ssize_t *__pyx_t_3; + int __pyx_t_4; + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); + + /* "View.MemoryView":701 + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + * for suboffset in suboffsets[:ndim]: # <<<<<<<<<<<<<< + * if suboffset >= 0: + * raise ValueError("Indirect dimensions not supported") + */ + __pyx_t_2 = (__pyx_v_suboffsets + __pyx_v_ndim); + for (__pyx_t_3 = __pyx_v_suboffsets; __pyx_t_3 < __pyx_t_2; __pyx_t_3++) { + __pyx_t_1 = __pyx_t_3; + __pyx_v_suboffset = (__pyx_t_1[0]); + + /* "View.MemoryView":702 + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * raise ValueError("Indirect dimensions not supported") + * + */ + __pyx_t_4 = ((__pyx_v_suboffset >= 0) != 0); + if (unlikely(__pyx_t_4)) { + + /* "View.MemoryView":703 + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 703, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __Pyx_Raise(__pyx_t_5, 0, 0, 0); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __PYX_ERR(2, 703, __pyx_L1_error) + + /* "View.MemoryView":702 + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * raise ValueError("Indirect dimensions not supported") + * + */ + } + } + + /* "View.MemoryView":700 + * return have_slices or nslices, tuple(result) + * + * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.assert_direct_dimensions", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":710 + * + * @cname('__pyx_memview_slice') + * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< + * cdef int new_ndim = 0, suboffset_dim = -1, dim + * cdef bint negative_step + */ + +static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *__pyx_v_memview, PyObject *__pyx_v_indices) { + int __pyx_v_new_ndim; + int __pyx_v_suboffset_dim; + int __pyx_v_dim; + __Pyx_memviewslice __pyx_v_src; + __Pyx_memviewslice __pyx_v_dst; + __Pyx_memviewslice *__pyx_v_p_src; + struct __pyx_memoryviewslice_obj *__pyx_v_memviewsliceobj = 0; + __Pyx_memviewslice *__pyx_v_p_dst; + int *__pyx_v_p_suboffset_dim; + Py_ssize_t __pyx_v_start; + Py_ssize_t __pyx_v_stop; + Py_ssize_t __pyx_v_step; + int __pyx_v_have_start; + int __pyx_v_have_stop; + int __pyx_v_have_step; + PyObject *__pyx_v_index = NULL; + struct __pyx_memoryview_obj *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + struct __pyx_memoryview_obj *__pyx_t_4; + char *__pyx_t_5; + int __pyx_t_6; + Py_ssize_t __pyx_t_7; + PyObject *(*__pyx_t_8)(PyObject *); + PyObject *__pyx_t_9 = NULL; + Py_ssize_t __pyx_t_10; + int __pyx_t_11; + Py_ssize_t __pyx_t_12; + __Pyx_RefNannySetupContext("memview_slice", 0); + + /* "View.MemoryView":711 + * @cname('__pyx_memview_slice') + * cdef memoryview memview_slice(memoryview memview, object indices): + * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< + * cdef bint negative_step + * cdef __Pyx_memviewslice src, dst + */ + __pyx_v_new_ndim = 0; + __pyx_v_suboffset_dim = -1; + + /* "View.MemoryView":718 + * + * + * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< + * + * cdef _memoryviewslice memviewsliceobj + */ + (void)(memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst)))); + + /* "View.MemoryView":722 + * cdef _memoryviewslice memviewsliceobj + * + * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< + * + * if isinstance(memview, _memoryviewslice): + */ + #ifndef CYTHON_WITHOUT_ASSERTIONS + if (unlikely(!Py_OptimizeFlag)) { + if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { + PyErr_SetNone(PyExc_AssertionError); + __PYX_ERR(2, 722, __pyx_L1_error) + } + } + #endif + + /* "View.MemoryView":724 + * assert memview.view.ndim > 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * memviewsliceobj = memview + * p_src = &memviewsliceobj.from_slice + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":725 + * + * if isinstance(memview, _memoryviewslice): + * memviewsliceobj = memview # <<<<<<<<<<<<<< + * p_src = &memviewsliceobj.from_slice + * else: + */ + if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(2, 725, __pyx_L1_error) + __pyx_t_3 = ((PyObject *)__pyx_v_memview); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":726 + * if isinstance(memview, _memoryviewslice): + * memviewsliceobj = memview + * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< + * else: + * slice_copy(memview, &src) + */ + __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); + + /* "View.MemoryView":724 + * assert memview.view.ndim > 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * memviewsliceobj = memview + * p_src = &memviewsliceobj.from_slice + */ + goto __pyx_L3; + } + + /* "View.MemoryView":728 + * p_src = &memviewsliceobj.from_slice + * else: + * slice_copy(memview, &src) # <<<<<<<<<<<<<< + * p_src = &src + * + */ + /*else*/ { + __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); + + /* "View.MemoryView":729 + * else: + * slice_copy(memview, &src) + * p_src = &src # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_p_src = (&__pyx_v_src); + } + __pyx_L3:; + + /* "View.MemoryView":735 + * + * + * dst.memview = p_src.memview # <<<<<<<<<<<<<< + * dst.data = p_src.data + * + */ + __pyx_t_4 = __pyx_v_p_src->memview; + __pyx_v_dst.memview = __pyx_t_4; + + /* "View.MemoryView":736 + * + * dst.memview = p_src.memview + * dst.data = p_src.data # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __pyx_v_p_src->data; + __pyx_v_dst.data = __pyx_t_5; + + /* "View.MemoryView":741 + * + * + * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< + * cdef int *p_suboffset_dim = &suboffset_dim + * cdef Py_ssize_t start, stop, step + */ + __pyx_v_p_dst = (&__pyx_v_dst); + + /* "View.MemoryView":742 + * + * cdef __Pyx_memviewslice *p_dst = &dst + * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< + * cdef Py_ssize_t start, stop, step + * cdef bint have_start, have_stop, have_step + */ + __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); + + /* "View.MemoryView":746 + * cdef bint have_start, have_stop, have_step + * + * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< + * if PyIndex_Check(index): + * slice_memviewslice( + */ + __pyx_t_6 = 0; + if (likely(PyList_CheckExact(__pyx_v_indices)) || PyTuple_CheckExact(__pyx_v_indices)) { + __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; + __pyx_t_8 = NULL; + } else { + __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 746, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 746, __pyx_L1_error) + } + for (;;) { + if (likely(!__pyx_t_8)) { + if (likely(PyList_CheckExact(__pyx_t_3))) { + if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(2, 746, __pyx_L1_error) + #else + __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 746, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + #endif + } else { + if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; + #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(2, 746, __pyx_L1_error) + #else + __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 746, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + #endif + } + } else { + __pyx_t_9 = __pyx_t_8(__pyx_t_3); + if (unlikely(!__pyx_t_9)) { + PyObject* exc_type = PyErr_Occurred(); + if (exc_type) { + if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); + else __PYX_ERR(2, 746, __pyx_L1_error) + } + break; + } + __Pyx_GOTREF(__pyx_t_9); + } + __Pyx_XDECREF_SET(__pyx_v_index, __pyx_t_9); + __pyx_t_9 = 0; + __pyx_v_dim = __pyx_t_6; + __pyx_t_6 = (__pyx_t_6 + 1); + + /* "View.MemoryView":747 + * + * for dim, index in enumerate(indices): + * if PyIndex_Check(index): # <<<<<<<<<<<<<< + * slice_memviewslice( + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + */ + __pyx_t_2 = (PyIndex_Check(__pyx_v_index) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":751 + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + * dim, new_ndim, p_suboffset_dim, + * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< + * 0, 0, 0, # have_{start,stop,step} + * False) + */ + __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 751, __pyx_L1_error) + + /* "View.MemoryView":748 + * for dim, index in enumerate(indices): + * if PyIndex_Check(index): + * slice_memviewslice( # <<<<<<<<<<<<<< + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + * dim, new_ndim, p_suboffset_dim, + */ + __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(2, 748, __pyx_L1_error) + + /* "View.MemoryView":747 + * + * for dim, index in enumerate(indices): + * if PyIndex_Check(index): # <<<<<<<<<<<<<< + * slice_memviewslice( + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + */ + goto __pyx_L6; + } + + /* "View.MemoryView":754 + * 0, 0, 0, # have_{start,stop,step} + * False) + * elif index is None: # <<<<<<<<<<<<<< + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 + */ + __pyx_t_2 = (__pyx_v_index == Py_None); + __pyx_t_1 = (__pyx_t_2 != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":755 + * False) + * elif index is None: + * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< + * p_dst.strides[new_ndim] = 0 + * p_dst.suboffsets[new_ndim] = -1 + */ + (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; + + /* "View.MemoryView":756 + * elif index is None: + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< + * p_dst.suboffsets[new_ndim] = -1 + * new_ndim += 1 + */ + (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; + + /* "View.MemoryView":757 + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 + * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< + * new_ndim += 1 + * else: + */ + (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1L; + + /* "View.MemoryView":758 + * p_dst.strides[new_ndim] = 0 + * p_dst.suboffsets[new_ndim] = -1 + * new_ndim += 1 # <<<<<<<<<<<<<< + * else: + * start = index.start or 0 + */ + __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); + + /* "View.MemoryView":754 + * 0, 0, 0, # have_{start,stop,step} + * False) + * elif index is None: # <<<<<<<<<<<<<< + * p_dst.shape[new_ndim] = 1 + * p_dst.strides[new_ndim] = 0 + */ + goto __pyx_L6; + } + + /* "View.MemoryView":760 + * new_ndim += 1 + * else: + * start = index.start or 0 # <<<<<<<<<<<<<< + * stop = index.stop or 0 + * step = index.step or 0 + */ + /*else*/ { + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 760, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 760, __pyx_L1_error) + if (!__pyx_t_1) { + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } else { + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 760, __pyx_L1_error) + __pyx_t_10 = __pyx_t_12; + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + goto __pyx_L7_bool_binop_done; + } + __pyx_t_10 = 0; + __pyx_L7_bool_binop_done:; + __pyx_v_start = __pyx_t_10; + + /* "View.MemoryView":761 + * else: + * start = index.start or 0 + * stop = index.stop or 0 # <<<<<<<<<<<<<< + * step = index.step or 0 + * + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 761, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 761, __pyx_L1_error) + if (!__pyx_t_1) { + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } else { + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 761, __pyx_L1_error) + __pyx_t_10 = __pyx_t_12; + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + goto __pyx_L9_bool_binop_done; + } + __pyx_t_10 = 0; + __pyx_L9_bool_binop_done:; + __pyx_v_stop = __pyx_t_10; + + /* "View.MemoryView":762 + * start = index.start or 0 + * stop = index.stop or 0 + * step = index.step or 0 # <<<<<<<<<<<<<< + * + * have_start = index.start is not None + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 762, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 762, __pyx_L1_error) + if (!__pyx_t_1) { + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + } else { + __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 762, __pyx_L1_error) + __pyx_t_10 = __pyx_t_12; + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + goto __pyx_L11_bool_binop_done; + } + __pyx_t_10 = 0; + __pyx_L11_bool_binop_done:; + __pyx_v_step = __pyx_t_10; + + /* "View.MemoryView":764 + * step = index.step or 0 + * + * have_start = index.start is not None # <<<<<<<<<<<<<< + * have_stop = index.stop is not None + * have_step = index.step is not None + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 764, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = (__pyx_t_9 != Py_None); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_v_have_start = __pyx_t_1; + + /* "View.MemoryView":765 + * + * have_start = index.start is not None + * have_stop = index.stop is not None # <<<<<<<<<<<<<< + * have_step = index.step is not None + * + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 765, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = (__pyx_t_9 != Py_None); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_v_have_stop = __pyx_t_1; + + /* "View.MemoryView":766 + * have_start = index.start is not None + * have_stop = index.stop is not None + * have_step = index.step is not None # <<<<<<<<<<<<<< + * + * slice_memviewslice( + */ + __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 766, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_9); + __pyx_t_1 = (__pyx_t_9 != Py_None); + __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; + __pyx_v_have_step = __pyx_t_1; + + /* "View.MemoryView":768 + * have_step = index.step is not None + * + * slice_memviewslice( # <<<<<<<<<<<<<< + * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], + * dim, new_ndim, p_suboffset_dim, + */ + __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(2, 768, __pyx_L1_error) + + /* "View.MemoryView":774 + * have_start, have_stop, have_step, + * True) + * new_ndim += 1 # <<<<<<<<<<<<<< + * + * if isinstance(memview, _memoryviewslice): + */ + __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); + } + __pyx_L6:; + + /* "View.MemoryView":746 + * cdef bint have_start, have_stop, have_step + * + * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< + * if PyIndex_Check(index): + * slice_memviewslice( + */ + } + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "View.MemoryView":776 + * new_ndim += 1 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":777 + * + * if isinstance(memview, _memoryviewslice): + * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< + * memviewsliceobj.to_object_func, + * memviewsliceobj.to_dtype_func, + */ + __Pyx_XDECREF(((PyObject *)__pyx_r)); + + /* "View.MemoryView":778 + * if isinstance(memview, _memoryviewslice): + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< + * memviewsliceobj.to_dtype_func, + * memview.dtype_is_object) + */ + if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(2, 778, __pyx_L1_error) } + + /* "View.MemoryView":779 + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, + * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< + * memview.dtype_is_object) + * else: + */ + if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(2, 779, __pyx_L1_error) } + + /* "View.MemoryView":777 + * + * if isinstance(memview, _memoryviewslice): + * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< + * memviewsliceobj.to_object_func, + * memviewsliceobj.to_dtype_func, + */ + __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 777, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(2, 777, __pyx_L1_error) + __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); + __pyx_t_3 = 0; + goto __pyx_L0; + + /* "View.MemoryView":776 + * new_ndim += 1 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * return memoryview_fromslice(dst, new_ndim, + * memviewsliceobj.to_object_func, + */ + } + + /* "View.MemoryView":782 + * memview.dtype_is_object) + * else: + * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< + * memview.dtype_is_object) + * + */ + /*else*/ { + __Pyx_XDECREF(((PyObject *)__pyx_r)); + + /* "View.MemoryView":783 + * else: + * return memoryview_fromslice(dst, new_ndim, NULL, NULL, + * memview.dtype_is_object) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 782, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + + /* "View.MemoryView":782 + * memview.dtype_is_object) + * else: + * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< + * memview.dtype_is_object) + * + */ + if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(2, 782, __pyx_L1_error) + __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); + __pyx_t_3 = 0; + goto __pyx_L0; + } + + /* "View.MemoryView":710 + * + * @cname('__pyx_memview_slice') + * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< + * cdef int new_ndim = 0, suboffset_dim = -1, dim + * cdef bint negative_step + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_9); + __Pyx_AddTraceback("View.MemoryView.memview_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_memviewsliceobj); + __Pyx_XDECREF(__pyx_v_index); + __Pyx_XGIVEREF((PyObject *)__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":807 + * + * @cname('__pyx_memoryview_slice_memviewslice') + * cdef int slice_memviewslice( # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, + */ + +static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, Py_ssize_t __pyx_v_shape, Py_ssize_t __pyx_v_stride, Py_ssize_t __pyx_v_suboffset, int __pyx_v_dim, int __pyx_v_new_ndim, int *__pyx_v_suboffset_dim, Py_ssize_t __pyx_v_start, Py_ssize_t __pyx_v_stop, Py_ssize_t __pyx_v_step, int __pyx_v_have_start, int __pyx_v_have_stop, int __pyx_v_have_step, int __pyx_v_is_slice) { + Py_ssize_t __pyx_v_new_shape; + int __pyx_v_negative_step; + int __pyx_r; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + + /* "View.MemoryView":827 + * cdef bint negative_step + * + * if not is_slice: # <<<<<<<<<<<<<< + * + * if start < 0: + */ + __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":829 + * if not is_slice: + * + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if not 0 <= start < shape: + */ + __pyx_t_1 = ((__pyx_v_start < 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":830 + * + * if start < 0: + * start += shape # <<<<<<<<<<<<<< + * if not 0 <= start < shape: + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) + */ + __pyx_v_start = (__pyx_v_start + __pyx_v_shape); + + /* "View.MemoryView":829 + * if not is_slice: + * + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if not 0 <= start < shape: + */ + } + + /* "View.MemoryView":831 + * if start < 0: + * start += shape + * if not 0 <= start < shape: # <<<<<<<<<<<<<< + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) + * else: + */ + __pyx_t_1 = (0 <= __pyx_v_start); + if (__pyx_t_1) { + __pyx_t_1 = (__pyx_v_start < __pyx_v_shape); + } + __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":832 + * start += shape + * if not 0 <= start < shape: + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< + * else: + * + */ + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 832, __pyx_L1_error) + + /* "View.MemoryView":831 + * if start < 0: + * start += shape + * if not 0 <= start < shape: # <<<<<<<<<<<<<< + * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) + * else: + */ + } + + /* "View.MemoryView":827 + * cdef bint negative_step + * + * if not is_slice: # <<<<<<<<<<<<<< + * + * if start < 0: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":835 + * else: + * + * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< + * + * if have_step and step == 0: + */ + /*else*/ { + __pyx_t_1 = ((__pyx_v_have_step != 0) != 0); + if (__pyx_t_1) { + } else { + __pyx_t_2 = __pyx_t_1; + goto __pyx_L6_bool_binop_done; + } + __pyx_t_1 = ((__pyx_v_step < 0) != 0); + __pyx_t_2 = __pyx_t_1; + __pyx_L6_bool_binop_done:; + __pyx_v_negative_step = __pyx_t_2; + + /* "View.MemoryView":837 + * negative_step = have_step != 0 and step < 0 + * + * if have_step and step == 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) + * + */ + __pyx_t_1 = (__pyx_v_have_step != 0); + if (__pyx_t_1) { + } else { + __pyx_t_2 = __pyx_t_1; + goto __pyx_L9_bool_binop_done; + } + __pyx_t_1 = ((__pyx_v_step == 0) != 0); + __pyx_t_2 = __pyx_t_1; + __pyx_L9_bool_binop_done:; + if (__pyx_t_2) { + + /* "View.MemoryView":838 + * + * if have_step and step == 0: + * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 838, __pyx_L1_error) + + /* "View.MemoryView":837 + * negative_step = have_step != 0 and step < 0 + * + * if have_step and step == 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) + * + */ + } + + /* "View.MemoryView":841 + * + * + * if have_start: # <<<<<<<<<<<<<< + * if start < 0: + * start += shape + */ + __pyx_t_2 = (__pyx_v_have_start != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":842 + * + * if have_start: + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if start < 0: + */ + __pyx_t_2 = ((__pyx_v_start < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":843 + * if have_start: + * if start < 0: + * start += shape # <<<<<<<<<<<<<< + * if start < 0: + * start = 0 + */ + __pyx_v_start = (__pyx_v_start + __pyx_v_shape); + + /* "View.MemoryView":844 + * if start < 0: + * start += shape + * if start < 0: # <<<<<<<<<<<<<< + * start = 0 + * elif start >= shape: + */ + __pyx_t_2 = ((__pyx_v_start < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":845 + * start += shape + * if start < 0: + * start = 0 # <<<<<<<<<<<<<< + * elif start >= shape: + * if negative_step: + */ + __pyx_v_start = 0; + + /* "View.MemoryView":844 + * if start < 0: + * start += shape + * if start < 0: # <<<<<<<<<<<<<< + * start = 0 + * elif start >= shape: + */ + } + + /* "View.MemoryView":842 + * + * if have_start: + * if start < 0: # <<<<<<<<<<<<<< + * start += shape + * if start < 0: + */ + goto __pyx_L12; + } + + /* "View.MemoryView":846 + * if start < 0: + * start = 0 + * elif start >= shape: # <<<<<<<<<<<<<< + * if negative_step: + * start = shape - 1 + */ + __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":847 + * start = 0 + * elif start >= shape: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + __pyx_t_2 = (__pyx_v_negative_step != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":848 + * elif start >= shape: + * if negative_step: + * start = shape - 1 # <<<<<<<<<<<<<< + * else: + * start = shape + */ + __pyx_v_start = (__pyx_v_shape - 1); + + /* "View.MemoryView":847 + * start = 0 + * elif start >= shape: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + goto __pyx_L14; + } + + /* "View.MemoryView":850 + * start = shape - 1 + * else: + * start = shape # <<<<<<<<<<<<<< + * else: + * if negative_step: + */ + /*else*/ { + __pyx_v_start = __pyx_v_shape; + } + __pyx_L14:; + + /* "View.MemoryView":846 + * if start < 0: + * start = 0 + * elif start >= shape: # <<<<<<<<<<<<<< + * if negative_step: + * start = shape - 1 + */ + } + __pyx_L12:; + + /* "View.MemoryView":841 + * + * + * if have_start: # <<<<<<<<<<<<<< + * if start < 0: + * start += shape + */ + goto __pyx_L11; + } + + /* "View.MemoryView":852 + * start = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + /*else*/ { + __pyx_t_2 = (__pyx_v_negative_step != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":853 + * else: + * if negative_step: + * start = shape - 1 # <<<<<<<<<<<<<< + * else: + * start = 0 + */ + __pyx_v_start = (__pyx_v_shape - 1); + + /* "View.MemoryView":852 + * start = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * start = shape - 1 + * else: + */ + goto __pyx_L15; + } + + /* "View.MemoryView":855 + * start = shape - 1 + * else: + * start = 0 # <<<<<<<<<<<<<< + * + * if have_stop: + */ + /*else*/ { + __pyx_v_start = 0; + } + __pyx_L15:; + } + __pyx_L11:; + + /* "View.MemoryView":857 + * start = 0 + * + * if have_stop: # <<<<<<<<<<<<<< + * if stop < 0: + * stop += shape + */ + __pyx_t_2 = (__pyx_v_have_stop != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":858 + * + * if have_stop: + * if stop < 0: # <<<<<<<<<<<<<< + * stop += shape + * if stop < 0: + */ + __pyx_t_2 = ((__pyx_v_stop < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":859 + * if have_stop: + * if stop < 0: + * stop += shape # <<<<<<<<<<<<<< + * if stop < 0: + * stop = 0 + */ + __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); + + /* "View.MemoryView":860 + * if stop < 0: + * stop += shape + * if stop < 0: # <<<<<<<<<<<<<< + * stop = 0 + * elif stop > shape: + */ + __pyx_t_2 = ((__pyx_v_stop < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":861 + * stop += shape + * if stop < 0: + * stop = 0 # <<<<<<<<<<<<<< + * elif stop > shape: + * stop = shape + */ + __pyx_v_stop = 0; + + /* "View.MemoryView":860 + * if stop < 0: + * stop += shape + * if stop < 0: # <<<<<<<<<<<<<< + * stop = 0 + * elif stop > shape: + */ + } + + /* "View.MemoryView":858 + * + * if have_stop: + * if stop < 0: # <<<<<<<<<<<<<< + * stop += shape + * if stop < 0: + */ + goto __pyx_L17; + } + + /* "View.MemoryView":862 + * if stop < 0: + * stop = 0 + * elif stop > shape: # <<<<<<<<<<<<<< + * stop = shape + * else: + */ + __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":863 + * stop = 0 + * elif stop > shape: + * stop = shape # <<<<<<<<<<<<<< + * else: + * if negative_step: + */ + __pyx_v_stop = __pyx_v_shape; + + /* "View.MemoryView":862 + * if stop < 0: + * stop = 0 + * elif stop > shape: # <<<<<<<<<<<<<< + * stop = shape + * else: + */ + } + __pyx_L17:; + + /* "View.MemoryView":857 + * start = 0 + * + * if have_stop: # <<<<<<<<<<<<<< + * if stop < 0: + * stop += shape + */ + goto __pyx_L16; + } + + /* "View.MemoryView":865 + * stop = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * stop = -1 + * else: + */ + /*else*/ { + __pyx_t_2 = (__pyx_v_negative_step != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":866 + * else: + * if negative_step: + * stop = -1 # <<<<<<<<<<<<<< + * else: + * stop = shape + */ + __pyx_v_stop = -1L; + + /* "View.MemoryView":865 + * stop = shape + * else: + * if negative_step: # <<<<<<<<<<<<<< + * stop = -1 + * else: + */ + goto __pyx_L19; + } + + /* "View.MemoryView":868 + * stop = -1 + * else: + * stop = shape # <<<<<<<<<<<<<< + * + * if not have_step: + */ + /*else*/ { + __pyx_v_stop = __pyx_v_shape; + } + __pyx_L19:; + } + __pyx_L16:; + + /* "View.MemoryView":870 + * stop = shape + * + * if not have_step: # <<<<<<<<<<<<<< + * step = 1 + * + */ + __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":871 + * + * if not have_step: + * step = 1 # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_step = 1; + + /* "View.MemoryView":870 + * stop = shape + * + * if not have_step: # <<<<<<<<<<<<<< + * step = 1 + * + */ + } + + /* "View.MemoryView":875 + * + * with cython.cdivision(True): + * new_shape = (stop - start) // step # <<<<<<<<<<<<<< + * + * if (stop - start) - step * new_shape: + */ + __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); + + /* "View.MemoryView":877 + * new_shape = (stop - start) // step + * + * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< + * new_shape += 1 + * + */ + __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":878 + * + * if (stop - start) - step * new_shape: + * new_shape += 1 # <<<<<<<<<<<<<< + * + * if new_shape < 0: + */ + __pyx_v_new_shape = (__pyx_v_new_shape + 1); + + /* "View.MemoryView":877 + * new_shape = (stop - start) // step + * + * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< + * new_shape += 1 + * + */ + } + + /* "View.MemoryView":880 + * new_shape += 1 + * + * if new_shape < 0: # <<<<<<<<<<<<<< + * new_shape = 0 + * + */ + __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":881 + * + * if new_shape < 0: + * new_shape = 0 # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_new_shape = 0; + + /* "View.MemoryView":880 + * new_shape += 1 + * + * if new_shape < 0: # <<<<<<<<<<<<<< + * new_shape = 0 + * + */ + } + + /* "View.MemoryView":884 + * + * + * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< + * dst.shape[new_ndim] = new_shape + * dst.suboffsets[new_ndim] = suboffset + */ + (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); + + /* "View.MemoryView":885 + * + * dst.strides[new_ndim] = stride * step + * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< + * dst.suboffsets[new_ndim] = suboffset + * + */ + (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; + + /* "View.MemoryView":886 + * dst.strides[new_ndim] = stride * step + * dst.shape[new_ndim] = new_shape + * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< + * + * + */ + (__pyx_v_dst->suboffsets[__pyx_v_new_ndim]) = __pyx_v_suboffset; + } + __pyx_L3:; + + /* "View.MemoryView":889 + * + * + * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< + * dst.data += start * stride + * else: + */ + __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":890 + * + * if suboffset_dim[0] < 0: + * dst.data += start * stride # <<<<<<<<<<<<<< + * else: + * dst.suboffsets[suboffset_dim[0]] += start * stride + */ + __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); + + /* "View.MemoryView":889 + * + * + * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< + * dst.data += start * stride + * else: + */ + goto __pyx_L23; + } + + /* "View.MemoryView":892 + * dst.data += start * stride + * else: + * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< + * + * if suboffset >= 0: + */ + /*else*/ { + __pyx_t_3 = (__pyx_v_suboffset_dim[0]); + (__pyx_v_dst->suboffsets[__pyx_t_3]) = ((__pyx_v_dst->suboffsets[__pyx_t_3]) + (__pyx_v_start * __pyx_v_stride)); + } + __pyx_L23:; + + /* "View.MemoryView":894 + * dst.suboffsets[suboffset_dim[0]] += start * stride + * + * if suboffset >= 0: # <<<<<<<<<<<<<< + * if not is_slice: + * if new_ndim == 0: + */ + __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":895 + * + * if suboffset >= 0: + * if not is_slice: # <<<<<<<<<<<<<< + * if new_ndim == 0: + * dst.data = ( dst.data)[0] + suboffset + */ + __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":896 + * if suboffset >= 0: + * if not is_slice: + * if new_ndim == 0: # <<<<<<<<<<<<<< + * dst.data = ( dst.data)[0] + suboffset + * else: + */ + __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":897 + * if not is_slice: + * if new_ndim == 0: + * dst.data = ( dst.data)[0] + suboffset # <<<<<<<<<<<<<< + * else: + * _err_dim(IndexError, "All dimensions preceding dimension %d " + */ + __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); + + /* "View.MemoryView":896 + * if suboffset >= 0: + * if not is_slice: + * if new_ndim == 0: # <<<<<<<<<<<<<< + * dst.data = ( dst.data)[0] + suboffset + * else: + */ + goto __pyx_L26; + } + + /* "View.MemoryView":899 + * dst.data = ( dst.data)[0] + suboffset + * else: + * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< + * "must be indexed and not sliced", dim) + * else: + */ + /*else*/ { + + /* "View.MemoryView":900 + * else: + * _err_dim(IndexError, "All dimensions preceding dimension %d " + * "must be indexed and not sliced", dim) # <<<<<<<<<<<<<< + * else: + * suboffset_dim[0] = new_ndim + */ + __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 899, __pyx_L1_error) + } + __pyx_L26:; + + /* "View.MemoryView":895 + * + * if suboffset >= 0: + * if not is_slice: # <<<<<<<<<<<<<< + * if new_ndim == 0: + * dst.data = ( dst.data)[0] + suboffset + */ + goto __pyx_L25; + } + + /* "View.MemoryView":902 + * "must be indexed and not sliced", dim) + * else: + * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< + * + * return 0 + */ + /*else*/ { + (__pyx_v_suboffset_dim[0]) = __pyx_v_new_ndim; + } + __pyx_L25:; + + /* "View.MemoryView":894 + * dst.suboffsets[suboffset_dim[0]] += start * stride + * + * if suboffset >= 0: # <<<<<<<<<<<<<< + * if not is_slice: + * if new_ndim == 0: + */ + } + + /* "View.MemoryView":904 + * suboffset_dim[0] = new_ndim + * + * return 0 # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":807 + * + * @cname('__pyx_memoryview_slice_memviewslice') + * cdef int slice_memviewslice( # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = -1; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":910 + * + * @cname('__pyx_pybuffer_index') + * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 + */ + +static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, Py_ssize_t __pyx_v_index, Py_ssize_t __pyx_v_dim) { + Py_ssize_t __pyx_v_shape; + Py_ssize_t __pyx_v_stride; + Py_ssize_t __pyx_v_suboffset; + Py_ssize_t __pyx_v_itemsize; + char *__pyx_v_resultp; + char *__pyx_r; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + __Pyx_RefNannySetupContext("pybuffer_index", 0); + + /* "View.MemoryView":912 + * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< + * cdef Py_ssize_t itemsize = view.itemsize + * cdef char *resultp + */ + __pyx_v_suboffset = -1L; + + /* "View.MemoryView":913 + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 + * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< + * cdef char *resultp + * + */ + __pyx_t_1 = __pyx_v_view->itemsize; + __pyx_v_itemsize = __pyx_t_1; + + /* "View.MemoryView":916 + * cdef char *resultp + * + * if view.ndim == 0: # <<<<<<<<<<<<<< + * shape = view.len / itemsize + * stride = itemsize + */ + __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":917 + * + * if view.ndim == 0: + * shape = view.len / itemsize # <<<<<<<<<<<<<< + * stride = itemsize + * else: + */ + if (unlikely(__pyx_v_itemsize == 0)) { + PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); + __PYX_ERR(2, 917, __pyx_L1_error) + } + else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { + PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); + __PYX_ERR(2, 917, __pyx_L1_error) + } + __pyx_v_shape = __Pyx_div_Py_ssize_t(__pyx_v_view->len, __pyx_v_itemsize); + + /* "View.MemoryView":918 + * if view.ndim == 0: + * shape = view.len / itemsize + * stride = itemsize # <<<<<<<<<<<<<< + * else: + * shape = view.shape[dim] + */ + __pyx_v_stride = __pyx_v_itemsize; + + /* "View.MemoryView":916 + * cdef char *resultp + * + * if view.ndim == 0: # <<<<<<<<<<<<<< + * shape = view.len / itemsize + * stride = itemsize + */ + goto __pyx_L3; + } + + /* "View.MemoryView":920 + * stride = itemsize + * else: + * shape = view.shape[dim] # <<<<<<<<<<<<<< + * stride = view.strides[dim] + * if view.suboffsets != NULL: + */ + /*else*/ { + __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); + + /* "View.MemoryView":921 + * else: + * shape = view.shape[dim] + * stride = view.strides[dim] # <<<<<<<<<<<<<< + * if view.suboffsets != NULL: + * suboffset = view.suboffsets[dim] + */ + __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); + + /* "View.MemoryView":922 + * shape = view.shape[dim] + * stride = view.strides[dim] + * if view.suboffsets != NULL: # <<<<<<<<<<<<<< + * suboffset = view.suboffsets[dim] + * + */ + __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":923 + * stride = view.strides[dim] + * if view.suboffsets != NULL: + * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< + * + * if index < 0: + */ + __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); + + /* "View.MemoryView":922 + * shape = view.shape[dim] + * stride = view.strides[dim] + * if view.suboffsets != NULL: # <<<<<<<<<<<<<< + * suboffset = view.suboffsets[dim] + * + */ + } + } + __pyx_L3:; + + /* "View.MemoryView":925 + * suboffset = view.suboffsets[dim] + * + * if index < 0: # <<<<<<<<<<<<<< + * index += view.shape[dim] + * if index < 0: + */ + __pyx_t_2 = ((__pyx_v_index < 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":926 + * + * if index < 0: + * index += view.shape[dim] # <<<<<<<<<<<<<< + * if index < 0: + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + */ + __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); + + /* "View.MemoryView":927 + * if index < 0: + * index += view.shape[dim] + * if index < 0: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + __pyx_t_2 = ((__pyx_v_index < 0) != 0); + if (unlikely(__pyx_t_2)) { + + /* "View.MemoryView":928 + * index += view.shape[dim] + * if index < 0: + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< + * + * if index >= shape: + */ + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 928, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 928, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 928, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 928, __pyx_L1_error) + + /* "View.MemoryView":927 + * if index < 0: + * index += view.shape[dim] + * if index < 0: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + } + + /* "View.MemoryView":925 + * suboffset = view.suboffsets[dim] + * + * if index < 0: # <<<<<<<<<<<<<< + * index += view.shape[dim] + * if index < 0: + */ + } + + /* "View.MemoryView":930 + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + * if index >= shape: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); + if (unlikely(__pyx_t_2)) { + + /* "View.MemoryView":931 + * + * if index >= shape: + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< + * + * resultp = bufp + index * stride + */ + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 931, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 931, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 931, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 931, __pyx_L1_error) + + /* "View.MemoryView":930 + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + * if index >= shape: # <<<<<<<<<<<<<< + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + */ + } + + /* "View.MemoryView":933 + * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) + * + * resultp = bufp + index * stride # <<<<<<<<<<<<<< + * if suboffset >= 0: + * resultp = ( resultp)[0] + suboffset + */ + __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); + + /* "View.MemoryView":934 + * + * resultp = bufp + index * stride + * if suboffset >= 0: # <<<<<<<<<<<<<< + * resultp = ( resultp)[0] + suboffset + * + */ + __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":935 + * resultp = bufp + index * stride + * if suboffset >= 0: + * resultp = ( resultp)[0] + suboffset # <<<<<<<<<<<<<< + * + * return resultp + */ + __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); + + /* "View.MemoryView":934 + * + * resultp = bufp + index * stride + * if suboffset >= 0: # <<<<<<<<<<<<<< + * resultp = ( resultp)[0] + suboffset + * + */ + } + + /* "View.MemoryView":937 + * resultp = ( resultp)[0] + suboffset + * + * return resultp # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_resultp; + goto __pyx_L0; + + /* "View.MemoryView":910 + * + * @cname('__pyx_pybuffer_index') + * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< + * Py_ssize_t dim) except NULL: + * cdef Py_ssize_t shape, stride, suboffset = -1 + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("View.MemoryView.pybuffer_index", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":943 + * + * @cname('__pyx_memslice_transpose') + * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< + * cdef int ndim = memslice.memview.view.ndim + * + */ + +static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { + int __pyx_v_ndim; + Py_ssize_t *__pyx_v_shape; + Py_ssize_t *__pyx_v_strides; + int __pyx_v_i; + int __pyx_v_j; + int __pyx_r; + int __pyx_t_1; + Py_ssize_t *__pyx_t_2; + long __pyx_t_3; + long __pyx_t_4; + Py_ssize_t __pyx_t_5; + Py_ssize_t __pyx_t_6; + int __pyx_t_7; + int __pyx_t_8; + int __pyx_t_9; + + /* "View.MemoryView":944 + * @cname('__pyx_memslice_transpose') + * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: + * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< + * + * cdef Py_ssize_t *shape = memslice.shape + */ + __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; + __pyx_v_ndim = __pyx_t_1; + + /* "View.MemoryView":946 + * cdef int ndim = memslice.memview.view.ndim + * + * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< + * cdef Py_ssize_t *strides = memslice.strides + * + */ + __pyx_t_2 = __pyx_v_memslice->shape; + __pyx_v_shape = __pyx_t_2; + + /* "View.MemoryView":947 + * + * cdef Py_ssize_t *shape = memslice.shape + * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = __pyx_v_memslice->strides; + __pyx_v_strides = __pyx_t_2; + + /* "View.MemoryView":951 + * + * cdef int i, j + * for i in range(ndim / 2): # <<<<<<<<<<<<<< + * j = ndim - 1 - i + * strides[i], strides[j] = strides[j], strides[i] + */ + __pyx_t_3 = __Pyx_div_long(__pyx_v_ndim, 2); + __pyx_t_4 = __pyx_t_3; + for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_4; __pyx_t_1+=1) { + __pyx_v_i = __pyx_t_1; + + /* "View.MemoryView":952 + * cdef int i, j + * for i in range(ndim / 2): + * j = ndim - 1 - i # <<<<<<<<<<<<<< + * strides[i], strides[j] = strides[j], strides[i] + * shape[i], shape[j] = shape[j], shape[i] + */ + __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); + + /* "View.MemoryView":953 + * for i in range(ndim / 2): + * j = ndim - 1 - i + * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< + * shape[i], shape[j] = shape[j], shape[i] + * + */ + __pyx_t_5 = (__pyx_v_strides[__pyx_v_j]); + __pyx_t_6 = (__pyx_v_strides[__pyx_v_i]); + (__pyx_v_strides[__pyx_v_i]) = __pyx_t_5; + (__pyx_v_strides[__pyx_v_j]) = __pyx_t_6; + + /* "View.MemoryView":954 + * j = ndim - 1 - i + * strides[i], strides[j] = strides[j], strides[i] + * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: + */ + __pyx_t_6 = (__pyx_v_shape[__pyx_v_j]); + __pyx_t_5 = (__pyx_v_shape[__pyx_v_i]); + (__pyx_v_shape[__pyx_v_i]) = __pyx_t_6; + (__pyx_v_shape[__pyx_v_j]) = __pyx_t_5; + + /* "View.MemoryView":956 + * shape[i], shape[j] = shape[j], shape[i] + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") + * + */ + __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); + if (!__pyx_t_8) { + } else { + __pyx_t_7 = __pyx_t_8; + goto __pyx_L6_bool_binop_done; + } + __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); + __pyx_t_7 = __pyx_t_8; + __pyx_L6_bool_binop_done:; + if (__pyx_t_7) { + + /* "View.MemoryView":957 + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< + * + * return 1 + */ + __pyx_t_9 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 957, __pyx_L1_error) + + /* "View.MemoryView":956 + * shape[i], shape[j] = shape[j], shape[i] + * + * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") + * + */ + } + } + + /* "View.MemoryView":959 + * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") + * + * return 1 # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = 1; + goto __pyx_L0; + + /* "View.MemoryView":943 + * + * @cname('__pyx_memslice_transpose') + * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< + * cdef int ndim = memslice.memview.view.ndim + * + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = 0; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":976 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * def __dealloc__(self): # <<<<<<<<<<<<<< + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + */ + +/* Python wrapper */ +static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self); /*proto*/ +static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); + __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__dealloc__", 0); + + /* "View.MemoryView":977 + * + * def __dealloc__(self): + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< + * + * cdef convert_item_to_object(self, char *itemp): + */ + __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); + + /* "View.MemoryView":976 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * def __dealloc__(self): # <<<<<<<<<<<<<< + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":979 + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * if self.to_object_func != NULL: + * return self.to_object_func(itemp) + */ + +static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + __Pyx_RefNannySetupContext("convert_item_to_object", 0); + + /* "View.MemoryView":980 + * + * cdef convert_item_to_object(self, char *itemp): + * if self.to_object_func != NULL: # <<<<<<<<<<<<<< + * return self.to_object_func(itemp) + * else: + */ + __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":981 + * cdef convert_item_to_object(self, char *itemp): + * if self.to_object_func != NULL: + * return self.to_object_func(itemp) # <<<<<<<<<<<<<< + * else: + * return memoryview.convert_item_to_object(self, itemp) + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 981, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + + /* "View.MemoryView":980 + * + * cdef convert_item_to_object(self, char *itemp): + * if self.to_object_func != NULL: # <<<<<<<<<<<<<< + * return self.to_object_func(itemp) + * else: + */ + } + + /* "View.MemoryView":983 + * return self.to_object_func(itemp) + * else: + * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< + * + * cdef assign_item_from_object(self, char *itemp, object value): + */ + /*else*/ { + __Pyx_XDECREF(__pyx_r); + __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 983, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_r = __pyx_t_2; + __pyx_t_2 = 0; + goto __pyx_L0; + } + + /* "View.MemoryView":979 + * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) + * + * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< + * if self.to_object_func != NULL: + * return self.to_object_func(itemp) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":985 + * return memoryview.convert_item_to_object(self, itemp) + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * if self.to_dtype_func != NULL: + * self.to_dtype_func(itemp, value) + */ + +static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("assign_item_from_object", 0); + + /* "View.MemoryView":986 + * + * cdef assign_item_from_object(self, char *itemp, object value): + * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< + * self.to_dtype_func(itemp, value) + * else: + */ + __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":987 + * cdef assign_item_from_object(self, char *itemp, object value): + * if self.to_dtype_func != NULL: + * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< + * else: + * memoryview.assign_item_from_object(self, itemp, value) + */ + __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(2, 987, __pyx_L1_error) + + /* "View.MemoryView":986 + * + * cdef assign_item_from_object(self, char *itemp, object value): + * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< + * self.to_dtype_func(itemp, value) + * else: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":989 + * self.to_dtype_func(itemp, value) + * else: + * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< + * + * @property + */ + /*else*/ { + __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 989, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + } + __pyx_L3:; + + /* "View.MemoryView":985 + * return memoryview.convert_item_to_object(self, itemp) + * + * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< + * if self.to_dtype_func != NULL: + * self.to_dtype_func(itemp, value) + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":992 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.from_object + * + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ +static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); + __pyx_r = __pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__get__", 0); + + /* "View.MemoryView":993 + * @property + * def base(self): + * return self.from_object # <<<<<<<<<<<<<< + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v_self->from_object); + __pyx_r = __pyx_v_self->from_object; + goto __pyx_L0; + + /* "View.MemoryView":992 + * + * @property + * def base(self): # <<<<<<<<<<<<<< + * return self.from_object + * + */ + + /* function exit code */ + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryviewslice___reduce_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__reduce_cython__", 0); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__24, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 2, __pyx_L1_error) + + /* "(tree fragment)":1 + * def __reduce_cython__(self): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + +/* Python wrapper */ +static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ +static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); + __pyx_r = __pyx_pf___pyx_memoryviewslice_2__setstate_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__setstate_cython__", 0); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__25, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 4, __pyx_L1_error) + + /* "(tree fragment)":3 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":999 + * + * @cname('__pyx_memoryview_fromslice') + * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< + * int ndim, + * object (*to_object_func)(char *), + */ + +static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { + struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; + Py_ssize_t __pyx_v_suboffset; + PyObject *__pyx_v_length = NULL; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + __Pyx_TypeInfo *__pyx_t_4; + Py_buffer __pyx_t_5; + Py_ssize_t *__pyx_t_6; + Py_ssize_t *__pyx_t_7; + Py_ssize_t *__pyx_t_8; + Py_ssize_t __pyx_t_9; + __Pyx_RefNannySetupContext("memoryview_fromslice", 0); + + /* "View.MemoryView":1007 + * cdef _memoryviewslice result + * + * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< + * return None + * + */ + __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1008 + * + * if memviewslice.memview == Py_None: + * return None # <<<<<<<<<<<<<< + * + * + */ + __Pyx_XDECREF(__pyx_r); + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + + /* "View.MemoryView":1007 + * cdef _memoryviewslice result + * + * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< + * return None + * + */ + } + + /* "View.MemoryView":1013 + * + * + * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< + * + * result.from_slice = memviewslice + */ + __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1013, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1013, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(Py_None); + __Pyx_GIVEREF(Py_None); + PyTuple_SET_ITEM(__pyx_t_3, 0, Py_None); + __Pyx_INCREF(__pyx_int_0); + __Pyx_GIVEREF(__pyx_int_0); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); + __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1013, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":1015 + * result = _memoryviewslice(None, 0, dtype_is_object) + * + * result.from_slice = memviewslice # <<<<<<<<<<<<<< + * __PYX_INC_MEMVIEW(&memviewslice, 1) + * + */ + __pyx_v_result->from_slice = __pyx_v_memviewslice; + + /* "View.MemoryView":1016 + * + * result.from_slice = memviewslice + * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< + * + * result.from_object = ( memviewslice.memview).base + */ + __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); + + /* "View.MemoryView":1018 + * __PYX_INC_MEMVIEW(&memviewslice, 1) + * + * result.from_object = ( memviewslice.memview).base # <<<<<<<<<<<<<< + * result.typeinfo = memviewslice.memview.typeinfo + * + */ + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1018, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_GIVEREF(__pyx_t_2); + __Pyx_GOTREF(__pyx_v_result->from_object); + __Pyx_DECREF(__pyx_v_result->from_object); + __pyx_v_result->from_object = __pyx_t_2; + __pyx_t_2 = 0; + + /* "View.MemoryView":1019 + * + * result.from_object = ( memviewslice.memview).base + * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< + * + * result.view = memviewslice.memview.view + */ + __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; + __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; + + /* "View.MemoryView":1021 + * result.typeinfo = memviewslice.memview.typeinfo + * + * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< + * result.view.buf = memviewslice.data + * result.view.ndim = ndim + */ + __pyx_t_5 = __pyx_v_memviewslice.memview->view; + __pyx_v_result->__pyx_base.view = __pyx_t_5; + + /* "View.MemoryView":1022 + * + * result.view = memviewslice.memview.view + * result.view.buf = memviewslice.data # <<<<<<<<<<<<<< + * result.view.ndim = ndim + * (<__pyx_buffer *> &result.view).obj = Py_None + */ + __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); + + /* "View.MemoryView":1023 + * result.view = memviewslice.memview.view + * result.view.buf = memviewslice.data + * result.view.ndim = ndim # <<<<<<<<<<<<<< + * (<__pyx_buffer *> &result.view).obj = Py_None + * Py_INCREF(Py_None) + */ + __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; + + /* "View.MemoryView":1024 + * result.view.buf = memviewslice.data + * result.view.ndim = ndim + * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< + * Py_INCREF(Py_None) + * + */ + ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; + + /* "View.MemoryView":1025 + * result.view.ndim = ndim + * (<__pyx_buffer *> &result.view).obj = Py_None + * Py_INCREF(Py_None) # <<<<<<<<<<<<<< + * + * if (memviewslice.memview).flags & PyBUF_WRITABLE: + */ + Py_INCREF(Py_None); + + /* "View.MemoryView":1027 + * Py_INCREF(Py_None) + * + * if (memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< + * result.flags = PyBUF_RECORDS + * else: + */ + __pyx_t_1 = ((((struct __pyx_memoryview_obj *)__pyx_v_memviewslice.memview)->flags & PyBUF_WRITABLE) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1028 + * + * if (memviewslice.memview).flags & PyBUF_WRITABLE: + * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< + * else: + * result.flags = PyBUF_RECORDS_RO + */ + __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; + + /* "View.MemoryView":1027 + * Py_INCREF(Py_None) + * + * if (memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< + * result.flags = PyBUF_RECORDS + * else: + */ + goto __pyx_L4; + } + + /* "View.MemoryView":1030 + * result.flags = PyBUF_RECORDS + * else: + * result.flags = PyBUF_RECORDS_RO # <<<<<<<<<<<<<< + * + * result.view.shape = result.from_slice.shape + */ + /*else*/ { + __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS_RO; + } + __pyx_L4:; + + /* "View.MemoryView":1032 + * result.flags = PyBUF_RECORDS_RO + * + * result.view.shape = result.from_slice.shape # <<<<<<<<<<<<<< + * result.view.strides = result.from_slice.strides + * + */ + __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); + + /* "View.MemoryView":1033 + * + * result.view.shape = result.from_slice.shape + * result.view.strides = result.from_slice.strides # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); + + /* "View.MemoryView":1036 + * + * + * result.view.suboffsets = NULL # <<<<<<<<<<<<<< + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: + */ + __pyx_v_result->__pyx_base.view.suboffsets = NULL; + + /* "View.MemoryView":1037 + * + * result.view.suboffsets = NULL + * for suboffset in result.from_slice.suboffsets[:ndim]: # <<<<<<<<<<<<<< + * if suboffset >= 0: + * result.view.suboffsets = result.from_slice.suboffsets + */ + __pyx_t_7 = (__pyx_v_result->from_slice.suboffsets + __pyx_v_ndim); + for (__pyx_t_8 = __pyx_v_result->from_slice.suboffsets; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { + __pyx_t_6 = __pyx_t_8; + __pyx_v_suboffset = (__pyx_t_6[0]); + + /* "View.MemoryView":1038 + * result.view.suboffsets = NULL + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * result.view.suboffsets = result.from_slice.suboffsets + * break + */ + __pyx_t_1 = ((__pyx_v_suboffset >= 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1039 + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: + * result.view.suboffsets = result.from_slice.suboffsets # <<<<<<<<<<<<<< + * break + * + */ + __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); + + /* "View.MemoryView":1040 + * if suboffset >= 0: + * result.view.suboffsets = result.from_slice.suboffsets + * break # <<<<<<<<<<<<<< + * + * result.view.len = result.view.itemsize + */ + goto __pyx_L6_break; + + /* "View.MemoryView":1038 + * result.view.suboffsets = NULL + * for suboffset in result.from_slice.suboffsets[:ndim]: + * if suboffset >= 0: # <<<<<<<<<<<<<< + * result.view.suboffsets = result.from_slice.suboffsets + * break + */ + } + } + __pyx_L6_break:; + + /* "View.MemoryView":1042 + * break + * + * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< + * for length in result.view.shape[:ndim]: + * result.view.len *= length + */ + __pyx_t_9 = __pyx_v_result->__pyx_base.view.itemsize; + __pyx_v_result->__pyx_base.view.len = __pyx_t_9; + + /* "View.MemoryView":1043 + * + * result.view.len = result.view.itemsize + * for length in result.view.shape[:ndim]: # <<<<<<<<<<<<<< + * result.view.len *= length + * + */ + __pyx_t_7 = (__pyx_v_result->__pyx_base.view.shape + __pyx_v_ndim); + for (__pyx_t_8 = __pyx_v_result->__pyx_base.view.shape; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { + __pyx_t_6 = __pyx_t_8; + __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1043, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_2); + __pyx_t_2 = 0; + + /* "View.MemoryView":1044 + * result.view.len = result.view.itemsize + * for length in result.view.shape[:ndim]: + * result.view.len *= length # <<<<<<<<<<<<<< + * + * result.to_object_func = to_object_func + */ + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1044, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1044, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 1044, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_v_result->__pyx_base.view.len = __pyx_t_9; + } + + /* "View.MemoryView":1046 + * result.view.len *= length + * + * result.to_object_func = to_object_func # <<<<<<<<<<<<<< + * result.to_dtype_func = to_dtype_func + * + */ + __pyx_v_result->to_object_func = __pyx_v_to_object_func; + + /* "View.MemoryView":1047 + * + * result.to_object_func = to_object_func + * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< + * + * return result + */ + __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; + + /* "View.MemoryView":1049 + * result.to_dtype_func = to_dtype_func + * + * return result # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_get_slice_from_memoryview') + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(((PyObject *)__pyx_v_result)); + __pyx_r = ((PyObject *)__pyx_v_result); + goto __pyx_L0; + + /* "View.MemoryView":999 + * + * @cname('__pyx_memoryview_fromslice') + * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< + * int ndim, + * object (*to_object_func)(char *), + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.memoryview_fromslice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_result); + __Pyx_XDECREF(__pyx_v_length); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1052 + * + * @cname('__pyx_memoryview_get_slice_from_memoryview') + * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *mslice) except NULL: + * cdef _memoryviewslice obj + */ + +static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_mslice) { + struct __pyx_memoryviewslice_obj *__pyx_v_obj = 0; + __Pyx_memviewslice *__pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *__pyx_t_3 = NULL; + __Pyx_RefNannySetupContext("get_slice_from_memview", 0); + + /* "View.MemoryView":1055 + * __Pyx_memviewslice *mslice) except NULL: + * cdef _memoryviewslice obj + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * obj = memview + * return &obj.from_slice + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1056 + * cdef _memoryviewslice obj + * if isinstance(memview, _memoryviewslice): + * obj = memview # <<<<<<<<<<<<<< + * return &obj.from_slice + * else: + */ + if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(2, 1056, __pyx_L1_error) + __pyx_t_3 = ((PyObject *)__pyx_v_memview); + __Pyx_INCREF(__pyx_t_3); + __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); + __pyx_t_3 = 0; + + /* "View.MemoryView":1057 + * if isinstance(memview, _memoryviewslice): + * obj = memview + * return &obj.from_slice # <<<<<<<<<<<<<< + * else: + * slice_copy(memview, mslice) + */ + __pyx_r = (&__pyx_v_obj->from_slice); + goto __pyx_L0; + + /* "View.MemoryView":1055 + * __Pyx_memviewslice *mslice) except NULL: + * cdef _memoryviewslice obj + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * obj = memview + * return &obj.from_slice + */ + } + + /* "View.MemoryView":1059 + * return &obj.from_slice + * else: + * slice_copy(memview, mslice) # <<<<<<<<<<<<<< + * return mslice + * + */ + /*else*/ { + __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); + + /* "View.MemoryView":1060 + * else: + * slice_copy(memview, mslice) + * return mslice # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_slice_copy') + */ + __pyx_r = __pyx_v_mslice; + goto __pyx_L0; + } + + /* "View.MemoryView":1052 + * + * @cname('__pyx_memoryview_get_slice_from_memoryview') + * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *mslice) except NULL: + * cdef _memoryviewslice obj + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_3); + __Pyx_AddTraceback("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF((PyObject *)__pyx_v_obj); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1063 + * + * @cname('__pyx_memoryview_slice_copy') + * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< + * cdef int dim + * cdef (Py_ssize_t*) shape, strides, suboffsets + */ + +static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_dst) { + int __pyx_v_dim; + Py_ssize_t *__pyx_v_shape; + Py_ssize_t *__pyx_v_strides; + Py_ssize_t *__pyx_v_suboffsets; + __Pyx_RefNannyDeclarations + Py_ssize_t *__pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + Py_ssize_t __pyx_t_5; + __Pyx_RefNannySetupContext("slice_copy", 0); + + /* "View.MemoryView":1067 + * cdef (Py_ssize_t*) shape, strides, suboffsets + * + * shape = memview.view.shape # <<<<<<<<<<<<<< + * strides = memview.view.strides + * suboffsets = memview.view.suboffsets + */ + __pyx_t_1 = __pyx_v_memview->view.shape; + __pyx_v_shape = __pyx_t_1; + + /* "View.MemoryView":1068 + * + * shape = memview.view.shape + * strides = memview.view.strides # <<<<<<<<<<<<<< + * suboffsets = memview.view.suboffsets + * + */ + __pyx_t_1 = __pyx_v_memview->view.strides; + __pyx_v_strides = __pyx_t_1; + + /* "View.MemoryView":1069 + * shape = memview.view.shape + * strides = memview.view.strides + * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< + * + * dst.memview = <__pyx_memoryview *> memview + */ + __pyx_t_1 = __pyx_v_memview->view.suboffsets; + __pyx_v_suboffsets = __pyx_t_1; + + /* "View.MemoryView":1071 + * suboffsets = memview.view.suboffsets + * + * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< + * dst.data = memview.view.buf + * + */ + __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); + + /* "View.MemoryView":1072 + * + * dst.memview = <__pyx_memoryview *> memview + * dst.data = memview.view.buf # <<<<<<<<<<<<<< + * + * for dim in range(memview.view.ndim): + */ + __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); + + /* "View.MemoryView":1074 + * dst.data = memview.view.buf + * + * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< + * dst.shape[dim] = shape[dim] + * dst.strides[dim] = strides[dim] + */ + __pyx_t_2 = __pyx_v_memview->view.ndim; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_dim = __pyx_t_4; + + /* "View.MemoryView":1075 + * + * for dim in range(memview.view.ndim): + * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< + * dst.strides[dim] = strides[dim] + * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 + */ + (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); + + /* "View.MemoryView":1076 + * for dim in range(memview.view.ndim): + * dst.shape[dim] = shape[dim] + * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< + * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 + * + */ + (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); + + /* "View.MemoryView":1077 + * dst.shape[dim] = shape[dim] + * dst.strides[dim] = strides[dim] + * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_object') + */ + if ((__pyx_v_suboffsets != 0)) { + __pyx_t_5 = (__pyx_v_suboffsets[__pyx_v_dim]); + } else { + __pyx_t_5 = -1L; + } + (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_5; + } + + /* "View.MemoryView":1063 + * + * @cname('__pyx_memoryview_slice_copy') + * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< + * cdef int dim + * cdef (Py_ssize_t*) shape, strides, suboffsets + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":1080 + * + * @cname('__pyx_memoryview_copy_object') + * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< + * "Create a new memoryview object" + * cdef __Pyx_memviewslice memviewslice + */ + +static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx_v_memview) { + __Pyx_memviewslice __pyx_v_memviewslice; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("memoryview_copy", 0); + + /* "View.MemoryView":1083 + * "Create a new memoryview object" + * cdef __Pyx_memviewslice memviewslice + * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< + * return memoryview_copy_from_slice(memview, &memviewslice) + * + */ + __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); + + /* "View.MemoryView":1084 + * cdef __Pyx_memviewslice memviewslice + * slice_copy(memview, &memviewslice) + * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_object_from_slice') + */ + __Pyx_XDECREF(__pyx_r); + __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1084, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_r = __pyx_t_1; + __pyx_t_1 = 0; + goto __pyx_L0; + + /* "View.MemoryView":1080 + * + * @cname('__pyx_memoryview_copy_object') + * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< + * "Create a new memoryview object" + * cdef __Pyx_memviewslice memviewslice + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_AddTraceback("View.MemoryView.memoryview_copy", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1087 + * + * @cname('__pyx_memoryview_copy_object_from_slice') + * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< + * """ + * Create a new memoryview object from a given memoryview object and slice. + */ + +static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_memviewslice) { + PyObject *(*__pyx_v_to_object_func)(char *); + int (*__pyx_v_to_dtype_func)(char *, PyObject *); + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + int __pyx_t_2; + PyObject *(*__pyx_t_3)(char *); + int (*__pyx_t_4)(char *, PyObject *); + PyObject *__pyx_t_5 = NULL; + __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); + + /* "View.MemoryView":1094 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * to_object_func = (<_memoryviewslice> memview).to_object_func + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + */ + __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); + __pyx_t_2 = (__pyx_t_1 != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1095 + * + * if isinstance(memview, _memoryviewslice): + * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + * else: + */ + __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; + __pyx_v_to_object_func = __pyx_t_3; + + /* "View.MemoryView":1096 + * if isinstance(memview, _memoryviewslice): + * to_object_func = (<_memoryviewslice> memview).to_object_func + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< + * else: + * to_object_func = NULL + */ + __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; + __pyx_v_to_dtype_func = __pyx_t_4; + + /* "View.MemoryView":1094 + * cdef int (*to_dtype_func)(char *, object) except 0 + * + * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< + * to_object_func = (<_memoryviewslice> memview).to_object_func + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1098 + * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func + * else: + * to_object_func = NULL # <<<<<<<<<<<<<< + * to_dtype_func = NULL + * + */ + /*else*/ { + __pyx_v_to_object_func = NULL; + + /* "View.MemoryView":1099 + * else: + * to_object_func = NULL + * to_dtype_func = NULL # <<<<<<<<<<<<<< + * + * return memoryview_fromslice(memviewslice[0], memview.view.ndim, + */ + __pyx_v_to_dtype_func = NULL; + } + __pyx_L3:; + + /* "View.MemoryView":1101 + * to_dtype_func = NULL + * + * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< + * to_object_func, to_dtype_func, + * memview.dtype_is_object) + */ + __Pyx_XDECREF(__pyx_r); + + /* "View.MemoryView":1103 + * return memoryview_fromslice(memviewslice[0], memview.view.ndim, + * to_object_func, to_dtype_func, + * memview.dtype_is_object) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 1101, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_5); + __pyx_r = __pyx_t_5; + __pyx_t_5 = 0; + goto __pyx_L0; + + /* "View.MemoryView":1087 + * + * @cname('__pyx_memoryview_copy_object_from_slice') + * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< + * """ + * Create a new memoryview object from a given memoryview object and slice. + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.memoryview_copy_from_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "View.MemoryView":1109 + * + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< + * if arg < 0: + * return -arg + */ + +static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { + Py_ssize_t __pyx_r; + int __pyx_t_1; + + /* "View.MemoryView":1110 + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: + * if arg < 0: # <<<<<<<<<<<<<< + * return -arg + * else: + */ + __pyx_t_1 = ((__pyx_v_arg < 0) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1111 + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: + * if arg < 0: + * return -arg # <<<<<<<<<<<<<< + * else: + * return arg + */ + __pyx_r = (-__pyx_v_arg); + goto __pyx_L0; + + /* "View.MemoryView":1110 + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: + * if arg < 0: # <<<<<<<<<<<<<< + * return -arg + * else: + */ + } + + /* "View.MemoryView":1113 + * return -arg + * else: + * return arg # <<<<<<<<<<<<<< + * + * @cname('__pyx_get_best_slice_order') + */ + /*else*/ { + __pyx_r = __pyx_v_arg; + goto __pyx_L0; + } + + /* "View.MemoryView":1109 + * + * + * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< + * if arg < 0: + * return -arg + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1116 + * + * @cname('__pyx_get_best_slice_order') + * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< + * """ + * Figure out the best memory access order for a given slice. + */ + +static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim) { + int __pyx_v_i; + Py_ssize_t __pyx_v_c_stride; + Py_ssize_t __pyx_v_f_stride; + char __pyx_r; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + + /* "View.MemoryView":1121 + * """ + * cdef int i + * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< + * cdef Py_ssize_t f_stride = 0 + * + */ + __pyx_v_c_stride = 0; + + /* "View.MemoryView":1122 + * cdef int i + * cdef Py_ssize_t c_stride = 0 + * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< + * + * for i in range(ndim - 1, -1, -1): + */ + __pyx_v_f_stride = 0; + + /* "View.MemoryView":1124 + * cdef Py_ssize_t f_stride = 0 + * + * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< + * if mslice.shape[i] > 1: + * c_stride = mslice.strides[i] + */ + for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { + __pyx_v_i = __pyx_t_1; + + /* "View.MemoryView":1125 + * + * for i in range(ndim - 1, -1, -1): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * c_stride = mslice.strides[i] + * break + */ + __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1126 + * for i in range(ndim - 1, -1, -1): + * if mslice.shape[i] > 1: + * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< + * break + * + */ + __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); + + /* "View.MemoryView":1127 + * if mslice.shape[i] > 1: + * c_stride = mslice.strides[i] + * break # <<<<<<<<<<<<<< + * + * for i in range(ndim): + */ + goto __pyx_L4_break; + + /* "View.MemoryView":1125 + * + * for i in range(ndim - 1, -1, -1): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * c_stride = mslice.strides[i] + * break + */ + } + } + __pyx_L4_break:; + + /* "View.MemoryView":1129 + * break + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * if mslice.shape[i] > 1: + * f_stride = mslice.strides[i] + */ + __pyx_t_1 = __pyx_v_ndim; + __pyx_t_3 = __pyx_t_1; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; + + /* "View.MemoryView":1130 + * + * for i in range(ndim): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * f_stride = mslice.strides[i] + * break + */ + __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1131 + * for i in range(ndim): + * if mslice.shape[i] > 1: + * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< + * break + * + */ + __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); + + /* "View.MemoryView":1132 + * if mslice.shape[i] > 1: + * f_stride = mslice.strides[i] + * break # <<<<<<<<<<<<<< + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): + */ + goto __pyx_L7_break; + + /* "View.MemoryView":1130 + * + * for i in range(ndim): + * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< + * f_stride = mslice.strides[i] + * break + */ + } + } + __pyx_L7_break:; + + /* "View.MemoryView":1134 + * break + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< + * return 'C' + * else: + */ + __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1135 + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): + * return 'C' # <<<<<<<<<<<<<< + * else: + * return 'F' + */ + __pyx_r = 'C'; + goto __pyx_L0; + + /* "View.MemoryView":1134 + * break + * + * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< + * return 'C' + * else: + */ + } + + /* "View.MemoryView":1137 + * return 'C' + * else: + * return 'F' # <<<<<<<<<<<<<< + * + * @cython.cdivision(True) + */ + /*else*/ { + __pyx_r = 'F'; + goto __pyx_L0; + } + + /* "View.MemoryView":1116 + * + * @cname('__pyx_get_best_slice_order') + * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< + * """ + * Figure out the best memory access order for a given slice. + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1140 + * + * @cython.cdivision(True) + * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< + * char *dst_data, Py_ssize_t *dst_strides, + * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, + */ + +static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v_src_strides, char *__pyx_v_dst_data, Py_ssize_t *__pyx_v_dst_strides, Py_ssize_t *__pyx_v_src_shape, Py_ssize_t *__pyx_v_dst_shape, int __pyx_v_ndim, size_t __pyx_v_itemsize) { + CYTHON_UNUSED Py_ssize_t __pyx_v_i; + CYTHON_UNUSED Py_ssize_t __pyx_v_src_extent; + Py_ssize_t __pyx_v_dst_extent; + Py_ssize_t __pyx_v_src_stride; + Py_ssize_t __pyx_v_dst_stride; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + Py_ssize_t __pyx_t_4; + Py_ssize_t __pyx_t_5; + Py_ssize_t __pyx_t_6; + + /* "View.MemoryView":1147 + * + * cdef Py_ssize_t i + * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t dst_extent = dst_shape[0] + * cdef Py_ssize_t src_stride = src_strides[0] + */ + __pyx_v_src_extent = (__pyx_v_src_shape[0]); + + /* "View.MemoryView":1148 + * cdef Py_ssize_t i + * cdef Py_ssize_t src_extent = src_shape[0] + * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t src_stride = src_strides[0] + * cdef Py_ssize_t dst_stride = dst_strides[0] + */ + __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); + + /* "View.MemoryView":1149 + * cdef Py_ssize_t src_extent = src_shape[0] + * cdef Py_ssize_t dst_extent = dst_shape[0] + * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t dst_stride = dst_strides[0] + * + */ + __pyx_v_src_stride = (__pyx_v_src_strides[0]); + + /* "View.MemoryView":1150 + * cdef Py_ssize_t dst_extent = dst_shape[0] + * cdef Py_ssize_t src_stride = src_strides[0] + * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< + * + * if ndim == 1: + */ + __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); + + /* "View.MemoryView":1152 + * cdef Py_ssize_t dst_stride = dst_strides[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): + */ + __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1153 + * + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) + */ + __pyx_t_2 = ((__pyx_v_src_stride > 0) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L5_bool_binop_done; + } + __pyx_t_2 = ((__pyx_v_dst_stride > 0) != 0); + if (__pyx_t_2) { + } else { + __pyx_t_1 = __pyx_t_2; + goto __pyx_L5_bool_binop_done; + } + + /* "View.MemoryView":1154 + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): # <<<<<<<<<<<<<< + * memcpy(dst_data, src_data, itemsize * dst_extent) + * else: + */ + __pyx_t_2 = (((size_t)__pyx_v_src_stride) == __pyx_v_itemsize); + if (__pyx_t_2) { + __pyx_t_2 = (__pyx_v_itemsize == ((size_t)__pyx_v_dst_stride)); + } + __pyx_t_3 = (__pyx_t_2 != 0); + __pyx_t_1 = __pyx_t_3; + __pyx_L5_bool_binop_done:; + + /* "View.MemoryView":1153 + * + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) + */ + if (__pyx_t_1) { + + /* "View.MemoryView":1155 + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< + * else: + * for i in range(dst_extent): + */ + (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent))); + + /* "View.MemoryView":1153 + * + * if ndim == 1: + * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< + * src_stride == itemsize == dst_stride): + * memcpy(dst_data, src_data, itemsize * dst_extent) + */ + goto __pyx_L4; + } + + /* "View.MemoryView":1157 + * memcpy(dst_data, src_data, itemsize * dst_extent) + * else: + * for i in range(dst_extent): # <<<<<<<<<<<<<< + * memcpy(dst_data, src_data, itemsize) + * src_data += src_stride + */ + /*else*/ { + __pyx_t_4 = __pyx_v_dst_extent; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; + + /* "View.MemoryView":1158 + * else: + * for i in range(dst_extent): + * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< + * src_data += src_stride + * dst_data += dst_stride + */ + (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize)); + + /* "View.MemoryView":1159 + * for i in range(dst_extent): + * memcpy(dst_data, src_data, itemsize) + * src_data += src_stride # <<<<<<<<<<<<<< + * dst_data += dst_stride + * else: + */ + __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); + + /* "View.MemoryView":1160 + * memcpy(dst_data, src_data, itemsize) + * src_data += src_stride + * dst_data += dst_stride # <<<<<<<<<<<<<< + * else: + * for i in range(dst_extent): + */ + __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); + } + } + __pyx_L4:; + + /* "View.MemoryView":1152 + * cdef Py_ssize_t dst_stride = dst_strides[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * if (src_stride > 0 and dst_stride > 0 and + * src_stride == itemsize == dst_stride): + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1162 + * dst_data += dst_stride + * else: + * for i in range(dst_extent): # <<<<<<<<<<<<<< + * _copy_strided_to_strided(src_data, src_strides + 1, + * dst_data, dst_strides + 1, + */ + /*else*/ { + __pyx_t_4 = __pyx_v_dst_extent; + __pyx_t_5 = __pyx_t_4; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; + + /* "View.MemoryView":1163 + * else: + * for i in range(dst_extent): + * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< + * dst_data, dst_strides + 1, + * src_shape + 1, dst_shape + 1, + */ + _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); + + /* "View.MemoryView":1167 + * src_shape + 1, dst_shape + 1, + * ndim - 1, itemsize) + * src_data += src_stride # <<<<<<<<<<<<<< + * dst_data += dst_stride + * + */ + __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); + + /* "View.MemoryView":1168 + * ndim - 1, itemsize) + * src_data += src_stride + * dst_data += dst_stride # <<<<<<<<<<<<<< + * + * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, + */ + __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); + } + } + __pyx_L3:; + + /* "View.MemoryView":1140 + * + * @cython.cdivision(True) + * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< + * char *dst_data, Py_ssize_t *dst_strides, + * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, + */ + + /* function exit code */ +} + +/* "View.MemoryView":1170 + * dst_data += dst_stride + * + * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * int ndim, size_t itemsize) nogil: + */ + +static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { + + /* "View.MemoryView":1173 + * __Pyx_memviewslice *dst, + * int ndim, size_t itemsize) nogil: + * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< + * src.shape, dst.shape, ndim, itemsize) + * + */ + _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); + + /* "View.MemoryView":1170 + * dst_data += dst_stride + * + * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *dst, + * int ndim, size_t itemsize) nogil: + */ + + /* function exit code */ +} + +/* "View.MemoryView":1177 + * + * @cname('__pyx_memoryview_slice_get_size') + * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< + * "Return the size of the memory occupied by the slice in number of bytes" + * cdef Py_ssize_t shape, size = src.memview.view.itemsize + */ + +static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_src, int __pyx_v_ndim) { + Py_ssize_t __pyx_v_shape; + Py_ssize_t __pyx_v_size; + Py_ssize_t __pyx_r; + Py_ssize_t __pyx_t_1; + Py_ssize_t *__pyx_t_2; + Py_ssize_t *__pyx_t_3; + Py_ssize_t *__pyx_t_4; + + /* "View.MemoryView":1179 + * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: + * "Return the size of the memory occupied by the slice in number of bytes" + * cdef Py_ssize_t shape, size = src.memview.view.itemsize # <<<<<<<<<<<<<< + * + * for shape in src.shape[:ndim]: + */ + __pyx_t_1 = __pyx_v_src->memview->view.itemsize; + __pyx_v_size = __pyx_t_1; + + /* "View.MemoryView":1181 + * cdef Py_ssize_t shape, size = src.memview.view.itemsize + * + * for shape in src.shape[:ndim]: # <<<<<<<<<<<<<< + * size *= shape + * + */ + __pyx_t_3 = (__pyx_v_src->shape + __pyx_v_ndim); + for (__pyx_t_4 = __pyx_v_src->shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { + __pyx_t_2 = __pyx_t_4; + __pyx_v_shape = (__pyx_t_2[0]); + + /* "View.MemoryView":1182 + * + * for shape in src.shape[:ndim]: + * size *= shape # <<<<<<<<<<<<<< + * + * return size + */ + __pyx_v_size = (__pyx_v_size * __pyx_v_shape); + } + + /* "View.MemoryView":1184 + * size *= shape + * + * return size # <<<<<<<<<<<<<< + * + * @cname('__pyx_fill_contig_strides_array') + */ + __pyx_r = __pyx_v_size; + goto __pyx_L0; + + /* "View.MemoryView":1177 + * + * @cname('__pyx_memoryview_slice_get_size') + * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< + * "Return the size of the memory occupied by the slice in number of bytes" + * cdef Py_ssize_t shape, size = src.memview.view.itemsize + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1187 + * + * @cname('__pyx_fill_contig_strides_array') + * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< + * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, + * int ndim, char order) nogil: + */ + +static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, Py_ssize_t __pyx_v_stride, int __pyx_v_ndim, char __pyx_v_order) { + int __pyx_v_idx; + Py_ssize_t __pyx_r; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + + /* "View.MemoryView":1196 + * cdef int idx + * + * if order == 'F': # <<<<<<<<<<<<<< + * for idx in range(ndim): + * strides[idx] = stride + */ + __pyx_t_1 = ((__pyx_v_order == 'F') != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1197 + * + * if order == 'F': + * for idx in range(ndim): # <<<<<<<<<<<<<< + * strides[idx] = stride + * stride *= shape[idx] + */ + __pyx_t_2 = __pyx_v_ndim; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_idx = __pyx_t_4; + + /* "View.MemoryView":1198 + * if order == 'F': + * for idx in range(ndim): + * strides[idx] = stride # <<<<<<<<<<<<<< + * stride *= shape[idx] + * else: + */ + (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; + + /* "View.MemoryView":1199 + * for idx in range(ndim): + * strides[idx] = stride + * stride *= shape[idx] # <<<<<<<<<<<<<< + * else: + * for idx in range(ndim - 1, -1, -1): + */ + __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); + } + + /* "View.MemoryView":1196 + * cdef int idx + * + * if order == 'F': # <<<<<<<<<<<<<< + * for idx in range(ndim): + * strides[idx] = stride + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1201 + * stride *= shape[idx] + * else: + * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< + * strides[idx] = stride + * stride *= shape[idx] + */ + /*else*/ { + for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1; __pyx_t_2-=1) { + __pyx_v_idx = __pyx_t_2; + + /* "View.MemoryView":1202 + * else: + * for idx in range(ndim - 1, -1, -1): + * strides[idx] = stride # <<<<<<<<<<<<<< + * stride *= shape[idx] + * + */ + (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; + + /* "View.MemoryView":1203 + * for idx in range(ndim - 1, -1, -1): + * strides[idx] = stride + * stride *= shape[idx] # <<<<<<<<<<<<<< + * + * return stride + */ + __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); + } + } + __pyx_L3:; + + /* "View.MemoryView":1205 + * stride *= shape[idx] + * + * return stride # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_data_to_temp') + */ + __pyx_r = __pyx_v_stride; + goto __pyx_L0; + + /* "View.MemoryView":1187 + * + * @cname('__pyx_fill_contig_strides_array') + * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< + * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, + * int ndim, char order) nogil: + */ + + /* function exit code */ + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1208 + * + * @cname('__pyx_memoryview_copy_data_to_temp') + * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *tmpslice, + * char order, + */ + +static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_tmpslice, char __pyx_v_order, int __pyx_v_ndim) { + int __pyx_v_i; + void *__pyx_v_result; + size_t __pyx_v_itemsize; + size_t __pyx_v_size; + void *__pyx_r; + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + struct __pyx_memoryview_obj *__pyx_t_4; + int __pyx_t_5; + int __pyx_t_6; + + /* "View.MemoryView":1219 + * cdef void *result + * + * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< + * cdef size_t size = slice_get_size(src, ndim) + * + */ + __pyx_t_1 = __pyx_v_src->memview->view.itemsize; + __pyx_v_itemsize = __pyx_t_1; + + /* "View.MemoryView":1220 + * + * cdef size_t itemsize = src.memview.view.itemsize + * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< + * + * result = malloc(size) + */ + __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); + + /* "View.MemoryView":1222 + * cdef size_t size = slice_get_size(src, ndim) + * + * result = malloc(size) # <<<<<<<<<<<<<< + * if not result: + * _err(MemoryError, NULL) + */ + __pyx_v_result = malloc(__pyx_v_size); + + /* "View.MemoryView":1223 + * + * result = malloc(size) + * if not result: # <<<<<<<<<<<<<< + * _err(MemoryError, NULL) + * + */ + __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1224 + * result = malloc(size) + * if not result: + * _err(MemoryError, NULL) # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 1224, __pyx_L1_error) + + /* "View.MemoryView":1223 + * + * result = malloc(size) + * if not result: # <<<<<<<<<<<<<< + * _err(MemoryError, NULL) + * + */ + } + + /* "View.MemoryView":1227 + * + * + * tmpslice.data = result # <<<<<<<<<<<<<< + * tmpslice.memview = src.memview + * for i in range(ndim): + */ + __pyx_v_tmpslice->data = ((char *)__pyx_v_result); + + /* "View.MemoryView":1228 + * + * tmpslice.data = result + * tmpslice.memview = src.memview # <<<<<<<<<<<<<< + * for i in range(ndim): + * tmpslice.shape[i] = src.shape[i] + */ + __pyx_t_4 = __pyx_v_src->memview; + __pyx_v_tmpslice->memview = __pyx_t_4; + + /* "View.MemoryView":1229 + * tmpslice.data = result + * tmpslice.memview = src.memview + * for i in range(ndim): # <<<<<<<<<<<<<< + * tmpslice.shape[i] = src.shape[i] + * tmpslice.suboffsets[i] = -1 + */ + __pyx_t_3 = __pyx_v_ndim; + __pyx_t_5 = __pyx_t_3; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; + + /* "View.MemoryView":1230 + * tmpslice.memview = src.memview + * for i in range(ndim): + * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< + * tmpslice.suboffsets[i] = -1 + * + */ + (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); + + /* "View.MemoryView":1231 + * for i in range(ndim): + * tmpslice.shape[i] = src.shape[i] + * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< + * + * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, + */ + (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1L; + } + + /* "View.MemoryView":1233 + * tmpslice.suboffsets[i] = -1 + * + * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< + * ndim, order) + * + */ + (void)(__pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order)); + + /* "View.MemoryView":1237 + * + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * if tmpslice.shape[i] == 1: + * tmpslice.strides[i] = 0 + */ + __pyx_t_3 = __pyx_v_ndim; + __pyx_t_5 = __pyx_t_3; + for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { + __pyx_v_i = __pyx_t_6; + + /* "View.MemoryView":1238 + * + * for i in range(ndim): + * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< + * tmpslice.strides[i] = 0 + * + */ + __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1239 + * for i in range(ndim): + * if tmpslice.shape[i] == 1: + * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< + * + * if slice_is_contig(src[0], order, ndim): + */ + (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; + + /* "View.MemoryView":1238 + * + * for i in range(ndim): + * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< + * tmpslice.strides[i] = 0 + * + */ + } + } + + /* "View.MemoryView":1241 + * tmpslice.strides[i] = 0 + * + * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< + * memcpy(result, src.data, size) + * else: + */ + __pyx_t_2 = (__pyx_memviewslice_is_contig((__pyx_v_src[0]), __pyx_v_order, __pyx_v_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1242 + * + * if slice_is_contig(src[0], order, ndim): + * memcpy(result, src.data, size) # <<<<<<<<<<<<<< + * else: + * copy_strided_to_strided(src, tmpslice, ndim, itemsize) + */ + (void)(memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size)); + + /* "View.MemoryView":1241 + * tmpslice.strides[i] = 0 + * + * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< + * memcpy(result, src.data, size) + * else: + */ + goto __pyx_L9; + } + + /* "View.MemoryView":1244 + * memcpy(result, src.data, size) + * else: + * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< + * + * return result + */ + /*else*/ { + copy_strided_to_strided(__pyx_v_src, __pyx_v_tmpslice, __pyx_v_ndim, __pyx_v_itemsize); + } + __pyx_L9:; + + /* "View.MemoryView":1246 + * copy_strided_to_strided(src, tmpslice, ndim, itemsize) + * + * return result # <<<<<<<<<<<<<< + * + * + */ + __pyx_r = __pyx_v_result; + goto __pyx_L0; + + /* "View.MemoryView":1208 + * + * @cname('__pyx_memoryview_copy_data_to_temp') + * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice *tmpslice, + * char order, + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = NULL; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1251 + * + * @cname('__pyx_memoryview_err_extents') + * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % + */ + +static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent1, Py_ssize_t __pyx_v_extent2) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("_err_extents", 0); + + /* "View.MemoryView":1254 + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % + * (i, extent1, extent2)) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_err_dim') + */ + __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1254, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1254, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1254, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1254, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_GIVEREF(__pyx_t_1); + PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_2); + PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); + __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); + __pyx_t_1 = 0; + __pyx_t_2 = 0; + __pyx_t_3 = 0; + + /* "View.MemoryView":1253 + * cdef int _err_extents(int i, Py_ssize_t extent1, + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< + * (i, extent1, extent2)) + * + */ + __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1253, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1253, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_4, 0, 0, 0); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __PYX_ERR(2, 1253, __pyx_L1_error) + + /* "View.MemoryView":1251 + * + * @cname('__pyx_memoryview_err_extents') + * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< + * Py_ssize_t extent2) except -1 with gil: + * raise ValueError("got differing extents in dimension %d (got %d and %d)" % + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("View.MemoryView._err_extents", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + return __pyx_r; +} + +/* "View.MemoryView":1257 + * + * @cname('__pyx_memoryview_err_dim') + * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii') % dim) + * + */ + +static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, int __pyx_v_dim) { + int __pyx_r; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("_err_dim", 0); + __Pyx_INCREF(__pyx_v_error); + + /* "View.MemoryView":1258 + * @cname('__pyx_memoryview_err_dim') + * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: + * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_err') + */ + __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1258, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1258, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1258, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_INCREF(__pyx_v_error); + __pyx_t_3 = __pyx_v_error; __pyx_t_2 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { + __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); + if (likely(__pyx_t_2)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); + __Pyx_INCREF(__pyx_t_2); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_3, function); + } + } + __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); + __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1258, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_Raise(__pyx_t_1, 0, 0, 0); + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __PYX_ERR(2, 1258, __pyx_L1_error) + + /* "View.MemoryView":1257 + * + * @cname('__pyx_memoryview_err_dim') + * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii') % dim) + * + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_AddTraceback("View.MemoryView._err_dim", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __Pyx_XDECREF(__pyx_v_error); + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + return __pyx_r; +} + +/* "View.MemoryView":1261 + * + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< + * if msg != NULL: + * raise error(msg.decode('ascii')) + */ + +static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { + int __pyx_r; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("_err", 0); + __Pyx_INCREF(__pyx_v_error); + + /* "View.MemoryView":1262 + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: + * if msg != NULL: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii')) + * else: + */ + __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); + if (unlikely(__pyx_t_1)) { + + /* "View.MemoryView":1263 + * cdef int _err(object error, char *msg) except -1 with gil: + * if msg != NULL: + * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< + * else: + * raise error + */ + __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1263, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_INCREF(__pyx_v_error); + __pyx_t_4 = __pyx_v_error; __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_4, function); + } + } + __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1263, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + __Pyx_Raise(__pyx_t_2, 0, 0, 0); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __PYX_ERR(2, 1263, __pyx_L1_error) + + /* "View.MemoryView":1262 + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: + * if msg != NULL: # <<<<<<<<<<<<<< + * raise error(msg.decode('ascii')) + * else: + */ + } + + /* "View.MemoryView":1265 + * raise error(msg.decode('ascii')) + * else: + * raise error # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_copy_contents') + */ + /*else*/ { + __Pyx_Raise(__pyx_v_error, 0, 0, 0); + __PYX_ERR(2, 1265, __pyx_L1_error) + } + + /* "View.MemoryView":1261 + * + * @cname('__pyx_memoryview_err') + * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< + * if msg != NULL: + * raise error(msg.decode('ascii')) + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView._err", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = -1; + __Pyx_XDECREF(__pyx_v_error); + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + return __pyx_r; +} + +/* "View.MemoryView":1268 + * + * @cname('__pyx_memoryview_copy_contents') + * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice dst, + * int src_ndim, int dst_ndim, + */ + +static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_memviewslice __pyx_v_dst, int __pyx_v_src_ndim, int __pyx_v_dst_ndim, int __pyx_v_dtype_is_object) { + void *__pyx_v_tmpdata; + size_t __pyx_v_itemsize; + int __pyx_v_i; + char __pyx_v_order; + int __pyx_v_broadcasting; + int __pyx_v_direct_copy; + __Pyx_memviewslice __pyx_v_tmp; + int __pyx_v_ndim; + int __pyx_r; + Py_ssize_t __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + int __pyx_t_4; + int __pyx_t_5; + int __pyx_t_6; + void *__pyx_t_7; + int __pyx_t_8; + + /* "View.MemoryView":1276 + * Check for overlapping memory and verify the shapes. + * """ + * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< + * cdef size_t itemsize = src.memview.view.itemsize + * cdef int i + */ + __pyx_v_tmpdata = NULL; + + /* "View.MemoryView":1277 + * """ + * cdef void *tmpdata = NULL + * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< + * cdef int i + * cdef char order = get_best_order(&src, src_ndim) + */ + __pyx_t_1 = __pyx_v_src.memview->view.itemsize; + __pyx_v_itemsize = __pyx_t_1; + + /* "View.MemoryView":1279 + * cdef size_t itemsize = src.memview.view.itemsize + * cdef int i + * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< + * cdef bint broadcasting = False + * cdef bint direct_copy = False + */ + __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); + + /* "View.MemoryView":1280 + * cdef int i + * cdef char order = get_best_order(&src, src_ndim) + * cdef bint broadcasting = False # <<<<<<<<<<<<<< + * cdef bint direct_copy = False + * cdef __Pyx_memviewslice tmp + */ + __pyx_v_broadcasting = 0; + + /* "View.MemoryView":1281 + * cdef char order = get_best_order(&src, src_ndim) + * cdef bint broadcasting = False + * cdef bint direct_copy = False # <<<<<<<<<<<<<< + * cdef __Pyx_memviewslice tmp + * + */ + __pyx_v_direct_copy = 0; + + /* "View.MemoryView":1284 + * cdef __Pyx_memviewslice tmp + * + * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: + */ + __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1285 + * + * if src_ndim < dst_ndim: + * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< + * elif dst_ndim < src_ndim: + * broadcast_leading(&dst, dst_ndim, src_ndim) + */ + __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); + + /* "View.MemoryView":1284 + * cdef __Pyx_memviewslice tmp + * + * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1286 + * if src_ndim < dst_ndim: + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&dst, dst_ndim, src_ndim) + * + */ + __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1287 + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: + * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< + * + * cdef int ndim = max(src_ndim, dst_ndim) + */ + __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); + + /* "View.MemoryView":1286 + * if src_ndim < dst_ndim: + * broadcast_leading(&src, src_ndim, dst_ndim) + * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< + * broadcast_leading(&dst, dst_ndim, src_ndim) + * + */ + } + __pyx_L3:; + + /* "View.MemoryView":1289 + * broadcast_leading(&dst, dst_ndim, src_ndim) + * + * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< + * + * for i in range(ndim): + */ + __pyx_t_3 = __pyx_v_dst_ndim; + __pyx_t_4 = __pyx_v_src_ndim; + if (((__pyx_t_3 > __pyx_t_4) != 0)) { + __pyx_t_5 = __pyx_t_3; + } else { + __pyx_t_5 = __pyx_t_4; + } + __pyx_v_ndim = __pyx_t_5; + + /* "View.MemoryView":1291 + * cdef int ndim = max(src_ndim, dst_ndim) + * + * for i in range(ndim): # <<<<<<<<<<<<<< + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: + */ + __pyx_t_5 = __pyx_v_ndim; + __pyx_t_3 = __pyx_t_5; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; + + /* "View.MemoryView":1292 + * + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< + * if src.shape[i] == 1: + * broadcasting = True + */ + __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1293 + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: # <<<<<<<<<<<<<< + * broadcasting = True + * src.strides[i] = 0 + */ + __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1294 + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: + * broadcasting = True # <<<<<<<<<<<<<< + * src.strides[i] = 0 + * else: + */ + __pyx_v_broadcasting = 1; + + /* "View.MemoryView":1295 + * if src.shape[i] == 1: + * broadcasting = True + * src.strides[i] = 0 # <<<<<<<<<<<<<< + * else: + * _err_extents(i, dst.shape[i], src.shape[i]) + */ + (__pyx_v_src.strides[__pyx_v_i]) = 0; + + /* "View.MemoryView":1293 + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: + * if src.shape[i] == 1: # <<<<<<<<<<<<<< + * broadcasting = True + * src.strides[i] = 0 + */ + goto __pyx_L7; + } + + /* "View.MemoryView":1297 + * src.strides[i] = 0 + * else: + * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< + * + * if src.suboffsets[i] >= 0: + */ + /*else*/ { + __pyx_t_6 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 1297, __pyx_L1_error) + } + __pyx_L7:; + + /* "View.MemoryView":1292 + * + * for i in range(ndim): + * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< + * if src.shape[i] == 1: + * broadcasting = True + */ + } + + /* "View.MemoryView":1299 + * _err_extents(i, dst.shape[i], src.shape[i]) + * + * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + */ + __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1300 + * + * if src.suboffsets[i] >= 0: + * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< + * + * if slices_overlap(&src, &dst, ndim, itemsize): + */ + __pyx_t_6 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 1300, __pyx_L1_error) + + /* "View.MemoryView":1299 + * _err_extents(i, dst.shape[i], src.shape[i]) + * + * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + */ + } + } + + /* "View.MemoryView":1302 + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< + * + * if not slice_is_contig(src, order, ndim): + */ + __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1304 + * if slices_overlap(&src, &dst, ndim, itemsize): + * + * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< + * order = get_best_order(&dst, ndim) + * + */ + __pyx_t_2 = ((!(__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1305 + * + * if not slice_is_contig(src, order, ndim): + * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< + * + * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) + */ + __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); + + /* "View.MemoryView":1304 + * if slices_overlap(&src, &dst, ndim, itemsize): + * + * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< + * order = get_best_order(&dst, ndim) + * + */ + } + + /* "View.MemoryView":1307 + * order = get_best_order(&dst, ndim) + * + * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< + * src = tmp + * + */ + __pyx_t_7 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_7 == ((void *)NULL))) __PYX_ERR(2, 1307, __pyx_L1_error) + __pyx_v_tmpdata = __pyx_t_7; + + /* "View.MemoryView":1308 + * + * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) + * src = tmp # <<<<<<<<<<<<<< + * + * if not broadcasting: + */ + __pyx_v_src = __pyx_v_tmp; + + /* "View.MemoryView":1302 + * _err_dim(ValueError, "Dimension %d is not direct", i) + * + * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< + * + * if not slice_is_contig(src, order, ndim): + */ + } + + /* "View.MemoryView":1310 + * src = tmp + * + * if not broadcasting: # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1313 + * + * + * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): + */ + __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'C', __pyx_v_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1314 + * + * if slice_is_contig(src, 'C', ndim): + * direct_copy = slice_is_contig(dst, 'C', ndim) # <<<<<<<<<<<<<< + * elif slice_is_contig(src, 'F', ndim): + * direct_copy = slice_is_contig(dst, 'F', ndim) + */ + __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'C', __pyx_v_ndim); + + /* "View.MemoryView":1313 + * + * + * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): + */ + goto __pyx_L12; + } + + /* "View.MemoryView":1315 + * if slice_is_contig(src, 'C', ndim): + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + */ + __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'F', __pyx_v_ndim) != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1316 + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): + * direct_copy = slice_is_contig(dst, 'F', ndim) # <<<<<<<<<<<<<< + * + * if direct_copy: + */ + __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'F', __pyx_v_ndim); + + /* "View.MemoryView":1315 + * if slice_is_contig(src, 'C', ndim): + * direct_copy = slice_is_contig(dst, 'C', ndim) + * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + */ + } + __pyx_L12:; + + /* "View.MemoryView":1318 + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + * if direct_copy: # <<<<<<<<<<<<<< + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + */ + __pyx_t_2 = (__pyx_v_direct_copy != 0); + if (__pyx_t_2) { + + /* "View.MemoryView":1320 + * if direct_copy: + * + * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) + * refcount_copying(&dst, dtype_is_object, ndim, True) + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); + + /* "View.MemoryView":1321 + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< + * refcount_copying(&dst, dtype_is_object, ndim, True) + * free(tmpdata) + */ + (void)(memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim))); + + /* "View.MemoryView":1322 + * refcount_copying(&dst, dtype_is_object, ndim, False) + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) + * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< + * free(tmpdata) + * return 0 + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); + + /* "View.MemoryView":1323 + * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) + * refcount_copying(&dst, dtype_is_object, ndim, True) + * free(tmpdata) # <<<<<<<<<<<<<< + * return 0 + * + */ + free(__pyx_v_tmpdata); + + /* "View.MemoryView":1324 + * refcount_copying(&dst, dtype_is_object, ndim, True) + * free(tmpdata) + * return 0 # <<<<<<<<<<<<<< + * + * if order == 'F' == get_best_order(&dst, ndim): + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":1318 + * direct_copy = slice_is_contig(dst, 'F', ndim) + * + * if direct_copy: # <<<<<<<<<<<<<< + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + */ + } + + /* "View.MemoryView":1310 + * src = tmp + * + * if not broadcasting: # <<<<<<<<<<<<<< + * + * + */ + } + + /* "View.MemoryView":1326 + * return 0 + * + * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_2 = (__pyx_v_order == 'F'); + if (__pyx_t_2) { + __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); + } + __pyx_t_8 = (__pyx_t_2 != 0); + if (__pyx_t_8) { + + /* "View.MemoryView":1329 + * + * + * transpose_memslice(&src) # <<<<<<<<<<<<<< + * transpose_memslice(&dst) + * + */ + __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(2, 1329, __pyx_L1_error) + + /* "View.MemoryView":1330 + * + * transpose_memslice(&src) + * transpose_memslice(&dst) # <<<<<<<<<<<<<< + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + */ + __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(2, 1330, __pyx_L1_error) + + /* "View.MemoryView":1326 + * return 0 + * + * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< + * + * + */ + } + + /* "View.MemoryView":1332 + * transpose_memslice(&dst) + * + * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< + * copy_strided_to_strided(&src, &dst, ndim, itemsize) + * refcount_copying(&dst, dtype_is_object, ndim, True) + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); + + /* "View.MemoryView":1333 + * + * refcount_copying(&dst, dtype_is_object, ndim, False) + * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< + * refcount_copying(&dst, dtype_is_object, ndim, True) + * + */ + copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); + + /* "View.MemoryView":1334 + * refcount_copying(&dst, dtype_is_object, ndim, False) + * copy_strided_to_strided(&src, &dst, ndim, itemsize) + * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< + * + * free(tmpdata) + */ + __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); + + /* "View.MemoryView":1336 + * refcount_copying(&dst, dtype_is_object, ndim, True) + * + * free(tmpdata) # <<<<<<<<<<<<<< + * return 0 + * + */ + free(__pyx_v_tmpdata); + + /* "View.MemoryView":1337 + * + * free(tmpdata) + * return 0 # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_broadcast_leading') + */ + __pyx_r = 0; + goto __pyx_L0; + + /* "View.MemoryView":1268 + * + * @cname('__pyx_memoryview_copy_contents') + * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< + * __Pyx_memviewslice dst, + * int src_ndim, int dst_ndim, + */ + + /* function exit code */ + __pyx_L1_error:; + { + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif + } + __pyx_r = -1; + __pyx_L0:; + return __pyx_r; +} + +/* "View.MemoryView":1340 + * + * @cname('__pyx_memoryview_broadcast_leading') + * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< + * int ndim, + * int ndim_other) nogil: + */ + +static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim, int __pyx_v_ndim_other) { + int __pyx_v_i; + int __pyx_v_offset; + int __pyx_t_1; + int __pyx_t_2; + int __pyx_t_3; + + /* "View.MemoryView":1344 + * int ndim_other) nogil: + * cdef int i + * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< + * + * for i in range(ndim - 1, -1, -1): + */ + __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); + + /* "View.MemoryView":1346 + * cdef int offset = ndim_other - ndim + * + * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< + * mslice.shape[i + offset] = mslice.shape[i] + * mslice.strides[i + offset] = mslice.strides[i] + */ + for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { + __pyx_v_i = __pyx_t_1; + + /* "View.MemoryView":1347 + * + * for i in range(ndim - 1, -1, -1): + * mslice.shape[i + offset] = mslice.shape[i] # <<<<<<<<<<<<<< + * mslice.strides[i + offset] = mslice.strides[i] + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] + */ + (__pyx_v_mslice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->shape[__pyx_v_i]); + + /* "View.MemoryView":1348 + * for i in range(ndim - 1, -1, -1): + * mslice.shape[i + offset] = mslice.shape[i] + * mslice.strides[i + offset] = mslice.strides[i] # <<<<<<<<<<<<<< + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] + * + */ + (__pyx_v_mslice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->strides[__pyx_v_i]); + + /* "View.MemoryView":1349 + * mslice.shape[i + offset] = mslice.shape[i] + * mslice.strides[i + offset] = mslice.strides[i] + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] # <<<<<<<<<<<<<< + * + * for i in range(offset): + */ + (__pyx_v_mslice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->suboffsets[__pyx_v_i]); + } + + /* "View.MemoryView":1351 + * mslice.suboffsets[i + offset] = mslice.suboffsets[i] + * + * for i in range(offset): # <<<<<<<<<<<<<< + * mslice.shape[i] = 1 + * mslice.strides[i] = mslice.strides[0] + */ + __pyx_t_1 = __pyx_v_offset; + __pyx_t_2 = __pyx_t_1; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1352 + * + * for i in range(offset): + * mslice.shape[i] = 1 # <<<<<<<<<<<<<< + * mslice.strides[i] = mslice.strides[0] + * mslice.suboffsets[i] = -1 + */ + (__pyx_v_mslice->shape[__pyx_v_i]) = 1; + + /* "View.MemoryView":1353 + * for i in range(offset): + * mslice.shape[i] = 1 + * mslice.strides[i] = mslice.strides[0] # <<<<<<<<<<<<<< + * mslice.suboffsets[i] = -1 + * + */ + (__pyx_v_mslice->strides[__pyx_v_i]) = (__pyx_v_mslice->strides[0]); + + /* "View.MemoryView":1354 + * mslice.shape[i] = 1 + * mslice.strides[i] = mslice.strides[0] + * mslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< + * + * + */ + (__pyx_v_mslice->suboffsets[__pyx_v_i]) = -1L; + } + + /* "View.MemoryView":1340 + * + * @cname('__pyx_memoryview_broadcast_leading') + * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< + * int ndim, + * int ndim_other) nogil: + */ + + /* function exit code */ +} + +/* "View.MemoryView":1362 + * + * @cname('__pyx_memoryview_refcount_copying') + * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< + * int ndim, bint inc) nogil: + * + */ + +static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { + int __pyx_t_1; + + /* "View.MemoryView":1366 + * + * + * if dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice_with_gil(dst.data, dst.shape, + * dst.strides, ndim, inc) + */ + __pyx_t_1 = (__pyx_v_dtype_is_object != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1367 + * + * if dtype_is_object: + * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< + * dst.strides, ndim, inc) + * + */ + __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); + + /* "View.MemoryView":1366 + * + * + * if dtype_is_object: # <<<<<<<<<<<<<< + * refcount_objects_in_slice_with_gil(dst.data, dst.shape, + * dst.strides, ndim, inc) + */ + } + + /* "View.MemoryView":1362 + * + * @cname('__pyx_memoryview_refcount_copying') + * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< + * int ndim, bint inc) nogil: + * + */ + + /* function exit code */ +} + +/* "View.MemoryView":1371 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') + * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * bint inc) with gil: + */ + +static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { + __Pyx_RefNannyDeclarations + #ifdef WITH_THREAD + PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); + #endif + __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); + + /* "View.MemoryView":1374 + * Py_ssize_t *strides, int ndim, + * bint inc) with gil: + * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< + * + * @cname('__pyx_memoryview_refcount_objects_in_slice') + */ + __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); + + /* "View.MemoryView":1371 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') + * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * bint inc) with gil: + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + #ifdef WITH_THREAD + __Pyx_PyGILState_Release(__pyx_gilstate_save); + #endif +} + +/* "View.MemoryView":1377 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice') + * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, bint inc): + * cdef Py_ssize_t i + */ + +static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { + CYTHON_UNUSED Py_ssize_t __pyx_v_i; + __Pyx_RefNannyDeclarations + Py_ssize_t __pyx_t_1; + Py_ssize_t __pyx_t_2; + Py_ssize_t __pyx_t_3; + int __pyx_t_4; + __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); + + /* "View.MemoryView":1381 + * cdef Py_ssize_t i + * + * for i in range(shape[0]): # <<<<<<<<<<<<<< + * if ndim == 1: + * if inc: + */ + __pyx_t_1 = (__pyx_v_shape[0]); + __pyx_t_2 = __pyx_t_1; + for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { + __pyx_v_i = __pyx_t_3; + + /* "View.MemoryView":1382 + * + * for i in range(shape[0]): + * if ndim == 1: # <<<<<<<<<<<<<< + * if inc: + * Py_INCREF(( data)[0]) + */ + __pyx_t_4 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":1383 + * for i in range(shape[0]): + * if ndim == 1: + * if inc: # <<<<<<<<<<<<<< + * Py_INCREF(( data)[0]) + * else: + */ + __pyx_t_4 = (__pyx_v_inc != 0); + if (__pyx_t_4) { + + /* "View.MemoryView":1384 + * if ndim == 1: + * if inc: + * Py_INCREF(( data)[0]) # <<<<<<<<<<<<<< + * else: + * Py_DECREF(( data)[0]) + */ + Py_INCREF((((PyObject **)__pyx_v_data)[0])); + + /* "View.MemoryView":1383 + * for i in range(shape[0]): + * if ndim == 1: + * if inc: # <<<<<<<<<<<<<< + * Py_INCREF(( data)[0]) + * else: + */ + goto __pyx_L6; + } + + /* "View.MemoryView":1386 + * Py_INCREF(( data)[0]) + * else: + * Py_DECREF(( data)[0]) # <<<<<<<<<<<<<< + * else: + * refcount_objects_in_slice(data, shape + 1, strides + 1, + */ + /*else*/ { + Py_DECREF((((PyObject **)__pyx_v_data)[0])); + } + __pyx_L6:; + + /* "View.MemoryView":1382 + * + * for i in range(shape[0]): + * if ndim == 1: # <<<<<<<<<<<<<< + * if inc: + * Py_INCREF(( data)[0]) + */ + goto __pyx_L5; + } + + /* "View.MemoryView":1388 + * Py_DECREF(( data)[0]) + * else: + * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< + * ndim - 1, inc) + * + */ + /*else*/ { + + /* "View.MemoryView":1389 + * else: + * refcount_objects_in_slice(data, shape + 1, strides + 1, + * ndim - 1, inc) # <<<<<<<<<<<<<< + * + * data += strides[0] + */ + __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_inc); + } + __pyx_L5:; + + /* "View.MemoryView":1391 + * ndim - 1, inc) + * + * data += strides[0] # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); + } + + /* "View.MemoryView":1377 + * + * @cname('__pyx_memoryview_refcount_objects_in_slice') + * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, bint inc): + * cdef Py_ssize_t i + */ + + /* function exit code */ + __Pyx_RefNannyFinishContext(); +} + +/* "View.MemoryView":1397 + * + * @cname('__pyx_memoryview_slice_assign_scalar') + * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< + * size_t itemsize, void *item, + * bint dtype_is_object) nogil: + */ + +static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { + + /* "View.MemoryView":1400 + * size_t itemsize, void *item, + * bint dtype_is_object) nogil: + * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< + * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, + * itemsize, item) + */ + __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); + + /* "View.MemoryView":1401 + * bint dtype_is_object) nogil: + * refcount_copying(dst, dtype_is_object, ndim, False) + * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< + * itemsize, item) + * refcount_copying(dst, dtype_is_object, ndim, True) + */ + __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); + + /* "View.MemoryView":1403 + * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, + * itemsize, item) + * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< + * + * + */ + __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); + + /* "View.MemoryView":1397 + * + * @cname('__pyx_memoryview_slice_assign_scalar') + * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< + * size_t itemsize, void *item, + * bint dtype_is_object) nogil: + */ + + /* function exit code */ +} + +/* "View.MemoryView":1407 + * + * @cname('__pyx_memoryview__slice_assign_scalar') + * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * size_t itemsize, void *item) nogil: + */ + +static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item) { + CYTHON_UNUSED Py_ssize_t __pyx_v_i; + Py_ssize_t __pyx_v_stride; + Py_ssize_t __pyx_v_extent; + int __pyx_t_1; + Py_ssize_t __pyx_t_2; + Py_ssize_t __pyx_t_3; + Py_ssize_t __pyx_t_4; + + /* "View.MemoryView":1411 + * size_t itemsize, void *item) nogil: + * cdef Py_ssize_t i + * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< + * cdef Py_ssize_t extent = shape[0] + * + */ + __pyx_v_stride = (__pyx_v_strides[0]); + + /* "View.MemoryView":1412 + * cdef Py_ssize_t i + * cdef Py_ssize_t stride = strides[0] + * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< + * + * if ndim == 1: + */ + __pyx_v_extent = (__pyx_v_shape[0]); + + /* "View.MemoryView":1414 + * cdef Py_ssize_t extent = shape[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * for i in range(extent): + * memcpy(data, item, itemsize) + */ + __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); + if (__pyx_t_1) { + + /* "View.MemoryView":1415 + * + * if ndim == 1: + * for i in range(extent): # <<<<<<<<<<<<<< + * memcpy(data, item, itemsize) + * data += stride + */ + __pyx_t_2 = __pyx_v_extent; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; + + /* "View.MemoryView":1416 + * if ndim == 1: + * for i in range(extent): + * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< + * data += stride + * else: + */ + (void)(memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize)); + + /* "View.MemoryView":1417 + * for i in range(extent): + * memcpy(data, item, itemsize) + * data += stride # <<<<<<<<<<<<<< + * else: + * for i in range(extent): + */ + __pyx_v_data = (__pyx_v_data + __pyx_v_stride); + } + + /* "View.MemoryView":1414 + * cdef Py_ssize_t extent = shape[0] + * + * if ndim == 1: # <<<<<<<<<<<<<< + * for i in range(extent): + * memcpy(data, item, itemsize) + */ + goto __pyx_L3; + } + + /* "View.MemoryView":1419 + * data += stride + * else: + * for i in range(extent): # <<<<<<<<<<<<<< + * _slice_assign_scalar(data, shape + 1, strides + 1, + * ndim - 1, itemsize, item) + */ + /*else*/ { + __pyx_t_2 = __pyx_v_extent; + __pyx_t_3 = __pyx_t_2; + for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { + __pyx_v_i = __pyx_t_4; + + /* "View.MemoryView":1420 + * else: + * for i in range(extent): + * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< + * ndim - 1, itemsize, item) + * data += stride + */ + __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); + + /* "View.MemoryView":1422 + * _slice_assign_scalar(data, shape + 1, strides + 1, + * ndim - 1, itemsize, item) + * data += stride # <<<<<<<<<<<<<< + * + * + */ + __pyx_v_data = (__pyx_v_data + __pyx_v_stride); + } + } + __pyx_L3:; + + /* "View.MemoryView":1407 + * + * @cname('__pyx_memoryview__slice_assign_scalar') + * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< + * Py_ssize_t *strides, int ndim, + * size_t itemsize, void *item) nogil: + */ + + /* function exit code */ +} + +/* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * cdef object __pyx_PickleError + * cdef object __pyx_result + */ + +/* Python wrapper */ +static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ +static PyMethodDef __pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum = {"__pyx_unpickle_Enum", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum, METH_VARARGS|METH_KEYWORDS, 0}; +static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { + PyObject *__pyx_v___pyx_type = 0; + long __pyx_v___pyx_checksum; + PyObject *__pyx_v___pyx_state = 0; + PyObject *__pyx_r = 0; + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__pyx_unpickle_Enum (wrapper)", 0); + { + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_pyx_type,&__pyx_n_s_pyx_checksum,&__pyx_n_s_pyx_state,0}; + PyObject* values[3] = {0,0,0}; + if (unlikely(__pyx_kwds)) { + Py_ssize_t kw_args; + const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); + switch (pos_args) { + case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + CYTHON_FALLTHROUGH; + case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + CYTHON_FALLTHROUGH; + case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + CYTHON_FALLTHROUGH; + case 0: break; + default: goto __pyx_L5_argtuple_error; + } + kw_args = PyDict_Size(__pyx_kwds); + switch (pos_args) { + case 0: + if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_type)) != 0)) kw_args--; + else goto __pyx_L5_argtuple_error; + CYTHON_FALLTHROUGH; + case 1: + if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_checksum)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 1); __PYX_ERR(2, 1, __pyx_L3_error) + } + CYTHON_FALLTHROUGH; + case 2: + if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_state)) != 0)) kw_args--; + else { + __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 2); __PYX_ERR(2, 1, __pyx_L3_error) + } + } + if (unlikely(kw_args > 0)) { + if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_unpickle_Enum") < 0)) __PYX_ERR(2, 1, __pyx_L3_error) + } + } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { + goto __pyx_L5_argtuple_error; + } else { + values[0] = PyTuple_GET_ITEM(__pyx_args, 0); + values[1] = PyTuple_GET_ITEM(__pyx_args, 1); + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + } + __pyx_v___pyx_type = values[0]; + __pyx_v___pyx_checksum = __Pyx_PyInt_As_long(values[1]); if (unlikely((__pyx_v___pyx_checksum == (long)-1) && PyErr_Occurred())) __PYX_ERR(2, 1, __pyx_L3_error) + __pyx_v___pyx_state = values[2]; + } + goto __pyx_L4_argument_unpacking_done; + __pyx_L5_argtuple_error:; + __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 1, __pyx_L3_error) + __pyx_L3_error:; + __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); + __Pyx_RefNannyFinishContext(); + return NULL; + __pyx_L4_argument_unpacking_done:; + __pyx_r = __pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(__pyx_self, __pyx_v___pyx_type, __pyx_v___pyx_checksum, __pyx_v___pyx_state); + + /* function exit code */ + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_v___pyx_PickleError = 0; + PyObject *__pyx_v___pyx_result = 0; + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + int __pyx_t_1; + PyObject *__pyx_t_2 = NULL; + PyObject *__pyx_t_3 = NULL; + PyObject *__pyx_t_4 = NULL; + PyObject *__pyx_t_5 = NULL; + int __pyx_t_6; + __Pyx_RefNannySetupContext("__pyx_unpickle_Enum", 0); + + /* "(tree fragment)":4 + * cdef object __pyx_PickleError + * cdef object __pyx_result + * if __pyx_checksum != 0xb068931: # <<<<<<<<<<<<<< + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + */ + __pyx_t_1 = ((__pyx_v___pyx_checksum != 0xb068931) != 0); + if (__pyx_t_1) { + + /* "(tree fragment)":5 + * cdef object __pyx_result + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError # <<<<<<<<<<<<<< + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) + */ + __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_n_s_PickleError); + __Pyx_GIVEREF(__pyx_n_s_PickleError); + PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_PickleError); + __pyx_t_3 = __Pyx_Import(__pyx_n_s_pickle, __pyx_t_2, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_3, __pyx_n_s_PickleError); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 5, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __Pyx_INCREF(__pyx_t_2); + __pyx_v___pyx_PickleError = __pyx_t_2; + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "(tree fragment)":6 + * if __pyx_checksum != 0xb068931: + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) # <<<<<<<<<<<<<< + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: + */ + __pyx_t_2 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Incompatible_checksums_s_vs_0xb0, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_4); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_INCREF(__pyx_v___pyx_PickleError); + __pyx_t_2 = __pyx_v___pyx_PickleError; __pyx_t_5 = NULL; + if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { + __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_2); + if (likely(__pyx_t_5)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); + __Pyx_INCREF(__pyx_t_5); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_2, function); + } + } + __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_5, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; + if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 6, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __Pyx_Raise(__pyx_t_3, 0, 0, 0); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __PYX_ERR(2, 6, __pyx_L1_error) + + /* "(tree fragment)":4 + * cdef object __pyx_PickleError + * cdef object __pyx_result + * if __pyx_checksum != 0xb068931: # <<<<<<<<<<<<<< + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + */ + } + + /* "(tree fragment)":7 + * from pickle import PickleError as __pyx_PickleError + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) # <<<<<<<<<<<<<< + * if __pyx_state is not None: + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + */ + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_MemviewEnum_type), __pyx_n_s_new); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 7, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_2); + __pyx_t_4 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { + __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2); + if (likely(__pyx_t_4)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); + __Pyx_INCREF(__pyx_t_4); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_2, function); + } + } + __pyx_t_3 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_4, __pyx_v___pyx_type) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v___pyx_type); + __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; + if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 7, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; + __pyx_v___pyx_result = __pyx_t_3; + __pyx_t_3 = 0; + + /* "(tree fragment)":8 + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + */ + __pyx_t_1 = (__pyx_v___pyx_state != Py_None); + __pyx_t_6 = (__pyx_t_1 != 0); + if (__pyx_t_6) { + + /* "(tree fragment)":9 + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) # <<<<<<<<<<<<<< + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + */ + if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(2, 9, __pyx_L1_error) + __pyx_t_3 = __pyx_unpickle_Enum__set_state(((struct __pyx_MemviewEnum_obj *)__pyx_v___pyx_result), ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 9, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_3); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + + /* "(tree fragment)":8 + * raise __pyx_PickleError("Incompatible checksums (%s vs 0xb068931 = (name))" % __pyx_checksum) + * __pyx_result = Enum.__new__(__pyx_type) + * if __pyx_state is not None: # <<<<<<<<<<<<<< + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + */ + } + + /* "(tree fragment)":10 + * if __pyx_state is not None: + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result # <<<<<<<<<<<<<< + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] + */ + __Pyx_XDECREF(__pyx_r); + __Pyx_INCREF(__pyx_v___pyx_result); + __pyx_r = __pyx_v___pyx_result; + goto __pyx_L0; + + /* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * cdef object __pyx_PickleError + * cdef object __pyx_result + */ + + /* function exit code */ + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_2); + __Pyx_XDECREF(__pyx_t_3); + __Pyx_XDECREF(__pyx_t_4); + __Pyx_XDECREF(__pyx_t_5); + __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = NULL; + __pyx_L0:; + __Pyx_XDECREF(__pyx_v___pyx_PickleError); + __Pyx_XDECREF(__pyx_v___pyx_result); + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} + +/* "(tree fragment)":11 + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + */ + +static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *__pyx_v___pyx_result, PyObject *__pyx_v___pyx_state) { + PyObject *__pyx_r = NULL; + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + int __pyx_t_2; + Py_ssize_t __pyx_t_3; + int __pyx_t_4; + int __pyx_t_5; + PyObject *__pyx_t_6 = NULL; + PyObject *__pyx_t_7 = NULL; + PyObject *__pyx_t_8 = NULL; + __Pyx_RefNannySetupContext("__pyx_unpickle_Enum__set_state", 0); + + /* "(tree fragment)":12 + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] # <<<<<<<<<<<<<< + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + * __pyx_result.__dict__.update(__pyx_state[1]) + */ + if (unlikely(__pyx_v___pyx_state == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(2, 12, __pyx_L1_error) + } + __pyx_t_1 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 12, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __Pyx_GOTREF(__pyx_v___pyx_result->name); + __Pyx_DECREF(__pyx_v___pyx_result->name); + __pyx_v___pyx_result->name = __pyx_t_1; + __pyx_t_1 = 0; + + /* "(tree fragment)":13 + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< + * __pyx_result.__dict__.update(__pyx_state[1]) + */ + if (unlikely(__pyx_v___pyx_state == Py_None)) { + PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); + __PYX_ERR(2, 13, __pyx_L1_error) + } + __pyx_t_3 = PyTuple_GET_SIZE(__pyx_v___pyx_state); if (unlikely(__pyx_t_3 == ((Py_ssize_t)-1))) __PYX_ERR(2, 13, __pyx_L1_error) + __pyx_t_4 = ((__pyx_t_3 > 1) != 0); + if (__pyx_t_4) { + } else { + __pyx_t_2 = __pyx_t_4; + goto __pyx_L4_bool_binop_done; + } + __pyx_t_4 = __Pyx_HasAttr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 13, __pyx_L1_error) + __pyx_t_5 = (__pyx_t_4 != 0); + __pyx_t_2 = __pyx_t_5; + __pyx_L4_bool_binop_done:; + if (__pyx_t_2) { + + /* "(tree fragment)":14 + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + * __pyx_result.__dict__.update(__pyx_state[1]) # <<<<<<<<<<<<<< + */ + __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 14, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_update); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 14, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_7); + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (unlikely(__pyx_v___pyx_state == Py_None)) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); + __PYX_ERR(2, 14, __pyx_L1_error) + } + __pyx_t_6 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 14, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_6); + __pyx_t_8 = NULL; + if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { + __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_7); + if (likely(__pyx_t_8)) { + PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); + __Pyx_INCREF(__pyx_t_8); + __Pyx_INCREF(function); + __Pyx_DECREF_SET(__pyx_t_7, function); + } + } + __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_7, __pyx_t_8, __pyx_t_6) : __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_t_6); + __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; + __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; + if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 14, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "(tree fragment)":13 + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< + * __pyx_result.__dict__.update(__pyx_state[1]) + */ + } + + /* "(tree fragment)":11 + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + */ + + /* function exit code */ + __pyx_r = Py_None; __Pyx_INCREF(Py_None); + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_XDECREF(__pyx_t_6); + __Pyx_XDECREF(__pyx_t_7); + __Pyx_XDECREF(__pyx_t_8); + __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum__set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); + __pyx_r = 0; + __pyx_L0:; + __Pyx_XGIVEREF(__pyx_r); + __Pyx_RefNannyFinishContext(); + return __pyx_r; +} +static struct __pyx_vtabstruct_array __pyx_vtable_array; + +static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { + struct __pyx_array_obj *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_array_obj *)o); + p->__pyx_vtab = __pyx_vtabptr_array; + p->mode = ((PyObject*)Py_None); Py_INCREF(Py_None); + p->_format = ((PyObject*)Py_None); Py_INCREF(Py_None); + if (unlikely(__pyx_array___cinit__(o, a, k) < 0)) goto bad; + return o; + bad: + Py_DECREF(o); o = 0; + return NULL; +} + +static void __pyx_tp_dealloc_array(PyObject *o) { + struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_array___dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->mode); + Py_CLEAR(p->_format); + (*Py_TYPE(o)->tp_free)(o); +} +static PyObject *__pyx_sq_item_array(PyObject *o, Py_ssize_t i) { + PyObject *r; + PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; + r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); + Py_DECREF(x); + return r; +} + +static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { + if (v) { + return __pyx_array___setitem__(o, i, v); + } + else { + PyErr_Format(PyExc_NotImplementedError, + "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); + return -1; + } +} + +static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { + PyObject *v = __Pyx_PyObject_GenericGetAttr(o, n); + if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + v = __pyx_array___getattr__(o, n); + } + return v; +} + +static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(o); +} + +static PyMethodDef __pyx_methods_array[] = { + {"__getattr__", (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, 0}, + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_array_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_array_3__setstate_cython__, METH_O, 0}, + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets_array[] = { + {(char *)"memview", __pyx_getprop___pyx_array_memview, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PySequenceMethods __pyx_tp_as_sequence_array = { + __pyx_array___len__, /*sq_length*/ + 0, /*sq_concat*/ + 0, /*sq_repeat*/ + __pyx_sq_item_array, /*sq_item*/ + 0, /*sq_slice*/ + 0, /*sq_ass_item*/ + 0, /*sq_ass_slice*/ + 0, /*sq_contains*/ + 0, /*sq_inplace_concat*/ + 0, /*sq_inplace_repeat*/ +}; + +static PyMappingMethods __pyx_tp_as_mapping_array = { + __pyx_array___len__, /*mp_length*/ + __pyx_array___getitem__, /*mp_subscript*/ + __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ +}; + +static PyBufferProcs __pyx_tp_as_buffer_array = { + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getreadbuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getwritebuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getsegcount*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getcharbuffer*/ + #endif + __pyx_array_getbuffer, /*bf_getbuffer*/ + 0, /*bf_releasebuffer*/ +}; + +static PyTypeObject __pyx_type___pyx_array = { + PyVarObject_HEAD_INIT(0, 0) + "im2mesh.utils.libsimplify.simplify_mesh.array", /*tp_name*/ + sizeof(struct __pyx_array_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_array, /*tp_dealloc*/ + #if PY_VERSION_HEX < 0x030800b4 + 0, /*tp_print*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 + 0, /*tp_vectorcall_offset*/ + #endif + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + 0, /*tp_repr*/ + 0, /*tp_as_number*/ + &__pyx_tp_as_sequence_array, /*tp_as_sequence*/ + &__pyx_tp_as_mapping_array, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + __pyx_tp_getattro_array, /*tp_getattro*/ + 0, /*tp_setattro*/ + &__pyx_tp_as_buffer_array, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/ + 0, /*tp_doc*/ + 0, /*tp_traverse*/ + 0, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_array, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets_array, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_array, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif + #if PY_VERSION_HEX >= 0x030800b1 + 0, /*tp_vectorcall*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 + 0, /*tp_print*/ + #endif +}; + +static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { + struct __pyx_MemviewEnum_obj *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_MemviewEnum_obj *)o); + p->name = Py_None; Py_INCREF(Py_None); + return o; +} + +static void __pyx_tp_dealloc_Enum(PyObject *o) { + struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + Py_CLEAR(p->name); + (*Py_TYPE(o)->tp_free)(o); +} + +static int __pyx_tp_traverse_Enum(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; + if (p->name) { + e = (*v)(p->name, a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear_Enum(PyObject *o) { + PyObject* tmp; + struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; + tmp = ((PyObject*)p->name); + p->name = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + return 0; +} + +static PyMethodDef __pyx_methods_Enum[] = { + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_3__setstate_cython__, METH_O, 0}, + {0, 0, 0, 0} +}; + +static PyTypeObject __pyx_type___pyx_MemviewEnum = { + PyVarObject_HEAD_INIT(0, 0) + "im2mesh.utils.libsimplify.simplify_mesh.Enum", /*tp_name*/ + sizeof(struct __pyx_MemviewEnum_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_Enum, /*tp_dealloc*/ + #if PY_VERSION_HEX < 0x030800b4 + 0, /*tp_print*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 + 0, /*tp_vectorcall_offset*/ + #endif + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + __pyx_MemviewEnum___repr__, /*tp_repr*/ + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + 0, /*tp_str*/ + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + 0, /*tp_doc*/ + __pyx_tp_traverse_Enum, /*tp_traverse*/ + __pyx_tp_clear_Enum, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_Enum, /*tp_methods*/ + 0, /*tp_members*/ + 0, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + __pyx_MemviewEnum___init__, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_Enum, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif + #if PY_VERSION_HEX >= 0x030800b1 + 0, /*tp_vectorcall*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 + 0, /*tp_print*/ + #endif +}; +static struct __pyx_vtabstruct_memoryview __pyx_vtable_memoryview; + +static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k) { + struct __pyx_memoryview_obj *p; + PyObject *o; + if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { + o = (*t->tp_alloc)(t, 0); + } else { + o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); + } + if (unlikely(!o)) return 0; + p = ((struct __pyx_memoryview_obj *)o); + p->__pyx_vtab = __pyx_vtabptr_memoryview; + p->obj = Py_None; Py_INCREF(Py_None); + p->_size = Py_None; Py_INCREF(Py_None); + p->_array_interface = Py_None; Py_INCREF(Py_None); + p->view.obj = NULL; + if (unlikely(__pyx_memoryview___cinit__(o, a, k) < 0)) goto bad; + return o; + bad: + Py_DECREF(o); o = 0; + return NULL; +} + +static void __pyx_tp_dealloc_memoryview(PyObject *o) { + struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_memoryview___dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->obj); + Py_CLEAR(p->_size); + Py_CLEAR(p->_array_interface); + (*Py_TYPE(o)->tp_free)(o); +} + +static int __pyx_tp_traverse_memoryview(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; + if (p->obj) { + e = (*v)(p->obj, a); if (e) return e; + } + if (p->_size) { + e = (*v)(p->_size, a); if (e) return e; + } + if (p->_array_interface) { + e = (*v)(p->_array_interface, a); if (e) return e; + } + if (p->view.obj) { + e = (*v)(p->view.obj, a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear_memoryview(PyObject *o) { + PyObject* tmp; + struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; + tmp = ((PyObject*)p->obj); + p->obj = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + tmp = ((PyObject*)p->_size); + p->_size = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + tmp = ((PyObject*)p->_array_interface); + p->_array_interface = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + Py_CLEAR(p->view.obj); + return 0; +} +static PyObject *__pyx_sq_item_memoryview(PyObject *o, Py_ssize_t i) { + PyObject *r; + PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; + r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); + Py_DECREF(x); + return r; +} + +static int __pyx_mp_ass_subscript_memoryview(PyObject *o, PyObject *i, PyObject *v) { + if (v) { + return __pyx_memoryview___setitem__(o, i, v); + } + else { + PyErr_Format(PyExc_NotImplementedError, + "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); + return -1; + } +} + +static PyObject *__pyx_getprop___pyx_memoryview_T(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_base(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_shape(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_strides(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_suboffsets(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_ndim(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_itemsize(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_nbytes(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(o); +} + +static PyObject *__pyx_getprop___pyx_memoryview_size(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(o); +} + +static PyMethodDef __pyx_methods_memoryview[] = { + {"is_c_contig", (PyCFunction)__pyx_memoryview_is_c_contig, METH_NOARGS, 0}, + {"is_f_contig", (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, 0}, + {"copy", (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, 0}, + {"copy_fortran", (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, 0}, + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_3__setstate_cython__, METH_O, 0}, + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets_memoryview[] = { + {(char *)"T", __pyx_getprop___pyx_memoryview_T, 0, (char *)0, 0}, + {(char *)"base", __pyx_getprop___pyx_memoryview_base, 0, (char *)0, 0}, + {(char *)"shape", __pyx_getprop___pyx_memoryview_shape, 0, (char *)0, 0}, + {(char *)"strides", __pyx_getprop___pyx_memoryview_strides, 0, (char *)0, 0}, + {(char *)"suboffsets", __pyx_getprop___pyx_memoryview_suboffsets, 0, (char *)0, 0}, + {(char *)"ndim", __pyx_getprop___pyx_memoryview_ndim, 0, (char *)0, 0}, + {(char *)"itemsize", __pyx_getprop___pyx_memoryview_itemsize, 0, (char *)0, 0}, + {(char *)"nbytes", __pyx_getprop___pyx_memoryview_nbytes, 0, (char *)0, 0}, + {(char *)"size", __pyx_getprop___pyx_memoryview_size, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PySequenceMethods __pyx_tp_as_sequence_memoryview = { + __pyx_memoryview___len__, /*sq_length*/ + 0, /*sq_concat*/ + 0, /*sq_repeat*/ + __pyx_sq_item_memoryview, /*sq_item*/ + 0, /*sq_slice*/ + 0, /*sq_ass_item*/ + 0, /*sq_ass_slice*/ + 0, /*sq_contains*/ + 0, /*sq_inplace_concat*/ + 0, /*sq_inplace_repeat*/ +}; + +static PyMappingMethods __pyx_tp_as_mapping_memoryview = { + __pyx_memoryview___len__, /*mp_length*/ + __pyx_memoryview___getitem__, /*mp_subscript*/ + __pyx_mp_ass_subscript_memoryview, /*mp_ass_subscript*/ +}; + +static PyBufferProcs __pyx_tp_as_buffer_memoryview = { + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getreadbuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getwritebuffer*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getsegcount*/ + #endif + #if PY_MAJOR_VERSION < 3 + 0, /*bf_getcharbuffer*/ + #endif + __pyx_memoryview_getbuffer, /*bf_getbuffer*/ + 0, /*bf_releasebuffer*/ +}; + +static PyTypeObject __pyx_type___pyx_memoryview = { + PyVarObject_HEAD_INIT(0, 0) + "im2mesh.utils.libsimplify.simplify_mesh.memoryview", /*tp_name*/ + sizeof(struct __pyx_memoryview_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc_memoryview, /*tp_dealloc*/ + #if PY_VERSION_HEX < 0x030800b4 + 0, /*tp_print*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 + 0, /*tp_vectorcall_offset*/ + #endif + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + __pyx_memoryview___repr__, /*tp_repr*/ + 0, /*tp_as_number*/ + &__pyx_tp_as_sequence_memoryview, /*tp_as_sequence*/ + &__pyx_tp_as_mapping_memoryview, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + __pyx_memoryview___str__, /*tp_str*/ + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + &__pyx_tp_as_buffer_memoryview, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + 0, /*tp_doc*/ + __pyx_tp_traverse_memoryview, /*tp_traverse*/ + __pyx_tp_clear_memoryview, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods_memoryview, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets_memoryview, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new_memoryview, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif + #if PY_VERSION_HEX >= 0x030800b1 + 0, /*tp_vectorcall*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 + 0, /*tp_print*/ + #endif +}; +static struct __pyx_vtabstruct__memoryviewslice __pyx_vtable__memoryviewslice; + +static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k) { + struct __pyx_memoryviewslice_obj *p; + PyObject *o = __pyx_tp_new_memoryview(t, a, k); + if (unlikely(!o)) return 0; + p = ((struct __pyx_memoryviewslice_obj *)o); + p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_memoryview*)__pyx_vtabptr__memoryviewslice; + p->from_object = Py_None; Py_INCREF(Py_None); + p->from_slice.memview = NULL; + return o; +} + +static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { + struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; + #if CYTHON_USE_TP_FINALIZE + if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { + if (PyObject_CallFinalizerFromDealloc(o)) return; + } + #endif + PyObject_GC_UnTrack(o); + { + PyObject *etype, *eval, *etb; + PyErr_Fetch(&etype, &eval, &etb); + ++Py_REFCNT(o); + __pyx_memoryviewslice___dealloc__(o); + --Py_REFCNT(o); + PyErr_Restore(etype, eval, etb); + } + Py_CLEAR(p->from_object); + PyObject_GC_Track(o); + __pyx_tp_dealloc_memoryview(o); +} + +static int __pyx_tp_traverse__memoryviewslice(PyObject *o, visitproc v, void *a) { + int e; + struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; + e = __pyx_tp_traverse_memoryview(o, v, a); if (e) return e; + if (p->from_object) { + e = (*v)(p->from_object, a); if (e) return e; + } + return 0; +} + +static int __pyx_tp_clear__memoryviewslice(PyObject *o) { + PyObject* tmp; + struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; + __pyx_tp_clear_memoryview(o); + tmp = ((PyObject*)p->from_object); + p->from_object = Py_None; Py_INCREF(Py_None); + Py_XDECREF(tmp); + __PYX_XDEC_MEMVIEW(&p->from_slice, 1); + return 0; +} + +static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UNUSED void *x) { + return __pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(o); +} + +static PyMethodDef __pyx_methods__memoryviewslice[] = { + {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_1__reduce_cython__, METH_NOARGS, 0}, + {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_3__setstate_cython__, METH_O, 0}, + {0, 0, 0, 0} +}; + +static struct PyGetSetDef __pyx_getsets__memoryviewslice[] = { + {(char *)"base", __pyx_getprop___pyx_memoryviewslice_base, 0, (char *)0, 0}, + {0, 0, 0, 0, 0} +}; + +static PyTypeObject __pyx_type___pyx_memoryviewslice = { + PyVarObject_HEAD_INIT(0, 0) + "im2mesh.utils.libsimplify.simplify_mesh._memoryviewslice", /*tp_name*/ + sizeof(struct __pyx_memoryviewslice_obj), /*tp_basicsize*/ + 0, /*tp_itemsize*/ + __pyx_tp_dealloc__memoryviewslice, /*tp_dealloc*/ + #if PY_VERSION_HEX < 0x030800b4 + 0, /*tp_print*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 + 0, /*tp_vectorcall_offset*/ + #endif + 0, /*tp_getattr*/ + 0, /*tp_setattr*/ + #if PY_MAJOR_VERSION < 3 + 0, /*tp_compare*/ + #endif + #if PY_MAJOR_VERSION >= 3 + 0, /*tp_as_async*/ + #endif + #if CYTHON_COMPILING_IN_PYPY + __pyx_memoryview___repr__, /*tp_repr*/ + #else + 0, /*tp_repr*/ + #endif + 0, /*tp_as_number*/ + 0, /*tp_as_sequence*/ + 0, /*tp_as_mapping*/ + 0, /*tp_hash*/ + 0, /*tp_call*/ + #if CYTHON_COMPILING_IN_PYPY + __pyx_memoryview___str__, /*tp_str*/ + #else + 0, /*tp_str*/ + #endif + 0, /*tp_getattro*/ + 0, /*tp_setattro*/ + 0, /*tp_as_buffer*/ + Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ + "Internal class for passing memoryview slices to Python", /*tp_doc*/ + __pyx_tp_traverse__memoryviewslice, /*tp_traverse*/ + __pyx_tp_clear__memoryviewslice, /*tp_clear*/ + 0, /*tp_richcompare*/ + 0, /*tp_weaklistoffset*/ + 0, /*tp_iter*/ + 0, /*tp_iternext*/ + __pyx_methods__memoryviewslice, /*tp_methods*/ + 0, /*tp_members*/ + __pyx_getsets__memoryviewslice, /*tp_getset*/ + 0, /*tp_base*/ + 0, /*tp_dict*/ + 0, /*tp_descr_get*/ + 0, /*tp_descr_set*/ + 0, /*tp_dictoffset*/ + 0, /*tp_init*/ + 0, /*tp_alloc*/ + __pyx_tp_new__memoryviewslice, /*tp_new*/ + 0, /*tp_free*/ + 0, /*tp_is_gc*/ + 0, /*tp_bases*/ + 0, /*tp_mro*/ + 0, /*tp_cache*/ + 0, /*tp_subclasses*/ + 0, /*tp_weaklist*/ + 0, /*tp_del*/ + 0, /*tp_version_tag*/ + #if PY_VERSION_HEX >= 0x030400a1 + 0, /*tp_finalize*/ + #endif + #if PY_VERSION_HEX >= 0x030800b1 + 0, /*tp_vectorcall*/ + #endif + #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 + 0, /*tp_print*/ + #endif +}; + +static PyMethodDef __pyx_methods[] = { + {"mesh_simplify", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_7im2mesh_5utils_11libsimplify_13simplify_mesh_1mesh_simplify, METH_VARARGS|METH_KEYWORDS, 0}, + {0, 0, 0, 0} +}; + +#if PY_MAJOR_VERSION >= 3 +#if CYTHON_PEP489_MULTI_PHASE_INIT +static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ +static int __pyx_pymod_exec_simplify_mesh(PyObject* module); /*proto*/ +static PyModuleDef_Slot __pyx_moduledef_slots[] = { + {Py_mod_create, (void*)__pyx_pymod_create}, + {Py_mod_exec, (void*)__pyx_pymod_exec_simplify_mesh}, + {0, NULL} +}; +#endif + +static struct PyModuleDef __pyx_moduledef = { + PyModuleDef_HEAD_INIT, + "simplify_mesh", + 0, /* m_doc */ + #if CYTHON_PEP489_MULTI_PHASE_INIT + 0, /* m_size */ + #else + -1, /* m_size */ + #endif + __pyx_methods /* m_methods */, + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_moduledef_slots, /* m_slots */ + #else + NULL, /* m_reload */ + #endif + NULL, /* m_traverse */ + NULL, /* m_clear */ + NULL /* m_free */ +}; +#endif +#ifndef CYTHON_SMALL_CODE +#if defined(__clang__) + #define CYTHON_SMALL_CODE +#elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define CYTHON_SMALL_CODE __attribute__((cold)) +#else + #define CYTHON_SMALL_CODE +#endif +#endif + +static __Pyx_StringTabEntry __pyx_string_tab[] = { + {&__pyx_n_s_ASCII, __pyx_k_ASCII, sizeof(__pyx_k_ASCII), 0, 0, 1, 1}, + {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, + {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, + {&__pyx_kp_s_Cannot_assign_to_read_only_memor, __pyx_k_Cannot_assign_to_read_only_memor, sizeof(__pyx_k_Cannot_assign_to_read_only_memor), 0, 0, 1, 0}, + {&__pyx_kp_s_Cannot_create_writable_memory_vi, __pyx_k_Cannot_create_writable_memory_vi, sizeof(__pyx_k_Cannot_create_writable_memory_vi), 0, 0, 1, 0}, + {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, + {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, + {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, + {&__pyx_kp_u_Format_string_allocated_too_shor, __pyx_k_Format_string_allocated_too_shor, sizeof(__pyx_k_Format_string_allocated_too_shor), 0, 1, 0, 0}, + {&__pyx_kp_u_Format_string_allocated_too_shor_2, __pyx_k_Format_string_allocated_too_shor_2, sizeof(__pyx_k_Format_string_allocated_too_shor_2), 0, 1, 0, 0}, + {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, + {&__pyx_kp_s_Incompatible_checksums_s_vs_0xb0, __pyx_k_Incompatible_checksums_s_vs_0xb0, sizeof(__pyx_k_Incompatible_checksums_s_vs_0xb0), 0, 0, 1, 0}, + {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, + {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, + {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, + {&__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_k_Invalid_shape_in_axis_d_d, sizeof(__pyx_k_Invalid_shape_in_axis_d_d), 0, 0, 1, 0}, + {&__pyx_n_s_MemoryError, __pyx_k_MemoryError, sizeof(__pyx_k_MemoryError), 0, 0, 1, 1}, + {&__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_k_MemoryView_of_r_at_0x_x, sizeof(__pyx_k_MemoryView_of_r_at_0x_x), 0, 0, 1, 0}, + {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, + {&__pyx_kp_u_Non_native_byte_order_not_suppor, __pyx_k_Non_native_byte_order_not_suppor, sizeof(__pyx_k_Non_native_byte_order_not_suppor), 0, 1, 0, 0}, + {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, + {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, + {&__pyx_n_s_PickleError, __pyx_k_PickleError, sizeof(__pyx_k_PickleError), 0, 0, 1, 1}, + {&__pyx_n_s_RuntimeError, __pyx_k_RuntimeError, sizeof(__pyx_k_RuntimeError), 0, 0, 1, 1}, + {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, + {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, + {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, + {&__pyx_n_s_View_MemoryView, __pyx_k_View_MemoryView, sizeof(__pyx_k_View_MemoryView), 0, 0, 1, 1}, + {&__pyx_n_s_agressiveness, __pyx_k_agressiveness, sizeof(__pyx_k_agressiveness), 0, 0, 1, 1}, + {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, + {&__pyx_n_s_base, __pyx_k_base, sizeof(__pyx_k_base), 0, 0, 1, 1}, + {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, + {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, + {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, + {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, + {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, + {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, + {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1}, + {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, + {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, + {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, + {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, + {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, + {&__pyx_n_s_error, __pyx_k_error, sizeof(__pyx_k_error), 0, 0, 1, 1}, + {&__pyx_n_s_f_target, __pyx_k_f_target, sizeof(__pyx_k_f_target), 0, 0, 1, 1}, + {&__pyx_n_s_flags, __pyx_k_flags, sizeof(__pyx_k_flags), 0, 0, 1, 1}, + {&__pyx_n_s_float64, __pyx_k_float64, sizeof(__pyx_k_float64), 0, 0, 1, 1}, + {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, + {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, + {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, + {&__pyx_n_s_getstate, __pyx_k_getstate, sizeof(__pyx_k_getstate), 0, 0, 1, 1}, + {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, + {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, + {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, + {&__pyx_n_s_int64, __pyx_k_int64, sizeof(__pyx_k_int64), 0, 0, 1, 1}, + {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, + {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, + {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, + {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, + {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, + {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, + {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, + {&__pyx_kp_u_ndarray_is_not_C_contiguous, __pyx_k_ndarray_is_not_C_contiguous, sizeof(__pyx_k_ndarray_is_not_C_contiguous), 0, 1, 0, 0}, + {&__pyx_kp_u_ndarray_is_not_Fortran_contiguou, __pyx_k_ndarray_is_not_Fortran_contiguou, sizeof(__pyx_k_ndarray_is_not_Fortran_contiguou), 0, 1, 0, 0}, + {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, + {&__pyx_n_s_new, __pyx_k_new, sizeof(__pyx_k_new), 0, 0, 1, 1}, + {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, + {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, + {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, + {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, + {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, + {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, + {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, + {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_PickleError, __pyx_k_pyx_PickleError, sizeof(__pyx_k_pyx_PickleError), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_checksum, __pyx_k_pyx_checksum, sizeof(__pyx_k_pyx_checksum), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_result, __pyx_k_pyx_result, sizeof(__pyx_k_pyx_result), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_state, __pyx_k_pyx_state, sizeof(__pyx_k_pyx_state), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_type, __pyx_k_pyx_type, sizeof(__pyx_k_pyx_type), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_unpickle_Enum, __pyx_k_pyx_unpickle_Enum, sizeof(__pyx_k_pyx_unpickle_Enum), 0, 0, 1, 1}, + {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, + {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, + {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, + {&__pyx_n_s_reduce_cython, __pyx_k_reduce_cython, sizeof(__pyx_k_reduce_cython), 0, 0, 1, 1}, + {&__pyx_n_s_reduce_ex, __pyx_k_reduce_ex, sizeof(__pyx_k_reduce_ex), 0, 0, 1, 1}, + {&__pyx_n_s_setstate, __pyx_k_setstate, sizeof(__pyx_k_setstate), 0, 0, 1, 1}, + {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, + {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, + {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, + {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, + {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, + {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, + {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, + {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, + {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, + {&__pyx_kp_s_stringsource, __pyx_k_stringsource, sizeof(__pyx_k_stringsource), 0, 0, 1, 0}, + {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, + {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, + {&__pyx_n_s_triangles_in, __pyx_k_triangles_in, sizeof(__pyx_k_triangles_in), 0, 0, 1, 1}, + {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, + {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, + {&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0}, + {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, + {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, + {&__pyx_n_s_vertices_in, __pyx_k_vertices_in, sizeof(__pyx_k_vertices_in), 0, 0, 1, 1}, + {0, 0, 0, 0, 0, 0, 0} +}; +static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { + __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 41, __pyx_L1_error) + __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 272, __pyx_L1_error) + __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) __PYX_ERR(1, 856, __pyx_L1_error) + __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(1, 1038, __pyx_L1_error) + __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(2, 148, __pyx_L1_error) + __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(2, 151, __pyx_L1_error) + __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(2, 2, __pyx_L1_error) + __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(2, 404, __pyx_L1_error) + __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(2, 613, __pyx_L1_error) + __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(2, 832, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":272 + * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): + * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< + * + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + */ + __pyx_tuple_ = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_C_contiguous); if (unlikely(!__pyx_tuple_)) __PYX_ERR(1, 272, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple_); + __Pyx_GIVEREF(__pyx_tuple_); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":276 + * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) + * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): + * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< + * + * info.buf = PyArray_DATA(self) + */ + __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_Fortran_contiguou); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(1, 276, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__2); + __Pyx_GIVEREF(__pyx_tuple__2); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":306 + * if ((descr.byteorder == c'>' and little_endian) or + * (descr.byteorder == c'<' and not little_endian)): + * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< + * if t == NPY_BYTE: f = "b" + * elif t == NPY_UBYTE: f = "B" + */ + __pyx_tuple__3 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(1, 306, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__3); + __Pyx_GIVEREF(__pyx_tuple__3); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":856 + * + * if (end - f) - (new_offset - offset[0]) < 15: + * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< + * + * if ((child.byteorder == c'>' and little_endian) or + */ + __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(1, 856, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__4); + __Pyx_GIVEREF(__pyx_tuple__4); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":880 + * t = child.type_num + * if end - f < 5: + * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< + * + * # Until ticket #99 is fixed, use integers to avoid warnings + */ + __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor_2); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(1, 880, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__5); + __Pyx_GIVEREF(__pyx_tuple__5); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1038 + * _import_array() + * except Exception: + * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_umath() except -1: + */ + __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(1, 1038, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__6); + __Pyx_GIVEREF(__pyx_tuple__6); + + /* "../../../../../opt/conda/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1044 + * _import_umath() + * except Exception: + * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< + * + * cdef inline int import_ufunc() except -1: + */ + __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(1, 1044, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__7); + __Pyx_GIVEREF(__pyx_tuple__7); + + /* "View.MemoryView":133 + * + * if not self.ndim: + * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< + * + * if itemsize <= 0: + */ + __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(2, 133, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__8); + __Pyx_GIVEREF(__pyx_tuple__8); + + /* "View.MemoryView":136 + * + * if itemsize <= 0: + * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< + * + * if not isinstance(format, bytes): + */ + __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(2, 136, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__9); + __Pyx_GIVEREF(__pyx_tuple__9); + + /* "View.MemoryView":148 + * + * if not self._shape: + * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(2, 148, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__10); + __Pyx_GIVEREF(__pyx_tuple__10); + + /* "View.MemoryView":176 + * self.data = malloc(self.len) + * if not self.data: + * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< + * + * if self.dtype_is_object: + */ + __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(2, 176, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__11); + __Pyx_GIVEREF(__pyx_tuple__11); + + /* "View.MemoryView":192 + * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS + * if not (flags & bufmode): + * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< + * info.buf = self.data + * info.len = self.len + */ + __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__12)) __PYX_ERR(2, 192, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__12); + __Pyx_GIVEREF(__pyx_tuple__12); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(2, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__13); + __Pyx_GIVEREF(__pyx_tuple__13); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__14 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(2, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__14); + __Pyx_GIVEREF(__pyx_tuple__14); + + /* "View.MemoryView":418 + * def __setitem__(memoryview self, object index, object value): + * if self.view.readonly: + * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< + * + * have_slices, index = _unellipsify(index, self.view.ndim) + */ + __pyx_tuple__15 = PyTuple_Pack(1, __pyx_kp_s_Cannot_assign_to_read_only_memor); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(2, 418, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__15); + __Pyx_GIVEREF(__pyx_tuple__15); + + /* "View.MemoryView":495 + * result = struct.unpack(self.view.format, bytesitem) + * except struct.error: + * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< + * else: + * if len(self.view.format) == 1: + */ + __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(2, 495, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__16); + __Pyx_GIVEREF(__pyx_tuple__16); + + /* "View.MemoryView":520 + * def __getbuffer__(self, Py_buffer *info, int flags): + * if flags & PyBUF_WRITABLE and self.view.readonly: + * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< + * + * if flags & PyBUF_ND: + */ + __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_Cannot_create_writable_memory_vi); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(2, 520, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__17); + __Pyx_GIVEREF(__pyx_tuple__17); + + /* "View.MemoryView":570 + * if self.view.strides == NULL: + * + * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< + * + * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) + */ + __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(2, 570, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__18); + __Pyx_GIVEREF(__pyx_tuple__18); + + /* "View.MemoryView":577 + * def suboffsets(self): + * if self.view.suboffsets == NULL: + * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< + * + * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) + */ + __pyx_tuple__19 = PyTuple_New(1); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(2, 577, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__19); + __Pyx_INCREF(__pyx_int_neg_1); + __Pyx_GIVEREF(__pyx_int_neg_1); + PyTuple_SET_ITEM(__pyx_tuple__19, 0, __pyx_int_neg_1); + __Pyx_GIVEREF(__pyx_tuple__19); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(2, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__20); + __Pyx_GIVEREF(__pyx_tuple__20); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(2, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__21); + __Pyx_GIVEREF(__pyx_tuple__21); + + /* "View.MemoryView":682 + * if item is Ellipsis: + * if not seen_ellipsis: + * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< + * seen_ellipsis = True + * else: + */ + __pyx_slice__22 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__22)) __PYX_ERR(2, 682, __pyx_L1_error) + __Pyx_GOTREF(__pyx_slice__22); + __Pyx_GIVEREF(__pyx_slice__22); + + /* "View.MemoryView":703 + * for suboffset in suboffsets[:ndim]: + * if suboffset >= 0: + * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__23 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(2, 703, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__23); + __Pyx_GIVEREF(__pyx_tuple__23); + + /* "(tree fragment)":2 + * def __reduce_cython__(self): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + */ + __pyx_tuple__24 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(2, 2, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__24); + __Pyx_GIVEREF(__pyx_tuple__24); + + /* "(tree fragment)":4 + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") + * def __setstate_cython__(self, __pyx_state): + * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< + */ + __pyx_tuple__25 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(2, 4, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__25); + __Pyx_GIVEREF(__pyx_tuple__25); + + /* "View.MemoryView":286 + * return self.name + * + * cdef generic = Enum("") # <<<<<<<<<<<<<< + * cdef strided = Enum("") # default + * cdef indirect = Enum("") + */ + __pyx_tuple__26 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__26)) __PYX_ERR(2, 286, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__26); + __Pyx_GIVEREF(__pyx_tuple__26); + + /* "View.MemoryView":287 + * + * cdef generic = Enum("") + * cdef strided = Enum("") # default # <<<<<<<<<<<<<< + * cdef indirect = Enum("") + * + */ + __pyx_tuple__27 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__27)) __PYX_ERR(2, 287, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__27); + __Pyx_GIVEREF(__pyx_tuple__27); + + /* "View.MemoryView":288 + * cdef generic = Enum("") + * cdef strided = Enum("") # default + * cdef indirect = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__28 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(2, 288, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__28); + __Pyx_GIVEREF(__pyx_tuple__28); + + /* "View.MemoryView":291 + * + * + * cdef contiguous = Enum("") # <<<<<<<<<<<<<< + * cdef indirect_contiguous = Enum("") + * + */ + __pyx_tuple__29 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__29)) __PYX_ERR(2, 291, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__29); + __Pyx_GIVEREF(__pyx_tuple__29); + + /* "View.MemoryView":292 + * + * cdef contiguous = Enum("") + * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_tuple__30 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__30)) __PYX_ERR(2, 292, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__30); + __Pyx_GIVEREF(__pyx_tuple__30); + + /* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * cdef object __pyx_PickleError + * cdef object __pyx_result + */ + __pyx_tuple__31 = PyTuple_Pack(5, __pyx_n_s_pyx_type, __pyx_n_s_pyx_checksum, __pyx_n_s_pyx_state, __pyx_n_s_pyx_PickleError, __pyx_n_s_pyx_result); if (unlikely(!__pyx_tuple__31)) __PYX_ERR(2, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_tuple__31); + __Pyx_GIVEREF(__pyx_tuple__31); + __pyx_codeobj__32 = (PyObject*)__Pyx_PyCode_New(3, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__31, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_stringsource, __pyx_n_s_pyx_unpickle_Enum, 1, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__32)) __PYX_ERR(2, 1, __pyx_L1_error) + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { + if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_3 = PyInt_FromLong(3); if (unlikely(!__pyx_int_3)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_184977713 = PyInt_FromLong(184977713L); if (unlikely(!__pyx_int_184977713)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 1, __pyx_L1_error) + return 0; + __pyx_L1_error:; + return -1; +} + +static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ +static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ + +static int __Pyx_modinit_global_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); + /*--- Global init code ---*/ + generic = Py_None; Py_INCREF(Py_None); + strided = Py_None; Py_INCREF(Py_None); + indirect = Py_None; Py_INCREF(Py_None); + contiguous = Py_None; Py_INCREF(Py_None); + indirect_contiguous = Py_None; Py_INCREF(Py_None); + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_variable_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); + /*--- Variable export code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_export_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); + /*--- Function export code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_type_init_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); + /*--- Type init code ---*/ + __pyx_vtabptr_array = &__pyx_vtable_array; + __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; + if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(2, 105, __pyx_L1_error) + #if PY_VERSION_HEX < 0x030800B1 + __pyx_type___pyx_array.tp_print = 0; + #endif + if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(2, 105, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_array) < 0) __PYX_ERR(2, 105, __pyx_L1_error) + __pyx_array_type = &__pyx_type___pyx_array; + if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(2, 279, __pyx_L1_error) + #if PY_VERSION_HEX < 0x030800B1 + __pyx_type___pyx_MemviewEnum.tp_print = 0; + #endif + if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_MemviewEnum.tp_dictoffset && __pyx_type___pyx_MemviewEnum.tp_getattro == PyObject_GenericGetAttr)) { + __pyx_type___pyx_MemviewEnum.tp_getattro = __Pyx_PyObject_GenericGetAttr; + } + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(2, 279, __pyx_L1_error) + __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; + __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; + __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; + __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; + __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; + __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; + __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; + __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; + __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; + if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(2, 330, __pyx_L1_error) + #if PY_VERSION_HEX < 0x030800B1 + __pyx_type___pyx_memoryview.tp_print = 0; + #endif + if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryview.tp_dictoffset && __pyx_type___pyx_memoryview.tp_getattro == PyObject_GenericGetAttr)) { + __pyx_type___pyx_memoryview.tp_getattro = __Pyx_PyObject_GenericGetAttr; + } + if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(2, 330, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(2, 330, __pyx_L1_error) + __pyx_memoryview_type = &__pyx_type___pyx_memoryview; + __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; + __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; + __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; + __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; + __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; + if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(2, 965, __pyx_L1_error) + #if PY_VERSION_HEX < 0x030800B1 + __pyx_type___pyx_memoryviewslice.tp_print = 0; + #endif + if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryviewslice.tp_dictoffset && __pyx_type___pyx_memoryviewslice.tp_getattro == PyObject_GenericGetAttr)) { + __pyx_type___pyx_memoryviewslice.tp_getattro = __Pyx_PyObject_GenericGetAttr; + } + if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(2, 965, __pyx_L1_error) + if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(2, 965, __pyx_L1_error) + __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_type_import_code(void) { + __Pyx_RefNannyDeclarations + PyObject *__pyx_t_1 = NULL; + __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); + /*--- Type import code ---*/ + __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 9, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", + #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 + sizeof(PyTypeObject), + #else + sizeof(PyHeapTypeObject), + #endif + __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(3, 9, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 206, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(1, 206, __pyx_L1_error) + __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(1, 229, __pyx_L1_error) + __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(1, 233, __pyx_L1_error) + __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); + if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(1, 242, __pyx_L1_error) + __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Warn); + if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(1, 918, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + __Pyx_RefNannyFinishContext(); + return 0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + __Pyx_RefNannyFinishContext(); + return -1; +} + +static int __Pyx_modinit_variable_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); + /*--- Variable import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + +static int __Pyx_modinit_function_import_code(void) { + __Pyx_RefNannyDeclarations + __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); + /*--- Function import code ---*/ + __Pyx_RefNannyFinishContext(); + return 0; +} + + +#if PY_MAJOR_VERSION < 3 +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC void +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#else +#ifdef CYTHON_NO_PYINIT_EXPORT +#define __Pyx_PyMODINIT_FUNC PyObject * +#else +#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC +#endif +#endif + + +#if PY_MAJOR_VERSION < 3 +__Pyx_PyMODINIT_FUNC initsimplify_mesh(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC initsimplify_mesh(void) +#else +__Pyx_PyMODINIT_FUNC PyInit_simplify_mesh(void) CYTHON_SMALL_CODE; /*proto*/ +__Pyx_PyMODINIT_FUNC PyInit_simplify_mesh(void) +#if CYTHON_PEP489_MULTI_PHASE_INIT +{ + return PyModuleDef_Init(&__pyx_moduledef); +} +static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { + #if PY_VERSION_HEX >= 0x030700A1 + static PY_INT64_T main_interpreter_id = -1; + PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); + if (main_interpreter_id == -1) { + main_interpreter_id = current_id; + return (unlikely(current_id == -1)) ? -1 : 0; + } else if (unlikely(main_interpreter_id != current_id)) + #else + static PyInterpreterState *main_interpreter = NULL; + PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; + if (!main_interpreter) { + main_interpreter = current_interpreter; + } else if (unlikely(main_interpreter != current_interpreter)) + #endif + { + PyErr_SetString( + PyExc_ImportError, + "Interpreter change detected - this module can only be loaded into one interpreter per process."); + return -1; + } + return 0; +} +static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { + PyObject *value = PyObject_GetAttrString(spec, from_name); + int result = 0; + if (likely(value)) { + if (allow_none || value != Py_None) { + result = PyDict_SetItemString(moddict, to_name, value); + } + Py_DECREF(value); + } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Clear(); + } else { + result = -1; + } + return result; +} +static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { + PyObject *module = NULL, *moddict, *modname; + if (__Pyx_check_single_interpreter()) + return NULL; + if (__pyx_m) + return __Pyx_NewRef(__pyx_m); + modname = PyObject_GetAttrString(spec, "name"); + if (unlikely(!modname)) goto bad; + module = PyModule_NewObject(modname); + Py_DECREF(modname); + if (unlikely(!module)) goto bad; + moddict = PyModule_GetDict(module); + if (unlikely(!moddict)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; + if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; + return module; +bad: + Py_XDECREF(module); + return NULL; +} + + +static CYTHON_SMALL_CODE int __pyx_pymod_exec_simplify_mesh(PyObject *__pyx_pyinit_module) +#endif +#endif +{ + PyObject *__pyx_t_1 = NULL; + static PyThread_type_lock __pyx_t_2[8]; + __Pyx_RefNannyDeclarations + #if CYTHON_PEP489_MULTI_PHASE_INIT + if (__pyx_m) { + if (__pyx_m == __pyx_pyinit_module) return 0; + PyErr_SetString(PyExc_RuntimeError, "Module 'simplify_mesh' has already been imported. Re-initialisation is not supported."); + return -1; + } + #elif PY_MAJOR_VERSION >= 3 + if (__pyx_m) return __Pyx_NewRef(__pyx_m); + #endif + #if CYTHON_REFNANNY +__Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); +if (!__Pyx_RefNanny) { + PyErr_Clear(); + __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); + if (!__Pyx_RefNanny) + Py_FatalError("failed to import 'refnanny' module"); +} +#endif + __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_simplify_mesh(void)", 0); + if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #ifdef __Pxy_PyFrame_Initialize_Offsets + __Pxy_PyFrame_Initialize_Offsets(); + #endif + __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) + __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) + #ifdef __Pyx_CyFunction_USED + if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_FusedFunction_USED + if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Coroutine_USED + if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_Generator_USED + if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_AsyncGen_USED + if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + #ifdef __Pyx_StopAsyncIteration_USED + if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + /*--- Library function declarations ---*/ + /*--- Threads initialization code ---*/ + #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS + #ifdef WITH_THREAD /* Python build with threading support? */ + PyEval_InitThreads(); + #endif + #endif + /*--- Module creation code ---*/ + #if CYTHON_PEP489_MULTI_PHASE_INIT + __pyx_m = __pyx_pyinit_module; + Py_INCREF(__pyx_m); + #else + #if PY_MAJOR_VERSION < 3 + __pyx_m = Py_InitModule4("simplify_mesh", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); + #else + __pyx_m = PyModule_Create(&__pyx_moduledef); + #endif + if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_d); + __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_b); + __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) + Py_INCREF(__pyx_cython_runtime); + if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); + /*--- Initialize various global constants etc. ---*/ + if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) + if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + if (__pyx_module_is_main_im2mesh__utils__libsimplify__simplify_mesh) { + if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name_2, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + } + #if PY_MAJOR_VERSION >= 3 + { + PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) + if (!PyDict_GetItemString(modules, "im2mesh.utils.libsimplify.simplify_mesh")) { + if (unlikely(PyDict_SetItemString(modules, "im2mesh.utils.libsimplify.simplify_mesh", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) + } + } + #endif + /*--- Builtin init code ---*/ + if (__Pyx_InitCachedBuiltins() < 0) goto __pyx_L1_error; + /*--- Constants init code ---*/ + if (__Pyx_InitCachedConstants() < 0) goto __pyx_L1_error; + /*--- Global type/function init code ---*/ + (void)__Pyx_modinit_global_init_code(); + (void)__Pyx_modinit_variable_export_code(); + (void)__Pyx_modinit_function_export_code(); + if (unlikely(__Pyx_modinit_type_init_code() != 0)) goto __pyx_L1_error; + if (unlikely(__Pyx_modinit_type_import_code() != 0)) goto __pyx_L1_error; + (void)__Pyx_modinit_variable_import_code(); + (void)__Pyx_modinit_function_import_code(); + /*--- Execution code ---*/ + #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) + if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) + #endif + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":3 + * # distutils: language = c++ + * from libcpp.vector cimport vector + * import numpy as np # <<<<<<<<<<<<<< + * cimport numpy as np + * + */ + __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 3, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "im2mesh/utils/libsimplify/simplify_mesh.pyx":1 + * # distutils: language = c++ # <<<<<<<<<<<<<< + * from libcpp.vector cimport vector + * import numpy as np + */ + __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "View.MemoryView":209 + * info.obj = self + * + * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< + * + * def __dealloc__(array self): + */ + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 209, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem((PyObject *)__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 209, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + PyType_Modified(__pyx_array_type); + + /* "View.MemoryView":286 + * return self.name + * + * cdef generic = Enum("") # <<<<<<<<<<<<<< + * cdef strided = Enum("") # default + * cdef indirect = Enum("") + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__26, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 286, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(generic); + __Pyx_DECREF_SET(generic, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":287 + * + * cdef generic = Enum("") + * cdef strided = Enum("") # default # <<<<<<<<<<<<<< + * cdef indirect = Enum("") + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__27, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 287, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(strided); + __Pyx_DECREF_SET(strided, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":288 + * cdef generic = Enum("") + * cdef strided = Enum("") # default + * cdef indirect = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__28, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 288, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(indirect); + __Pyx_DECREF_SET(indirect, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":291 + * + * + * cdef contiguous = Enum("") # <<<<<<<<<<<<<< + * cdef indirect_contiguous = Enum("") + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__29, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 291, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(contiguous); + __Pyx_DECREF_SET(contiguous, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":292 + * + * cdef contiguous = Enum("") + * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__30, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 292, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + __Pyx_XGOTREF(indirect_contiguous); + __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); + __Pyx_GIVEREF(__pyx_t_1); + __pyx_t_1 = 0; + + /* "View.MemoryView":316 + * + * DEF THREAD_LOCKS_PREALLOCATED = 8 + * cdef int __pyx_memoryview_thread_locks_used = 0 # <<<<<<<<<<<<<< + * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ + * PyThread_allocate_lock(), + */ + __pyx_memoryview_thread_locks_used = 0; + + /* "View.MemoryView":317 + * DEF THREAD_LOCKS_PREALLOCATED = 8 + * cdef int __pyx_memoryview_thread_locks_used = 0 + * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ # <<<<<<<<<<<<<< + * PyThread_allocate_lock(), + * PyThread_allocate_lock(), + */ + __pyx_t_2[0] = PyThread_allocate_lock(); + __pyx_t_2[1] = PyThread_allocate_lock(); + __pyx_t_2[2] = PyThread_allocate_lock(); + __pyx_t_2[3] = PyThread_allocate_lock(); + __pyx_t_2[4] = PyThread_allocate_lock(); + __pyx_t_2[5] = PyThread_allocate_lock(); + __pyx_t_2[6] = PyThread_allocate_lock(); + __pyx_t_2[7] = PyThread_allocate_lock(); + memcpy(&(__pyx_memoryview_thread_locks[0]), __pyx_t_2, sizeof(__pyx_memoryview_thread_locks[0]) * (8)); + + /* "View.MemoryView":549 + * info.obj = self + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 549, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem((PyObject *)__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 549, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + PyType_Modified(__pyx_memoryview_type); + + /* "View.MemoryView":995 + * return self.from_object + * + * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< + * + * + */ + __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 995, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem((PyObject *)__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 995, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + PyType_Modified(__pyx_memoryviewslice_type); + + /* "(tree fragment)":1 + * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< + * cdef object __pyx_PickleError + * cdef object __pyx_result + */ + __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum, NULL, __pyx_n_s_View_MemoryView); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1, __pyx_L1_error) + __Pyx_GOTREF(__pyx_t_1); + if (PyDict_SetItem(__pyx_d, __pyx_n_s_pyx_unpickle_Enum, __pyx_t_1) < 0) __PYX_ERR(2, 1, __pyx_L1_error) + __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; + + /* "(tree fragment)":11 + * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) + * return __pyx_result + * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< + * __pyx_result.name = __pyx_state[0] + * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): + */ + + /*--- Wrapped vars code ---*/ + + goto __pyx_L0; + __pyx_L1_error:; + __Pyx_XDECREF(__pyx_t_1); + if (__pyx_m) { + if (__pyx_d) { + __Pyx_AddTraceback("init im2mesh.utils.libsimplify.simplify_mesh", __pyx_clineno, __pyx_lineno, __pyx_filename); + } + Py_CLEAR(__pyx_m); + } else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_ImportError, "init im2mesh.utils.libsimplify.simplify_mesh"); + } + __pyx_L0:; + __Pyx_RefNannyFinishContext(); + #if CYTHON_PEP489_MULTI_PHASE_INIT + return (__pyx_m != NULL) ? 0 : -1; + #elif PY_MAJOR_VERSION >= 3 + return __pyx_m; + #else + return; + #endif +} + +/* --- Runtime support code --- */ +/* Refnanny */ +#if CYTHON_REFNANNY +static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { + PyObject *m = NULL, *p = NULL; + void *r = NULL; + m = PyImport_ImportModule(modname); + if (!m) goto end; + p = PyObject_GetAttrString(m, "RefNannyAPI"); + if (!p) goto end; + r = PyLong_AsVoidPtr(p); +end: + Py_XDECREF(p); + Py_XDECREF(m); + return (__Pyx_RefNannyAPIStruct *)r; +} +#endif + +/* PyObjectGetAttrStr */ +#if CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { + PyTypeObject* tp = Py_TYPE(obj); + if (likely(tp->tp_getattro)) + return tp->tp_getattro(obj, attr_name); +#if PY_MAJOR_VERSION < 3 + if (likely(tp->tp_getattr)) + return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); +#endif + return PyObject_GetAttr(obj, attr_name); +} +#endif + +/* GetBuiltinName */ +static PyObject *__Pyx_GetBuiltinName(PyObject *name) { + PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); + if (unlikely(!result)) { + PyErr_Format(PyExc_NameError, +#if PY_MAJOR_VERSION >= 3 + "name '%U' is not defined", name); +#else + "name '%.200s' is not defined", PyString_AS_STRING(name)); +#endif + } + return result; +} + +/* BufferIndexError */ +static void __Pyx_RaiseBufferIndexError(int axis) { + PyErr_Format(PyExc_IndexError, + "Out of bounds on buffer access (axis %d)", axis); +} + +/* PyDictVersioning */ +#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS +static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { + PyObject *dict = Py_TYPE(obj)->tp_dict; + return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; +} +static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { + PyObject **dictptr = NULL; + Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; + if (offset) { +#if CYTHON_COMPILING_IN_CPYTHON + dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); +#else + dictptr = _PyObject_GetDictPtr(obj); +#endif + } + return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; +} +static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { + PyObject *dict = Py_TYPE(obj)->tp_dict; + if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) + return 0; + return obj_dict_version == __Pyx_get_object_dict_version(obj); +} +#endif + +/* GetModuleGlobalName */ +#if CYTHON_USE_DICT_VERSIONS +static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) +#else +static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) +#endif +{ + PyObject *result; +#if !CYTHON_AVOID_BORROWED_REFS +#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 + result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); + __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) + if (likely(result)) { + return __Pyx_NewRef(result); + } else if (unlikely(PyErr_Occurred())) { + return NULL; + } +#else + result = PyDict_GetItem(__pyx_d, name); + __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) + if (likely(result)) { + return __Pyx_NewRef(result); + } +#endif +#else + result = PyObject_GetItem(__pyx_d, name); + __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) + if (likely(result)) { + return __Pyx_NewRef(result); + } + PyErr_Clear(); +#endif + return __Pyx_GetBuiltinName(name); +} + +/* PyObjectCall */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { + PyObject *result; + ternaryfunc call = func->ob_type->tp_call; + if (unlikely(!call)) + return PyObject_Call(func, arg, kw); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = (*call)(func, arg, kw); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* MemviewSliceInit */ +static int +__Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, + int ndim, + __Pyx_memviewslice *memviewslice, + int memview_is_new_reference) +{ + __Pyx_RefNannyDeclarations + int i, retval=-1; + Py_buffer *buf = &memview->view; + __Pyx_RefNannySetupContext("init_memviewslice", 0); + if (memviewslice->memview || memviewslice->data) { + PyErr_SetString(PyExc_ValueError, + "memviewslice is already initialized!"); + goto fail; + } + if (buf->strides) { + for (i = 0; i < ndim; i++) { + memviewslice->strides[i] = buf->strides[i]; + } + } else { + Py_ssize_t stride = buf->itemsize; + for (i = ndim - 1; i >= 0; i--) { + memviewslice->strides[i] = stride; + stride *= buf->shape[i]; + } + } + for (i = 0; i < ndim; i++) { + memviewslice->shape[i] = buf->shape[i]; + if (buf->suboffsets) { + memviewslice->suboffsets[i] = buf->suboffsets[i]; + } else { + memviewslice->suboffsets[i] = -1; + } + } + memviewslice->memview = memview; + memviewslice->data = (char *)buf->buf; + if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { + Py_INCREF(memview); + } + retval = 0; + goto no_fail; +fail: + memviewslice->memview = 0; + memviewslice->data = 0; + retval = -1; +no_fail: + __Pyx_RefNannyFinishContext(); + return retval; +} +#ifndef Py_NO_RETURN +#define Py_NO_RETURN +#endif +static void __pyx_fatalerror(const char *fmt, ...) Py_NO_RETURN { + va_list vargs; + char msg[200]; +#ifdef HAVE_STDARG_PROTOTYPES + va_start(vargs, fmt); +#else + va_start(vargs); +#endif + vsnprintf(msg, 200, fmt, vargs); + va_end(vargs); + Py_FatalError(msg); +} +static CYTHON_INLINE int +__pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, + PyThread_type_lock lock) +{ + int result; + PyThread_acquire_lock(lock, 1); + result = (*acquisition_count)++; + PyThread_release_lock(lock); + return result; +} +static CYTHON_INLINE int +__pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, + PyThread_type_lock lock) +{ + int result; + PyThread_acquire_lock(lock, 1); + result = (*acquisition_count)--; + PyThread_release_lock(lock); + return result; +} +static CYTHON_INLINE void +__Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) +{ + int first_time; + struct __pyx_memoryview_obj *memview = memslice->memview; + if (!memview || (PyObject *) memview == Py_None) + return; + if (__pyx_get_slice_count(memview) < 0) + __pyx_fatalerror("Acquisition count is %d (line %d)", + __pyx_get_slice_count(memview), lineno); + first_time = __pyx_add_acquisition_count(memview) == 0; + if (first_time) { + if (have_gil) { + Py_INCREF((PyObject *) memview); + } else { + PyGILState_STATE _gilstate = PyGILState_Ensure(); + Py_INCREF((PyObject *) memview); + PyGILState_Release(_gilstate); + } + } +} +static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, + int have_gil, int lineno) { + int last_time; + struct __pyx_memoryview_obj *memview = memslice->memview; + if (!memview ) { + return; + } else if ((PyObject *) memview == Py_None) { + memslice->memview = NULL; + return; + } + if (__pyx_get_slice_count(memview) <= 0) + __pyx_fatalerror("Acquisition count is %d (line %d)", + __pyx_get_slice_count(memview), lineno); + last_time = __pyx_sub_acquisition_count(memview) == 1; + memslice->data = NULL; + if (last_time) { + if (have_gil) { + Py_CLEAR(memslice->memview); + } else { + PyGILState_STATE _gilstate = PyGILState_Ensure(); + Py_CLEAR(memslice->memview); + PyGILState_Release(_gilstate); + } + } else { + memslice->memview = NULL; + } +} + +/* RaiseArgTupleInvalid */ +static void __Pyx_RaiseArgtupleInvalid( + const char* func_name, + int exact, + Py_ssize_t num_min, + Py_ssize_t num_max, + Py_ssize_t num_found) +{ + Py_ssize_t num_expected; + const char *more_or_less; + if (num_found < num_min) { + num_expected = num_min; + more_or_less = "at least"; + } else { + num_expected = num_max; + more_or_less = "at most"; + } + if (exact) { + more_or_less = "exactly"; + } + PyErr_Format(PyExc_TypeError, + "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", + func_name, more_or_less, num_expected, + (num_expected == 1) ? "" : "s", num_found); +} + +/* RaiseDoubleKeywords */ +static void __Pyx_RaiseDoubleKeywordsError( + const char* func_name, + PyObject* kw_name) +{ + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION >= 3 + "%s() got multiple values for keyword argument '%U'", func_name, kw_name); + #else + "%s() got multiple values for keyword argument '%s'", func_name, + PyString_AsString(kw_name)); + #endif +} + +/* ParseKeywords */ +static int __Pyx_ParseOptionalKeywords( + PyObject *kwds, + PyObject **argnames[], + PyObject *kwds2, + PyObject *values[], + Py_ssize_t num_pos_args, + const char* function_name) +{ + PyObject *key = 0, *value = 0; + Py_ssize_t pos = 0; + PyObject*** name; + PyObject*** first_kw_arg = argnames + num_pos_args; + while (PyDict_Next(kwds, &pos, &key, &value)) { + name = first_kw_arg; + while (*name && (**name != key)) name++; + if (*name) { + values[name-argnames] = value; + continue; + } + name = first_kw_arg; + #if PY_MAJOR_VERSION < 3 + if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { + while (*name) { + if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) + && _PyString_Eq(**name, key)) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + if ((**argname == key) || ( + (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) + && _PyString_Eq(**argname, key))) { + goto arg_passed_twice; + } + argname++; + } + } + } else + #endif + if (likely(PyUnicode_Check(key))) { + while (*name) { + int cmp = (**name == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**name, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) { + values[name-argnames] = value; + break; + } + name++; + } + if (*name) continue; + else { + PyObject*** argname = argnames; + while (argname != first_kw_arg) { + int cmp = (**argname == key) ? 0 : + #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 + (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : + #endif + PyUnicode_Compare(**argname, key); + if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; + if (cmp == 0) goto arg_passed_twice; + argname++; + } + } + } else + goto invalid_keyword_type; + if (kwds2) { + if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; + } else { + goto invalid_keyword; + } + } + return 0; +arg_passed_twice: + __Pyx_RaiseDoubleKeywordsError(function_name, key); + goto bad; +invalid_keyword_type: + PyErr_Format(PyExc_TypeError, + "%.200s() keywords must be strings", function_name); + goto bad; +invalid_keyword: + PyErr_Format(PyExc_TypeError, + #if PY_MAJOR_VERSION < 3 + "%.200s() got an unexpected keyword argument '%.200s'", + function_name, PyString_AsString(key)); + #else + "%s() got an unexpected keyword argument '%U'", + function_name, key); + #endif +bad: + return -1; +} + +/* None */ +static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { + PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); +} + +/* PyErrFetchRestore */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + tmp_type = tstate->curexc_type; + tmp_value = tstate->curexc_value; + tmp_tb = tstate->curexc_traceback; + tstate->curexc_type = type; + tstate->curexc_value = value; + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + *type = tstate->curexc_type; + *value = tstate->curexc_value; + *tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +} +#endif + +/* RaiseException */ +#if PY_MAJOR_VERSION < 3 +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, + CYTHON_UNUSED PyObject *cause) { + __Pyx_PyThreadState_declare + Py_XINCREF(type); + if (!value || value == Py_None) + value = NULL; + else + Py_INCREF(value); + if (!tb || tb == Py_None) + tb = NULL; + else { + Py_INCREF(tb); + if (!PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto raise_error; + } + } + if (PyType_Check(type)) { +#if CYTHON_COMPILING_IN_PYPY + if (!value) { + Py_INCREF(Py_None); + value = Py_None; + } +#endif + PyErr_NormalizeException(&type, &value, &tb); + } else { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto raise_error; + } + value = type; + type = (PyObject*) Py_TYPE(type); + Py_INCREF(type); + if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto raise_error; + } + } + __Pyx_PyThreadState_assign + __Pyx_ErrRestore(type, value, tb); + return; +raise_error: + Py_XDECREF(value); + Py_XDECREF(type); + Py_XDECREF(tb); + return; +} +#else +static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { + PyObject* owned_instance = NULL; + if (tb == Py_None) { + tb = 0; + } else if (tb && !PyTraceBack_Check(tb)) { + PyErr_SetString(PyExc_TypeError, + "raise: arg 3 must be a traceback or None"); + goto bad; + } + if (value == Py_None) + value = 0; + if (PyExceptionInstance_Check(type)) { + if (value) { + PyErr_SetString(PyExc_TypeError, + "instance exception may not have a separate value"); + goto bad; + } + value = type; + type = (PyObject*) Py_TYPE(value); + } else if (PyExceptionClass_Check(type)) { + PyObject *instance_class = NULL; + if (value && PyExceptionInstance_Check(value)) { + instance_class = (PyObject*) Py_TYPE(value); + if (instance_class != type) { + int is_subclass = PyObject_IsSubclass(instance_class, type); + if (!is_subclass) { + instance_class = NULL; + } else if (unlikely(is_subclass == -1)) { + goto bad; + } else { + type = instance_class; + } + } + } + if (!instance_class) { + PyObject *args; + if (!value) + args = PyTuple_New(0); + else if (PyTuple_Check(value)) { + Py_INCREF(value); + args = value; + } else + args = PyTuple_Pack(1, value); + if (!args) + goto bad; + owned_instance = PyObject_Call(type, args, NULL); + Py_DECREF(args); + if (!owned_instance) + goto bad; + value = owned_instance; + if (!PyExceptionInstance_Check(value)) { + PyErr_Format(PyExc_TypeError, + "calling %R should have returned an instance of " + "BaseException, not %R", + type, Py_TYPE(value)); + goto bad; + } + } + } else { + PyErr_SetString(PyExc_TypeError, + "raise: exception class must be a subclass of BaseException"); + goto bad; + } + if (cause) { + PyObject *fixed_cause; + if (cause == Py_None) { + fixed_cause = NULL; + } else if (PyExceptionClass_Check(cause)) { + fixed_cause = PyObject_CallObject(cause, NULL); + if (fixed_cause == NULL) + goto bad; + } else if (PyExceptionInstance_Check(cause)) { + fixed_cause = cause; + Py_INCREF(fixed_cause); + } else { + PyErr_SetString(PyExc_TypeError, + "exception causes must derive from " + "BaseException"); + goto bad; + } + PyException_SetCause(value, fixed_cause); + } + PyErr_SetObject(type, value); + if (tb) { +#if CYTHON_COMPILING_IN_PYPY + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); + Py_INCREF(tb); + PyErr_Restore(tmp_type, tmp_value, tb); + Py_XDECREF(tmp_tb); +#else + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject* tmp_tb = tstate->curexc_traceback; + if (tb != tmp_tb) { + Py_INCREF(tb); + tstate->curexc_traceback = tb; + Py_XDECREF(tmp_tb); + } +#endif + } +bad: + Py_XDECREF(owned_instance); + return; +} +#endif + +/* PyCFunctionFastCall */ +#if CYTHON_FAST_PYCCALL +static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { + PyCFunctionObject *func = (PyCFunctionObject*)func_obj; + PyCFunction meth = PyCFunction_GET_FUNCTION(func); + PyObject *self = PyCFunction_GET_SELF(func); + int flags = PyCFunction_GET_FLAGS(func); + assert(PyCFunction_Check(func)); + assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); + assert(nargs >= 0); + assert(nargs == 0 || args != NULL); + /* _PyCFunction_FastCallDict() must not be called with an exception set, + because it may clear it (directly or indirectly) and so the + caller loses its exception */ + assert(!PyErr_Occurred()); + if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { + return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); + } else { + return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); + } +} +#endif + +/* PyFunctionFastCall */ +#if CYTHON_FAST_PYCALL +static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, + PyObject *globals) { + PyFrameObject *f; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + PyObject **fastlocals; + Py_ssize_t i; + PyObject *result; + assert(globals != NULL); + /* XXX Perhaps we should create a specialized + PyFrame_New() that doesn't take locals, but does + take builtins without sanity checking them. + */ + assert(tstate != NULL); + f = PyFrame_New(tstate, co, globals, NULL); + if (f == NULL) { + return NULL; + } + fastlocals = __Pyx_PyFrame_GetLocalsplus(f); + for (i = 0; i < na; i++) { + Py_INCREF(*args); + fastlocals[i] = *args++; + } + result = PyEval_EvalFrameEx(f,0); + ++tstate->recursion_depth; + Py_DECREF(f); + --tstate->recursion_depth; + return result; +} +#if 1 || PY_VERSION_HEX < 0x030600B1 +static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { + PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); + PyObject *globals = PyFunction_GET_GLOBALS(func); + PyObject *argdefs = PyFunction_GET_DEFAULTS(func); + PyObject *closure; +#if PY_MAJOR_VERSION >= 3 + PyObject *kwdefs; +#endif + PyObject *kwtuple, **k; + PyObject **d; + Py_ssize_t nd; + Py_ssize_t nk; + PyObject *result; + assert(kwargs == NULL || PyDict_Check(kwargs)); + nk = kwargs ? PyDict_Size(kwargs) : 0; + if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { + return NULL; + } + if ( +#if PY_MAJOR_VERSION >= 3 + co->co_kwonlyargcount == 0 && +#endif + likely(kwargs == NULL || nk == 0) && + co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { + if (argdefs == NULL && co->co_argcount == nargs) { + result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); + goto done; + } + else if (nargs == 0 && argdefs != NULL + && co->co_argcount == Py_SIZE(argdefs)) { + /* function called with no arguments, but all parameters have + a default value: use default values as arguments .*/ + args = &PyTuple_GET_ITEM(argdefs, 0); + result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); + goto done; + } + } + if (kwargs != NULL) { + Py_ssize_t pos, i; + kwtuple = PyTuple_New(2 * nk); + if (kwtuple == NULL) { + result = NULL; + goto done; + } + k = &PyTuple_GET_ITEM(kwtuple, 0); + pos = i = 0; + while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { + Py_INCREF(k[i]); + Py_INCREF(k[i+1]); + i += 2; + } + nk = i / 2; + } + else { + kwtuple = NULL; + k = NULL; + } + closure = PyFunction_GET_CLOSURE(func); +#if PY_MAJOR_VERSION >= 3 + kwdefs = PyFunction_GET_KW_DEFAULTS(func); +#endif + if (argdefs != NULL) { + d = &PyTuple_GET_ITEM(argdefs, 0); + nd = Py_SIZE(argdefs); + } + else { + d = NULL; + nd = 0; + } +#if PY_MAJOR_VERSION >= 3 + result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, + args, (int)nargs, + k, (int)nk, + d, (int)nd, kwdefs, closure); +#else + result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, + args, (int)nargs, + k, (int)nk, + d, (int)nd, closure); +#endif + Py_XDECREF(kwtuple); +done: + Py_LeaveRecursiveCall(); + return result; +} +#endif +#endif + +/* PyObjectCallMethO */ +#if CYTHON_COMPILING_IN_CPYTHON +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { + PyObject *self, *result; + PyCFunction cfunc; + cfunc = PyCFunction_GET_FUNCTION(func); + self = PyCFunction_GET_SELF(func); + if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) + return NULL; + result = cfunc(self, arg); + Py_LeaveRecursiveCall(); + if (unlikely(!result) && unlikely(!PyErr_Occurred())) { + PyErr_SetString( + PyExc_SystemError, + "NULL result without error in PyObject_Call"); + } + return result; +} +#endif + +/* PyObjectCallOneArg */ +#if CYTHON_COMPILING_IN_CPYTHON +static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_New(1); + if (unlikely(!args)) return NULL; + Py_INCREF(arg); + PyTuple_SET_ITEM(args, 0, arg); + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { +#if CYTHON_FAST_PYCALL + if (PyFunction_Check(func)) { + return __Pyx_PyFunction_FastCall(func, &arg, 1); + } +#endif + if (likely(PyCFunction_Check(func))) { + if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { + return __Pyx_PyObject_CallMethO(func, arg); +#if CYTHON_FAST_PYCCALL + } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { + return __Pyx_PyCFunction_FastCall(func, &arg, 1); +#endif + } + } + return __Pyx__PyObject_CallOneArg(func, arg); +} +#else +static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { + PyObject *result; + PyObject *args = PyTuple_Pack(1, arg); + if (unlikely(!args)) return NULL; + result = __Pyx_PyObject_Call(func, args, NULL); + Py_DECREF(args); + return result; +} +#endif + +/* DictGetItem */ +#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY +static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key) { + PyObject *value; + value = PyDict_GetItemWithError(d, key); + if (unlikely(!value)) { + if (!PyErr_Occurred()) { + if (unlikely(PyTuple_Check(key))) { + PyObject* args = PyTuple_Pack(1, key); + if (likely(args)) { + PyErr_SetObject(PyExc_KeyError, args); + Py_DECREF(args); + } + } else { + PyErr_SetObject(PyExc_KeyError, key); + } + } + return NULL; + } + Py_INCREF(value); + return value; +} +#endif + +/* RaiseTooManyValuesToUnpack */ +static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { + PyErr_Format(PyExc_ValueError, + "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); +} + +/* RaiseNeedMoreValuesToUnpack */ +static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { + PyErr_Format(PyExc_ValueError, + "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", + index, (index == 1) ? "" : "s"); +} + +/* RaiseNoneIterError */ +static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { + PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); +} + +/* ExtTypeTest */ +static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + if (likely(__Pyx_TypeCheck(obj, type))) + return 1; + PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", + Py_TYPE(obj)->tp_name, type->tp_name); + return 0; +} + +/* GetTopmostException */ +#if CYTHON_USE_EXC_INFO_STACK +static _PyErr_StackItem * +__Pyx_PyErr_GetTopmostException(PyThreadState *tstate) +{ + _PyErr_StackItem *exc_info = tstate->exc_info; + while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && + exc_info->previous_item != NULL) + { + exc_info = exc_info->previous_item; + } + return exc_info; +} +#endif + +/* SaveResetException */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); + *type = exc_info->exc_type; + *value = exc_info->exc_value; + *tb = exc_info->exc_traceback; + #else + *type = tstate->exc_type; + *value = tstate->exc_value; + *tb = tstate->exc_traceback; + #endif + Py_XINCREF(*type); + Py_XINCREF(*value); + Py_XINCREF(*tb); +} +static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = type; + exc_info->exc_value = value; + exc_info->exc_traceback = tb; + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = type; + tstate->exc_value = value; + tstate->exc_traceback = tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +} +#endif + +/* PyErrExceptionMatches */ +#if CYTHON_FAST_THREAD_STATE +static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; icurexc_type; + if (exc_type == err) return 1; + if (unlikely(!exc_type)) return 0; + if (unlikely(PyTuple_Check(err))) + return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); + return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); +} +#endif + +/* GetException */ +#if CYTHON_FAST_THREAD_STATE +static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) +#else +static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) +#endif +{ + PyObject *local_type, *local_value, *local_tb; +#if CYTHON_FAST_THREAD_STATE + PyObject *tmp_type, *tmp_value, *tmp_tb; + local_type = tstate->curexc_type; + local_value = tstate->curexc_value; + local_tb = tstate->curexc_traceback; + tstate->curexc_type = 0; + tstate->curexc_value = 0; + tstate->curexc_traceback = 0; +#else + PyErr_Fetch(&local_type, &local_value, &local_tb); +#endif + PyErr_NormalizeException(&local_type, &local_value, &local_tb); +#if CYTHON_FAST_THREAD_STATE + if (unlikely(tstate->curexc_type)) +#else + if (unlikely(PyErr_Occurred())) +#endif + goto bad; + #if PY_MAJOR_VERSION >= 3 + if (local_tb) { + if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) + goto bad; + } + #endif + Py_XINCREF(local_tb); + Py_XINCREF(local_type); + Py_XINCREF(local_value); + *type = local_type; + *value = local_value; + *tb = local_tb; +#if CYTHON_FAST_THREAD_STATE + #if CYTHON_USE_EXC_INFO_STACK + { + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = local_type; + exc_info->exc_value = local_value; + exc_info->exc_traceback = local_tb; + } + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = local_type; + tstate->exc_value = local_value; + tstate->exc_traceback = local_tb; + #endif + Py_XDECREF(tmp_type); + Py_XDECREF(tmp_value); + Py_XDECREF(tmp_tb); +#else + PyErr_SetExcInfo(local_type, local_value, local_tb); +#endif + return 0; +bad: + *type = 0; + *value = 0; + *tb = 0; + Py_XDECREF(local_type); + Py_XDECREF(local_value); + Py_XDECREF(local_tb); + return -1; +} + +/* ArgTypeTest */ +static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) +{ + if (unlikely(!type)) { + PyErr_SetString(PyExc_SystemError, "Missing type object"); + return 0; + } + else if (exact) { + #if PY_MAJOR_VERSION == 2 + if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; + #endif + } + else { + if (likely(__Pyx_TypeCheck(obj, type))) return 1; + } + PyErr_Format(PyExc_TypeError, + "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", + name, type->tp_name, Py_TYPE(obj)->tp_name); + return 0; +} + +/* PyObjectCall2Args */ +static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { + PyObject *args, *result = NULL; + #if CYTHON_FAST_PYCALL + if (PyFunction_Check(function)) { + PyObject *args[2] = {arg1, arg2}; + return __Pyx_PyFunction_FastCall(function, args, 2); + } + #endif + #if CYTHON_FAST_PYCCALL + if (__Pyx_PyFastCFunction_Check(function)) { + PyObject *args[2] = {arg1, arg2}; + return __Pyx_PyCFunction_FastCall(function, args, 2); + } + #endif + args = PyTuple_New(2); + if (unlikely(!args)) goto done; + Py_INCREF(arg1); + PyTuple_SET_ITEM(args, 0, arg1); + Py_INCREF(arg2); + PyTuple_SET_ITEM(args, 1, arg2); + Py_INCREF(function); + result = __Pyx_PyObject_Call(function, args, NULL); + Py_DECREF(args); + Py_DECREF(function); +done: + return result; +} + +/* BytesEquals */ +static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { +#if CYTHON_COMPILING_IN_PYPY + return PyObject_RichCompareBool(s1, s2, equals); +#else + if (s1 == s2) { + return (equals == Py_EQ); + } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { + const char *ps1, *ps2; + Py_ssize_t length = PyBytes_GET_SIZE(s1); + if (length != PyBytes_GET_SIZE(s2)) + return (equals == Py_NE); + ps1 = PyBytes_AS_STRING(s1); + ps2 = PyBytes_AS_STRING(s2); + if (ps1[0] != ps2[0]) { + return (equals == Py_NE); + } else if (length == 1) { + return (equals == Py_EQ); + } else { + int result; +#if CYTHON_USE_UNICODE_INTERNALS + Py_hash_t hash1, hash2; + hash1 = ((PyBytesObject*)s1)->ob_shash; + hash2 = ((PyBytesObject*)s2)->ob_shash; + if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { + return (equals == Py_NE); + } +#endif + result = memcmp(ps1, ps2, (size_t)length); + return (equals == Py_EQ) ? (result == 0) : (result != 0); + } + } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { + return (equals == Py_NE); + } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { + return (equals == Py_NE); + } else { + int result; + PyObject* py_result = PyObject_RichCompare(s1, s2, equals); + if (!py_result) + return -1; + result = __Pyx_PyObject_IsTrue(py_result); + Py_DECREF(py_result); + return result; + } +#endif +} + +/* UnicodeEquals */ +static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { +#if CYTHON_COMPILING_IN_PYPY + return PyObject_RichCompareBool(s1, s2, equals); +#else +#if PY_MAJOR_VERSION < 3 + PyObject* owned_ref = NULL; +#endif + int s1_is_unicode, s2_is_unicode; + if (s1 == s2) { + goto return_eq; + } + s1_is_unicode = PyUnicode_CheckExact(s1); + s2_is_unicode = PyUnicode_CheckExact(s2); +#if PY_MAJOR_VERSION < 3 + if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { + owned_ref = PyUnicode_FromObject(s2); + if (unlikely(!owned_ref)) + return -1; + s2 = owned_ref; + s2_is_unicode = 1; + } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { + owned_ref = PyUnicode_FromObject(s1); + if (unlikely(!owned_ref)) + return -1; + s1 = owned_ref; + s1_is_unicode = 1; + } else if (((!s2_is_unicode) & (!s1_is_unicode))) { + return __Pyx_PyBytes_Equals(s1, s2, equals); + } +#endif + if (s1_is_unicode & s2_is_unicode) { + Py_ssize_t length; + int kind; + void *data1, *data2; + if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) + return -1; + length = __Pyx_PyUnicode_GET_LENGTH(s1); + if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { + goto return_ne; + } +#if CYTHON_USE_UNICODE_INTERNALS + { + Py_hash_t hash1, hash2; + #if CYTHON_PEP393_ENABLED + hash1 = ((PyASCIIObject*)s1)->hash; + hash2 = ((PyASCIIObject*)s2)->hash; + #else + hash1 = ((PyUnicodeObject*)s1)->hash; + hash2 = ((PyUnicodeObject*)s2)->hash; + #endif + if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { + goto return_ne; + } + } +#endif + kind = __Pyx_PyUnicode_KIND(s1); + if (kind != __Pyx_PyUnicode_KIND(s2)) { + goto return_ne; + } + data1 = __Pyx_PyUnicode_DATA(s1); + data2 = __Pyx_PyUnicode_DATA(s2); + if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { + goto return_ne; + } else if (length == 1) { + goto return_eq; + } else { + int result = memcmp(data1, data2, (size_t)(length * kind)); + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + return (equals == Py_EQ) ? (result == 0) : (result != 0); + } + } else if ((s1 == Py_None) & s2_is_unicode) { + goto return_ne; + } else if ((s2 == Py_None) & s1_is_unicode) { + goto return_ne; + } else { + int result; + PyObject* py_result = PyObject_RichCompare(s1, s2, equals); + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + if (!py_result) + return -1; + result = __Pyx_PyObject_IsTrue(py_result); + Py_DECREF(py_result); + return result; + } +return_eq: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + return (equals == Py_EQ); +return_ne: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(owned_ref); + #endif + return (equals == Py_NE); +#endif +} + +/* None */ +static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t a, Py_ssize_t b) { + Py_ssize_t q = a / b; + Py_ssize_t r = a - q*b; + q -= ((r != 0) & ((r ^ b) < 0)); + return q; +} + +/* GetAttr */ +static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { +#if CYTHON_USE_TYPE_SLOTS +#if PY_MAJOR_VERSION >= 3 + if (likely(PyUnicode_Check(n))) +#else + if (likely(PyString_Check(n))) +#endif + return __Pyx_PyObject_GetAttrStr(o, n); +#endif + return PyObject_GetAttr(o, n); +} + +/* GetItemInt */ +static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { + PyObject *r; + if (!j) return NULL; + r = PyObject_GetItem(o, j); + Py_DECREF(j); + return r; +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + Py_ssize_t wrapped_i = i; + if (wraparound & unlikely(i < 0)) { + wrapped_i += PyList_GET_SIZE(o); + } + if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { + PyObject *r = PyList_GET_ITEM(o, wrapped_i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS + Py_ssize_t wrapped_i = i; + if (wraparound & unlikely(i < 0)) { + wrapped_i += PyTuple_GET_SIZE(o); + } + if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); + Py_INCREF(r); + return r; + } + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +#else + return PySequence_GetItem(o, i); +#endif +} +static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, + CYTHON_NCP_UNUSED int wraparound, + CYTHON_NCP_UNUSED int boundscheck) { +#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS + if (is_list || PyList_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); + if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { + PyObject *r = PyList_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } + else if (PyTuple_CheckExact(o)) { + Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); + if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { + PyObject *r = PyTuple_GET_ITEM(o, n); + Py_INCREF(r); + return r; + } + } else { + PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; + if (likely(m && m->sq_item)) { + if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { + Py_ssize_t l = m->sq_length(o); + if (likely(l >= 0)) { + i += l; + } else { + if (!PyErr_ExceptionMatches(PyExc_OverflowError)) + return NULL; + PyErr_Clear(); + } + } + return m->sq_item(o, i); + } + } +#else + if (is_list || PySequence_Check(o)) { + return PySequence_GetItem(o, i); + } +#endif + return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); +} + +/* ObjectGetItem */ +#if CYTHON_USE_TYPE_SLOTS +static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { + PyObject *runerr; + Py_ssize_t key_value; + PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; + if (unlikely(!(m && m->sq_item))) { + PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); + return NULL; + } + key_value = __Pyx_PyIndex_AsSsize_t(index); + if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { + return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); + } + if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { + PyErr_Clear(); + PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); + } + return NULL; +} +static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { + PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; + if (likely(m && m->mp_subscript)) { + return m->mp_subscript(obj, key); + } + return __Pyx_PyObject_GetIndex(obj, key); +} +#endif + +/* decode_c_string */ +static CYTHON_INLINE PyObject* __Pyx_decode_c_string( + const char* cstring, Py_ssize_t start, Py_ssize_t stop, + const char* encoding, const char* errors, + PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { + Py_ssize_t length; + if (unlikely((start < 0) | (stop < 0))) { + size_t slen = strlen(cstring); + if (unlikely(slen > (size_t) PY_SSIZE_T_MAX)) { + PyErr_SetString(PyExc_OverflowError, + "c-string too long to convert to Python"); + return NULL; + } + length = (Py_ssize_t) slen; + if (start < 0) { + start += length; + if (start < 0) + start = 0; + } + if (stop < 0) + stop += length; + } + length = stop - start; + if (unlikely(length <= 0)) + return PyUnicode_FromUnicode(NULL, 0); + cstring += start; + if (decode_func) { + return decode_func(cstring, length, errors); + } else { + return PyUnicode_Decode(cstring, length, encoding, errors); + } +} + +/* GetAttr3 */ +static PyObject *__Pyx_GetAttr3Default(PyObject *d) { + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) + return NULL; + __Pyx_PyErr_Clear(); + Py_INCREF(d); + return d; +} +static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) { + PyObject *r = __Pyx_GetAttr(o, n); + return (likely(r)) ? r : __Pyx_GetAttr3Default(d); +} + +/* SwapException */ +#if CYTHON_FAST_THREAD_STATE +static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + #if CYTHON_USE_EXC_INFO_STACK + _PyErr_StackItem *exc_info = tstate->exc_info; + tmp_type = exc_info->exc_type; + tmp_value = exc_info->exc_value; + tmp_tb = exc_info->exc_traceback; + exc_info->exc_type = *type; + exc_info->exc_value = *value; + exc_info->exc_traceback = *tb; + #else + tmp_type = tstate->exc_type; + tmp_value = tstate->exc_value; + tmp_tb = tstate->exc_traceback; + tstate->exc_type = *type; + tstate->exc_value = *value; + tstate->exc_traceback = *tb; + #endif + *type = tmp_type; + *value = tmp_value; + *tb = tmp_tb; +} +#else +static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) { + PyObject *tmp_type, *tmp_value, *tmp_tb; + PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb); + PyErr_SetExcInfo(*type, *value, *tb); + *type = tmp_type; + *value = tmp_value; + *tb = tmp_tb; +} +#endif + +/* Import */ +static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { + PyObject *empty_list = 0; + PyObject *module = 0; + PyObject *global_dict = 0; + PyObject *empty_dict = 0; + PyObject *list; + #if PY_MAJOR_VERSION < 3 + PyObject *py_import; + py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); + if (!py_import) + goto bad; + #endif + if (from_list) + list = from_list; + else { + empty_list = PyList_New(0); + if (!empty_list) + goto bad; + list = empty_list; + } + global_dict = PyModule_GetDict(__pyx_m); + if (!global_dict) + goto bad; + empty_dict = PyDict_New(); + if (!empty_dict) + goto bad; + { + #if PY_MAJOR_VERSION >= 3 + if (level == -1) { + if (strchr(__Pyx_MODULE_NAME, '.')) { + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, 1); + if (!module) { + if (!PyErr_ExceptionMatches(PyExc_ImportError)) + goto bad; + PyErr_Clear(); + } + } + level = 0; + } + #endif + if (!module) { + #if PY_MAJOR_VERSION < 3 + PyObject *py_level = PyInt_FromLong(level); + if (!py_level) + goto bad; + module = PyObject_CallFunctionObjArgs(py_import, + name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); + Py_DECREF(py_level); + #else + module = PyImport_ImportModuleLevelObject( + name, global_dict, empty_dict, list, level); + #endif + } + } +bad: + #if PY_MAJOR_VERSION < 3 + Py_XDECREF(py_import); + #endif + Py_XDECREF(empty_list); + Py_XDECREF(empty_dict); + return module; +} + +/* FastTypeChecks */ +#if CYTHON_COMPILING_IN_CPYTHON +static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { + while (a) { + a = a->tp_base; + if (a == b) + return 1; + } + return b == &PyBaseObject_Type; +} +static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { + PyObject *mro; + if (a == b) return 1; + mro = a->tp_mro; + if (likely(mro)) { + Py_ssize_t i, n; + n = PyTuple_GET_SIZE(mro); + for (i = 0; i < n; i++) { + if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) + return 1; + } + return 0; + } + return __Pyx_InBases(a, b); +} +#if PY_MAJOR_VERSION == 2 +static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { + PyObject *exception, *value, *tb; + int res; + __Pyx_PyThreadState_declare + __Pyx_PyThreadState_assign + __Pyx_ErrFetch(&exception, &value, &tb); + res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + if (!res) { + res = PyObject_IsSubclass(err, exc_type2); + if (unlikely(res == -1)) { + PyErr_WriteUnraisable(err); + res = 0; + } + } + __Pyx_ErrRestore(exception, value, tb); + return res; +} +#else +static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { + int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; + if (!res) { + res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); + } + return res; +} +#endif +static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { + Py_ssize_t i, n; + assert(PyExceptionClass_Check(exc_type)); + n = PyTuple_GET_SIZE(tuple); +#if PY_MAJOR_VERSION >= 3 + for (i=0; i= 0 || (x^b) >= 0)) + return PyInt_FromLong(x); + return PyLong_Type.tp_as_number->nb_add(op1, op2); + } + #endif + #if CYTHON_USE_PYLONG_INTERNALS + if (likely(PyLong_CheckExact(op1))) { + const long b = intval; + long a, x; +#ifdef HAVE_LONG_LONG + const PY_LONG_LONG llb = intval; + PY_LONG_LONG lla, llx; +#endif + const digit* digits = ((PyLongObject*)op1)->ob_digit; + const Py_ssize_t size = Py_SIZE(op1); + if (likely(__Pyx_sst_abs(size) <= 1)) { + a = likely(size) ? digits[0] : 0; + if (size == -1) a = -a; + } else { + switch (size) { + case -2: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case 2: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case -3: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case 3: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case -4: + if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { + lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + case 4: + if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); + break; +#ifdef HAVE_LONG_LONG + } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { + lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); + goto long_long; +#endif + } + CYTHON_FALLTHROUGH; + default: return PyLong_Type.tp_as_number->nb_add(op1, op2); + } + } + x = a + b; + return PyLong_FromLong(x); +#ifdef HAVE_LONG_LONG + long_long: + llx = lla + llb; + return PyLong_FromLongLong(llx); +#endif + + + } + #endif + if (PyFloat_CheckExact(op1)) { + const long b = intval; + double a = PyFloat_AS_DOUBLE(op1); + double result; + PyFPE_START_PROTECT("add", return NULL) + result = ((double)a) + (double)b; + PyFPE_END_PROTECT(result) + return PyFloat_FromDouble(result); + } + return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); +} +#endif + +/* None */ +static CYTHON_INLINE long __Pyx_div_long(long a, long b) { + long q = a / b; + long r = a - q*b; + q -= ((r != 0) & ((r ^ b) < 0)); + return q; +} + +/* ImportFrom */ +static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { + PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); + if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { + PyErr_Format(PyExc_ImportError, + #if PY_MAJOR_VERSION < 3 + "cannot import name %.230s", PyString_AS_STRING(name)); + #else + "cannot import name %S", name); + #endif + } + return value; +} + +/* HasAttr */ +static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { + PyObject *r; + if (unlikely(!__Pyx_PyBaseString_Check(n))) { + PyErr_SetString(PyExc_TypeError, + "hasattr(): attribute name must be string"); + return -1; + } + r = __Pyx_GetAttr(o, n); + if (unlikely(!r)) { + PyErr_Clear(); + return 0; + } else { + Py_DECREF(r); + return 1; + } +} + +/* PyObject_GenericGetAttrNoDict */ +#if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static PyObject *__Pyx_RaiseGenericGetAttributeError(PyTypeObject *tp, PyObject *attr_name) { + PyErr_Format(PyExc_AttributeError, +#if PY_MAJOR_VERSION >= 3 + "'%.50s' object has no attribute '%U'", + tp->tp_name, attr_name); +#else + "'%.50s' object has no attribute '%.400s'", + tp->tp_name, PyString_AS_STRING(attr_name)); +#endif + return NULL; +} +static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name) { + PyObject *descr; + PyTypeObject *tp = Py_TYPE(obj); + if (unlikely(!PyString_Check(attr_name))) { + return PyObject_GenericGetAttr(obj, attr_name); + } + assert(!tp->tp_dictoffset); + descr = _PyType_Lookup(tp, attr_name); + if (unlikely(!descr)) { + return __Pyx_RaiseGenericGetAttributeError(tp, attr_name); + } + Py_INCREF(descr); + #if PY_MAJOR_VERSION < 3 + if (likely(PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_HAVE_CLASS))) + #endif + { + descrgetfunc f = Py_TYPE(descr)->tp_descr_get; + if (unlikely(f)) { + PyObject *res = f(descr, obj, (PyObject *)tp); + Py_DECREF(descr); + return res; + } + } + return descr; +} +#endif + +/* PyObject_GenericGetAttr */ +#if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 +static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name) { + if (unlikely(Py_TYPE(obj)->tp_dictoffset)) { + return PyObject_GenericGetAttr(obj, attr_name); + } + return __Pyx_PyObject_GenericGetAttrNoDict(obj, attr_name); +} +#endif + +/* SetVTable */ +static int __Pyx_SetVtable(PyObject *dict, void *vtable) { +#if PY_VERSION_HEX >= 0x02070000 + PyObject *ob = PyCapsule_New(vtable, 0, 0); +#else + PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); +#endif + if (!ob) + goto bad; + if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) + goto bad; + Py_DECREF(ob); + return 0; +bad: + Py_XDECREF(ob); + return -1; +} + +/* SetupReduce */ +static int __Pyx_setup_reduce_is_named(PyObject* meth, PyObject* name) { + int ret; + PyObject *name_attr; + name_attr = __Pyx_PyObject_GetAttrStr(meth, __pyx_n_s_name_2); + if (likely(name_attr)) { + ret = PyObject_RichCompareBool(name_attr, name, Py_EQ); + } else { + ret = -1; + } + if (unlikely(ret < 0)) { + PyErr_Clear(); + ret = 0; + } + Py_XDECREF(name_attr); + return ret; +} +static int __Pyx_setup_reduce(PyObject* type_obj) { + int ret = 0; + PyObject *object_reduce = NULL; + PyObject *object_reduce_ex = NULL; + PyObject *reduce = NULL; + PyObject *reduce_ex = NULL; + PyObject *reduce_cython = NULL; + PyObject *setstate = NULL; + PyObject *setstate_cython = NULL; +#if CYTHON_USE_PYTYPE_LOOKUP + if (_PyType_Lookup((PyTypeObject*)type_obj, __pyx_n_s_getstate)) goto GOOD; +#else + if (PyObject_HasAttr(type_obj, __pyx_n_s_getstate)) goto GOOD; +#endif +#if CYTHON_USE_PYTYPE_LOOKUP + object_reduce_ex = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto BAD; +#else + object_reduce_ex = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto BAD; +#endif + reduce_ex = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_ex); if (unlikely(!reduce_ex)) goto BAD; + if (reduce_ex == object_reduce_ex) { +#if CYTHON_USE_PYTYPE_LOOKUP + object_reduce = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto BAD; +#else + object_reduce = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto BAD; +#endif + reduce = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce); if (unlikely(!reduce)) goto BAD; + if (reduce == object_reduce || __Pyx_setup_reduce_is_named(reduce, __pyx_n_s_reduce_cython)) { + reduce_cython = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_cython); if (unlikely(!reduce_cython)) goto BAD; + ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce, reduce_cython); if (unlikely(ret < 0)) goto BAD; + ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce_cython); if (unlikely(ret < 0)) goto BAD; + setstate = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate); + if (!setstate) PyErr_Clear(); + if (!setstate || __Pyx_setup_reduce_is_named(setstate, __pyx_n_s_setstate_cython)) { + setstate_cython = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate_cython); if (unlikely(!setstate_cython)) goto BAD; + ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate, setstate_cython); if (unlikely(ret < 0)) goto BAD; + ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate_cython); if (unlikely(ret < 0)) goto BAD; + } + PyType_Modified((PyTypeObject*)type_obj); + } + } + goto GOOD; +BAD: + if (!PyErr_Occurred()) + PyErr_Format(PyExc_RuntimeError, "Unable to initialize pickling for %s", ((PyTypeObject*)type_obj)->tp_name); + ret = -1; +GOOD: +#if !CYTHON_USE_PYTYPE_LOOKUP + Py_XDECREF(object_reduce); + Py_XDECREF(object_reduce_ex); +#endif + Py_XDECREF(reduce); + Py_XDECREF(reduce_ex); + Py_XDECREF(reduce_cython); + Py_XDECREF(setstate); + Py_XDECREF(setstate_cython); + return ret; +} + +/* TypeImport */ +#ifndef __PYX_HAVE_RT_ImportType +#define __PYX_HAVE_RT_ImportType +static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, + size_t size, enum __Pyx_ImportType_CheckSize check_size) +{ + PyObject *result = 0; + char warning[200]; + Py_ssize_t basicsize; +#ifdef Py_LIMITED_API + PyObject *py_basicsize; +#endif + result = PyObject_GetAttrString(module, class_name); + if (!result) + goto bad; + if (!PyType_Check(result)) { + PyErr_Format(PyExc_TypeError, + "%.200s.%.200s is not a type object", + module_name, class_name); + goto bad; + } +#ifndef Py_LIMITED_API + basicsize = ((PyTypeObject *)result)->tp_basicsize; +#else + py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); + if (!py_basicsize) + goto bad; + basicsize = PyLong_AsSsize_t(py_basicsize); + Py_DECREF(py_basicsize); + py_basicsize = 0; + if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) + goto bad; +#endif + if ((size_t)basicsize < size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + goto bad; + } + if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { + PyErr_Format(PyExc_ValueError, + "%.200s.%.200s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + goto bad; + } + else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { + PyOS_snprintf(warning, sizeof(warning), + "%s.%s size changed, may indicate binary incompatibility. " + "Expected %zd from C header, got %zd from PyObject", + module_name, class_name, size, basicsize); + if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; + } + return (PyTypeObject *)result; +bad: + Py_XDECREF(result); + return NULL; +} +#endif + +/* CLineInTraceback */ +#ifndef CYTHON_CLINE_IN_TRACEBACK +static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line) { + PyObject *use_cline; + PyObject *ptype, *pvalue, *ptraceback; +#if CYTHON_COMPILING_IN_CPYTHON + PyObject **cython_runtime_dict; +#endif + if (unlikely(!__pyx_cython_runtime)) { + return c_line; + } + __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); +#if CYTHON_COMPILING_IN_CPYTHON + cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); + if (likely(cython_runtime_dict)) { + __PYX_PY_DICT_LOOKUP_IF_MODIFIED( + use_cline, *cython_runtime_dict, + __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) + } else +#endif + { + PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); + if (use_cline_obj) { + use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; + Py_DECREF(use_cline_obj); + } else { + PyErr_Clear(); + use_cline = NULL; + } + } + if (!use_cline) { + c_line = 0; + PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); + } + else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { + c_line = 0; + } + __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); + return c_line; +} +#endif + +/* CodeObjectCache */ +static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { + int start = 0, mid = 0, end = count - 1; + if (end >= 0 && code_line > entries[end].code_line) { + return count; + } + while (start < end) { + mid = start + (end - start) / 2; + if (code_line < entries[mid].code_line) { + end = mid; + } else if (code_line > entries[mid].code_line) { + start = mid + 1; + } else { + return mid; + } + } + if (code_line <= entries[mid].code_line) { + return mid; + } else { + return mid + 1; + } +} +static PyCodeObject *__pyx_find_code_object(int code_line) { + PyCodeObject* code_object; + int pos; + if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { + return NULL; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { + return NULL; + } + code_object = __pyx_code_cache.entries[pos].code_object; + Py_INCREF(code_object); + return code_object; +} +static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { + int pos, i; + __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; + if (unlikely(!code_line)) { + return; + } + if (unlikely(!entries)) { + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); + if (likely(entries)) { + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = 64; + __pyx_code_cache.count = 1; + entries[0].code_line = code_line; + entries[0].code_object = code_object; + Py_INCREF(code_object); + } + return; + } + pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); + if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { + PyCodeObject* tmp = entries[pos].code_object; + entries[pos].code_object = code_object; + Py_DECREF(tmp); + return; + } + if (__pyx_code_cache.count == __pyx_code_cache.max_count) { + int new_max = __pyx_code_cache.max_count + 64; + entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( + __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); + if (unlikely(!entries)) { + return; + } + __pyx_code_cache.entries = entries; + __pyx_code_cache.max_count = new_max; + } + for (i=__pyx_code_cache.count; i>pos; i--) { + entries[i] = entries[i-1]; + } + entries[pos].code_line = code_line; + entries[pos].code_object = code_object; + __pyx_code_cache.count++; + Py_INCREF(code_object); +} + +/* AddTraceback */ +#include "compile.h" +#include "frameobject.h" +#include "traceback.h" +static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( + const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyObject *py_srcfile = 0; + PyObject *py_funcname = 0; + #if PY_MAJOR_VERSION < 3 + py_srcfile = PyString_FromString(filename); + #else + py_srcfile = PyUnicode_FromString(filename); + #endif + if (!py_srcfile) goto bad; + if (c_line) { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #else + py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); + #endif + } + else { + #if PY_MAJOR_VERSION < 3 + py_funcname = PyString_FromString(funcname); + #else + py_funcname = PyUnicode_FromString(funcname); + #endif + } + if (!py_funcname) goto bad; + py_code = __Pyx_PyCode_New( + 0, + 0, + 0, + 0, + 0, + __pyx_empty_bytes, /*PyObject *code,*/ + __pyx_empty_tuple, /*PyObject *consts,*/ + __pyx_empty_tuple, /*PyObject *names,*/ + __pyx_empty_tuple, /*PyObject *varnames,*/ + __pyx_empty_tuple, /*PyObject *freevars,*/ + __pyx_empty_tuple, /*PyObject *cellvars,*/ + py_srcfile, /*PyObject *filename,*/ + py_funcname, /*PyObject *name,*/ + py_line, + __pyx_empty_bytes /*PyObject *lnotab*/ + ); + Py_DECREF(py_srcfile); + Py_DECREF(py_funcname); + return py_code; +bad: + Py_XDECREF(py_srcfile); + Py_XDECREF(py_funcname); + return NULL; +} +static void __Pyx_AddTraceback(const char *funcname, int c_line, + int py_line, const char *filename) { + PyCodeObject *py_code = 0; + PyFrameObject *py_frame = 0; + PyThreadState *tstate = __Pyx_PyThreadState_Current; + if (c_line) { + c_line = __Pyx_CLineForTraceback(tstate, c_line); + } + py_code = __pyx_find_code_object(c_line ? -c_line : py_line); + if (!py_code) { + py_code = __Pyx_CreateCodeObjectForTraceback( + funcname, c_line, py_line, filename); + if (!py_code) goto bad; + __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); + } + py_frame = PyFrame_New( + tstate, /*PyThreadState *tstate,*/ + py_code, /*PyCodeObject *code,*/ + __pyx_d, /*PyObject *globals,*/ + 0 /*PyObject *locals*/ + ); + if (!py_frame) goto bad; + __Pyx_PyFrame_SetLineNumber(py_frame, py_line); + PyTraceBack_Here(py_frame); +bad: + Py_XDECREF(py_code); + Py_XDECREF(py_frame); +} + +#if PY_MAJOR_VERSION < 3 +static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { + if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); + if (__Pyx_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) return __pyx_pw_5numpy_7ndarray_1__getbuffer__(obj, view, flags); + if (__Pyx_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); + if (__Pyx_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); + PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); + return -1; +} +static void __Pyx_ReleaseBuffer(Py_buffer *view) { + PyObject *obj = view->obj; + if (!obj) return; + if (PyObject_CheckBuffer(obj)) { + PyBuffer_Release(view); + return; + } + if ((0)) {} + else if (__Pyx_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) __pyx_pw_5numpy_7ndarray_3__releasebuffer__(obj, view); + view->obj = NULL; + Py_DECREF(obj); +} +#endif + + +/* MemviewSliceIsContig */ +static int +__pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim) +{ + int i, index, step, start; + Py_ssize_t itemsize = mvs.memview->view.itemsize; + if (order == 'F') { + step = 1; + start = 0; + } else { + step = -1; + start = ndim - 1; + } + for (i = 0; i < ndim; i++) { + index = start + step * i; + if (mvs.suboffsets[index] >= 0 || mvs.strides[index] != itemsize) + return 0; + itemsize *= mvs.shape[index]; + } + return 1; +} + +/* OverlappingSlices */ +static void +__pyx_get_array_memory_extents(__Pyx_memviewslice *slice, + void **out_start, void **out_end, + int ndim, size_t itemsize) +{ + char *start, *end; + int i; + start = end = slice->data; + for (i = 0; i < ndim; i++) { + Py_ssize_t stride = slice->strides[i]; + Py_ssize_t extent = slice->shape[i]; + if (extent == 0) { + *out_start = *out_end = start; + return; + } else { + if (stride > 0) + end += stride * (extent - 1); + else + start += stride * (extent - 1); + } + } + *out_start = start; + *out_end = end + itemsize; +} +static int +__pyx_slices_overlap(__Pyx_memviewslice *slice1, + __Pyx_memviewslice *slice2, + int ndim, size_t itemsize) +{ + void *start1, *end1, *start2, *end2; + __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); + __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); + return (start1 < end2) && (start2 < end1); +} + +/* Capsule */ +static CYTHON_INLINE PyObject * +__pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) +{ + PyObject *cobj; +#if PY_VERSION_HEX >= 0x02070000 + cobj = PyCapsule_New(p, sig, NULL); +#else + cobj = PyCObject_FromVoidPtr(p, NULL); +#endif + return cobj; +} + +/* IsLittleEndian */ +static CYTHON_INLINE int __Pyx_Is_Little_Endian(void) +{ + union { + uint32_t u32; + uint8_t u8[4]; + } S; + S.u32 = 0x01020304; + return S.u8[0] == 4; +} + +/* BufferFormatCheck */ +static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, + __Pyx_BufFmt_StackElem* stack, + __Pyx_TypeInfo* type) { + stack[0].field = &ctx->root; + stack[0].parent_offset = 0; + ctx->root.type = type; + ctx->root.name = "buffer dtype"; + ctx->root.offset = 0; + ctx->head = stack; + ctx->head->field = &ctx->root; + ctx->fmt_offset = 0; + ctx->head->parent_offset = 0; + ctx->new_packmode = '@'; + ctx->enc_packmode = '@'; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->is_complex = 0; + ctx->is_valid_array = 0; + ctx->struct_alignment = 0; + while (type->typegroup == 'S') { + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = 0; + type = type->fields->type; + } +} +static int __Pyx_BufFmt_ParseNumber(const char** ts) { + int count; + const char* t = *ts; + if (*t < '0' || *t > '9') { + return -1; + } else { + count = *t++ - '0'; + while (*t >= '0' && *t <= '9') { + count *= 10; + count += *t++ - '0'; + } + } + *ts = t; + return count; +} +static int __Pyx_BufFmt_ExpectNumber(const char **ts) { + int number = __Pyx_BufFmt_ParseNumber(ts); + if (number == -1) + PyErr_Format(PyExc_ValueError,\ + "Does not understand character buffer dtype format string ('%c')", **ts); + return number; +} +static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { + PyErr_Format(PyExc_ValueError, + "Unexpected format string character: '%c'", ch); +} +static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { + switch (ch) { + case '?': return "'bool'"; + case 'c': return "'char'"; + case 'b': return "'signed char'"; + case 'B': return "'unsigned char'"; + case 'h': return "'short'"; + case 'H': return "'unsigned short'"; + case 'i': return "'int'"; + case 'I': return "'unsigned int'"; + case 'l': return "'long'"; + case 'L': return "'unsigned long'"; + case 'q': return "'long long'"; + case 'Q': return "'unsigned long long'"; + case 'f': return (is_complex ? "'complex float'" : "'float'"); + case 'd': return (is_complex ? "'complex double'" : "'double'"); + case 'g': return (is_complex ? "'complex long double'" : "'long double'"); + case 'T': return "a struct"; + case 'O': return "Python object"; + case 'P': return "a pointer"; + case 's': case 'p': return "a string"; + case 0: return "end"; + default: return "unparseable format string"; + } +} +static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return 2; + case 'i': case 'I': case 'l': case 'L': return 4; + case 'q': case 'Q': return 8; + case 'f': return (is_complex ? 8 : 4); + case 'd': return (is_complex ? 16 : 8); + case 'g': { + PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); + return 0; + } + case 'O': case 'P': return sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(short); + case 'i': case 'I': return sizeof(int); + case 'l': case 'L': return sizeof(long); + #ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(PY_LONG_LONG); + #endif + case 'f': return sizeof(float) * (is_complex ? 2 : 1); + case 'd': return sizeof(double) * (is_complex ? 2 : 1); + case 'g': return sizeof(long double) * (is_complex ? 2 : 1); + case 'O': case 'P': return sizeof(void*); + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +typedef struct { char c; short x; } __Pyx_st_short; +typedef struct { char c; int x; } __Pyx_st_int; +typedef struct { char c; long x; } __Pyx_st_long; +typedef struct { char c; float x; } __Pyx_st_float; +typedef struct { char c; double x; } __Pyx_st_double; +typedef struct { char c; long double x; } __Pyx_st_longdouble; +typedef struct { char c; void *x; } __Pyx_st_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_st_float) - sizeof(float); + case 'd': return sizeof(__Pyx_st_double) - sizeof(double); + case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +/* These are for computing the padding at the end of the struct to align + on the first member of the struct. This will probably the same as above, + but we don't have any guarantees. + */ +typedef struct { short x; char c; } __Pyx_pad_short; +typedef struct { int x; char c; } __Pyx_pad_int; +typedef struct { long x; char c; } __Pyx_pad_long; +typedef struct { float x; char c; } __Pyx_pad_float; +typedef struct { double x; char c; } __Pyx_pad_double; +typedef struct { long double x; char c; } __Pyx_pad_longdouble; +typedef struct { void *x; char c; } __Pyx_pad_void_p; +#ifdef HAVE_LONG_LONG +typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; +#endif +static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { + switch (ch) { + case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; + case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); + case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); + case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); +#ifdef HAVE_LONG_LONG + case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); +#endif + case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); + case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); + case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); + case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); + default: + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } +} +static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { + switch (ch) { + case 'c': + return 'H'; + case 'b': case 'h': case 'i': + case 'l': case 'q': case 's': case 'p': + return 'I'; + case '?': case 'B': case 'H': case 'I': case 'L': case 'Q': + return 'U'; + case 'f': case 'd': case 'g': + return (is_complex ? 'C' : 'R'); + case 'O': + return 'O'; + case 'P': + return 'P'; + default: { + __Pyx_BufFmt_RaiseUnexpectedChar(ch); + return 0; + } + } +} +static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { + if (ctx->head == NULL || ctx->head->field == &ctx->root) { + const char* expected; + const char* quote; + if (ctx->head == NULL) { + expected = "end"; + quote = ""; + } else { + expected = ctx->head->field->type->name; + quote = "'"; + } + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected %s%s%s but got %s", + quote, expected, quote, + __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); + } else { + __Pyx_StructField* field = ctx->head->field; + __Pyx_StructField* parent = (ctx->head - 1)->field; + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", + field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), + parent->type->name, field->name); + } +} +static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { + char group; + size_t size, offset, arraysize = 1; + if (ctx->enc_type == 0) return 0; + if (ctx->head->field->type->arraysize[0]) { + int i, ndim = 0; + if (ctx->enc_type == 's' || ctx->enc_type == 'p') { + ctx->is_valid_array = ctx->head->field->type->ndim == 1; + ndim = 1; + if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { + PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %zu", + ctx->head->field->type->arraysize[0], ctx->enc_count); + return -1; + } + } + if (!ctx->is_valid_array) { + PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", + ctx->head->field->type->ndim, ndim); + return -1; + } + for (i = 0; i < ctx->head->field->type->ndim; i++) { + arraysize *= ctx->head->field->type->arraysize[i]; + } + ctx->is_valid_array = 0; + ctx->enc_count = 1; + } + group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); + do { + __Pyx_StructField* field = ctx->head->field; + __Pyx_TypeInfo* type = field->type; + if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { + size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); + } else { + size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); + } + if (ctx->enc_packmode == '@') { + size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); + size_t align_mod_offset; + if (align_at == 0) return -1; + align_mod_offset = ctx->fmt_offset % align_at; + if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; + if (ctx->struct_alignment == 0) + ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, + ctx->is_complex); + } + if (type->size != size || type->typegroup != group) { + if (type->typegroup == 'C' && type->fields != NULL) { + size_t parent_offset = ctx->head->parent_offset + field->offset; + ++ctx->head; + ctx->head->field = type->fields; + ctx->head->parent_offset = parent_offset; + continue; + } + if ((type->typegroup == 'H' || group == 'H') && type->size == size) { + } else { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + } + offset = ctx->head->parent_offset + field->offset; + if (ctx->fmt_offset != offset) { + PyErr_Format(PyExc_ValueError, + "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", + (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); + return -1; + } + ctx->fmt_offset += size; + if (arraysize) + ctx->fmt_offset += (arraysize - 1) * size; + --ctx->enc_count; + while (1) { + if (field == &ctx->root) { + ctx->head = NULL; + if (ctx->enc_count != 0) { + __Pyx_BufFmt_RaiseExpected(ctx); + return -1; + } + break; + } + ctx->head->field = ++field; + if (field->type == NULL) { + --ctx->head; + field = ctx->head->field; + continue; + } else if (field->type->typegroup == 'S') { + size_t parent_offset = ctx->head->parent_offset + field->offset; + if (field->type->fields->type == NULL) continue; + field = field->type->fields; + ++ctx->head; + ctx->head->field = field; + ctx->head->parent_offset = parent_offset; + break; + } else { + break; + } + } + } while (ctx->enc_count); + ctx->enc_type = 0; + ctx->is_complex = 0; + return 0; +} +static PyObject * +__pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) +{ + const char *ts = *tsp; + int i = 0, number; + int ndim = ctx->head->field->type->ndim; +; + ++ts; + if (ctx->new_count != 1) { + PyErr_SetString(PyExc_ValueError, + "Cannot handle repeated arrays in format string"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + while (*ts && *ts != ')') { + switch (*ts) { + case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; + default: break; + } + number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) + return PyErr_Format(PyExc_ValueError, + "Expected a dimension of size %zu, got %d", + ctx->head->field->type->arraysize[i], number); + if (*ts != ',' && *ts != ')') + return PyErr_Format(PyExc_ValueError, + "Expected a comma in format string, got '%c'", *ts); + if (*ts == ',') ts++; + i++; + } + if (i != ndim) + return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", + ctx->head->field->type->ndim, i); + if (!*ts) { + PyErr_SetString(PyExc_ValueError, + "Unexpected end of format string, expected ')'"); + return NULL; + } + ctx->is_valid_array = 1; + ctx->new_count = 1; + *tsp = ++ts; + return Py_None; +} +static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { + int got_Z = 0; + while (1) { + switch(*ts) { + case 0: + if (ctx->enc_type != 0 && ctx->head == NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + if (ctx->head != NULL) { + __Pyx_BufFmt_RaiseExpected(ctx); + return NULL; + } + return ts; + case ' ': + case '\r': + case '\n': + ++ts; + break; + case '<': + if (!__Pyx_Is_Little_Endian()) { + PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '>': + case '!': + if (__Pyx_Is_Little_Endian()) { + PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); + return NULL; + } + ctx->new_packmode = '='; + ++ts; + break; + case '=': + case '@': + case '^': + ctx->new_packmode = *ts++; + break; + case 'T': + { + const char* ts_after_sub; + size_t i, struct_count = ctx->new_count; + size_t struct_alignment = ctx->struct_alignment; + ctx->new_count = 1; + ++ts; + if (*ts != '{') { + PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); + return NULL; + } + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + ctx->enc_count = 0; + ctx->struct_alignment = 0; + ++ts; + ts_after_sub = ts; + for (i = 0; i != struct_count; ++i) { + ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); + if (!ts_after_sub) return NULL; + } + ts = ts_after_sub; + if (struct_alignment) ctx->struct_alignment = struct_alignment; + } + break; + case '}': + { + size_t alignment = ctx->struct_alignment; + ++ts; + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_type = 0; + if (alignment && ctx->fmt_offset % alignment) { + ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); + } + } + return ts; + case 'x': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->fmt_offset += ctx->new_count; + ctx->new_count = 1; + ctx->enc_count = 0; + ctx->enc_type = 0; + ctx->enc_packmode = ctx->new_packmode; + ++ts; + break; + case 'Z': + got_Z = 1; + ++ts; + if (*ts != 'f' && *ts != 'd' && *ts != 'g') { + __Pyx_BufFmt_RaiseUnexpectedChar('Z'); + return NULL; + } + CYTHON_FALLTHROUGH; + case '?': case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': + case 'l': case 'L': case 'q': case 'Q': + case 'f': case 'd': case 'g': + case 'O': case 'p': + if (ctx->enc_type == *ts && got_Z == ctx->is_complex && + ctx->enc_packmode == ctx->new_packmode) { + ctx->enc_count += ctx->new_count; + ctx->new_count = 1; + got_Z = 0; + ++ts; + break; + } + CYTHON_FALLTHROUGH; + case 's': + if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; + ctx->enc_count = ctx->new_count; + ctx->enc_packmode = ctx->new_packmode; + ctx->enc_type = *ts; + ctx->is_complex = got_Z; + ++ts; + ctx->new_count = 1; + got_Z = 0; + break; + case ':': + ++ts; + while(*ts != ':') ++ts; + ++ts; + break; + case '(': + if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; + break; + default: + { + int number = __Pyx_BufFmt_ExpectNumber(&ts); + if (number == -1) return NULL; + ctx->new_count = (size_t)number; + } + } + } +} + +/* TypeInfoCompare */ + static int +__pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) +{ + int i; + if (!a || !b) + return 0; + if (a == b) + return 1; + if (a->size != b->size || a->typegroup != b->typegroup || + a->is_unsigned != b->is_unsigned || a->ndim != b->ndim) { + if (a->typegroup == 'H' || b->typegroup == 'H') { + return a->size == b->size; + } else { + return 0; + } + } + if (a->ndim) { + for (i = 0; i < a->ndim; i++) + if (a->arraysize[i] != b->arraysize[i]) + return 0; + } + if (a->typegroup == 'S') { + if (a->flags != b->flags) + return 0; + if (a->fields || b->fields) { + if (!(a->fields && b->fields)) + return 0; + for (i = 0; a->fields[i].type && b->fields[i].type; i++) { + __Pyx_StructField *field_a = a->fields + i; + __Pyx_StructField *field_b = b->fields + i; + if (field_a->offset != field_b->offset || + !__pyx_typeinfo_cmp(field_a->type, field_b->type)) + return 0; + } + return !a->fields[i].type && !b->fields[i].type; + } + } + return 1; +} + +/* MemviewSliceValidateAndInit */ + static int +__pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) +{ + if (buf->shape[dim] <= 1) + return 1; + if (buf->strides) { + if (spec & __Pyx_MEMVIEW_CONTIG) { + if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) { + if (buf->strides[dim] != sizeof(void *)) { + PyErr_Format(PyExc_ValueError, + "Buffer is not indirectly contiguous " + "in dimension %d.", dim); + goto fail; + } + } else if (buf->strides[dim] != buf->itemsize) { + PyErr_SetString(PyExc_ValueError, + "Buffer and memoryview are not contiguous " + "in the same dimension."); + goto fail; + } + } + if (spec & __Pyx_MEMVIEW_FOLLOW) { + Py_ssize_t stride = buf->strides[dim]; + if (stride < 0) + stride = -stride; + if (stride < buf->itemsize) { + PyErr_SetString(PyExc_ValueError, + "Buffer and memoryview are not contiguous " + "in the same dimension."); + goto fail; + } + } + } else { + if (spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1) { + PyErr_Format(PyExc_ValueError, + "C-contiguous buffer is not contiguous in " + "dimension %d", dim); + goto fail; + } else if (spec & (__Pyx_MEMVIEW_PTR)) { + PyErr_Format(PyExc_ValueError, + "C-contiguous buffer is not indirect in " + "dimension %d", dim); + goto fail; + } else if (buf->suboffsets) { + PyErr_SetString(PyExc_ValueError, + "Buffer exposes suboffsets but no strides"); + goto fail; + } + } + return 1; +fail: + return 0; +} +static int +__pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec) +{ + if (spec & __Pyx_MEMVIEW_DIRECT) { + if (buf->suboffsets && buf->suboffsets[dim] >= 0) { + PyErr_Format(PyExc_ValueError, + "Buffer not compatible with direct access " + "in dimension %d.", dim); + goto fail; + } + } + if (spec & __Pyx_MEMVIEW_PTR) { + if (!buf->suboffsets || (buf->suboffsets[dim] < 0)) { + PyErr_Format(PyExc_ValueError, + "Buffer is not indirectly accessible " + "in dimension %d.", dim); + goto fail; + } + } + return 1; +fail: + return 0; +} +static int +__pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag) +{ + int i; + if (c_or_f_flag & __Pyx_IS_F_CONTIG) { + Py_ssize_t stride = 1; + for (i = 0; i < ndim; i++) { + if (stride * buf->itemsize != buf->strides[i] && + buf->shape[i] > 1) + { + PyErr_SetString(PyExc_ValueError, + "Buffer not fortran contiguous."); + goto fail; + } + stride = stride * buf->shape[i]; + } + } else if (c_or_f_flag & __Pyx_IS_C_CONTIG) { + Py_ssize_t stride = 1; + for (i = ndim - 1; i >- 1; i--) { + if (stride * buf->itemsize != buf->strides[i] && + buf->shape[i] > 1) { + PyErr_SetString(PyExc_ValueError, + "Buffer not C contiguous."); + goto fail; + } + stride = stride * buf->shape[i]; + } + } + return 1; +fail: + return 0; +} +static int __Pyx_ValidateAndInit_memviewslice( + int *axes_specs, + int c_or_f_flag, + int buf_flags, + int ndim, + __Pyx_TypeInfo *dtype, + __Pyx_BufFmt_StackElem stack[], + __Pyx_memviewslice *memviewslice, + PyObject *original_obj) +{ + struct __pyx_memoryview_obj *memview, *new_memview; + __Pyx_RefNannyDeclarations + Py_buffer *buf; + int i, spec = 0, retval = -1; + __Pyx_BufFmt_Context ctx; + int from_memoryview = __pyx_memoryview_check(original_obj); + __Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0); + if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *) + original_obj)->typeinfo)) { + memview = (struct __pyx_memoryview_obj *) original_obj; + new_memview = NULL; + } else { + memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( + original_obj, buf_flags, 0, dtype); + new_memview = memview; + if (unlikely(!memview)) + goto fail; + } + buf = &memview->view; + if (buf->ndim != ndim) { + PyErr_Format(PyExc_ValueError, + "Buffer has wrong number of dimensions (expected %d, got %d)", + ndim, buf->ndim); + goto fail; + } + if (new_memview) { + __Pyx_BufFmt_Init(&ctx, stack, dtype); + if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; + } + if ((unsigned) buf->itemsize != dtype->size) { + PyErr_Format(PyExc_ValueError, + "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) " + "does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)", + buf->itemsize, + (buf->itemsize > 1) ? "s" : "", + dtype->name, + dtype->size, + (dtype->size > 1) ? "s" : ""); + goto fail; + } + for (i = 0; i < ndim; i++) { + spec = axes_specs[i]; + if (!__pyx_check_strides(buf, i, ndim, spec)) + goto fail; + if (!__pyx_check_suboffsets(buf, i, ndim, spec)) + goto fail; + } + if (buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag)) + goto fail; + if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, + new_memview != NULL) == -1)) { + goto fail; + } + retval = 0; + goto no_fail; +fail: + Py_XDECREF(new_memview); + retval = -1; +no_fail: + __Pyx_RefNannyFinishContext(); + return retval; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_double(PyObject *obj, int writable_flag) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_FOLLOW), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 2, + &__Pyx_TypeInfo_double, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_d_dc_long(PyObject *obj, int writable_flag) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_FOLLOW), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_CONTIG) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, __Pyx_IS_C_CONTIG, + (PyBUF_C_CONTIGUOUS | PyBUF_FORMAT) | writable_flag, 2, + &__Pyx_TypeInfo_long, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* CIntFromPyVerify */ + #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) +#define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ + __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) +#define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ + {\ + func_type value = func_value;\ + if (sizeof(target_type) < sizeof(func_type)) {\ + if (unlikely(value != (func_type) (target_type) value)) {\ + func_type zero = 0;\ + if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ + return (target_type) -1;\ + if (is_unsigned && unlikely(value < zero))\ + goto raise_neg_overflow;\ + else\ + goto raise_overflow;\ + }\ + }\ + return (target_type) value;\ + } + +/* Declarations */ + #if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return ::std::complex< float >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + return x + y*(__pyx_t_float_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { + __pyx_t_float_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ + #if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabsf(b.real) >= fabsf(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + float r = b.imag / b.real; + float s = (float)(1.0) / (b.real + b.imag * r); + return __pyx_t_float_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + float r = b.real / b.imag; + float s = (float)(1.0) / (b.imag + b.real * r); + return __pyx_t_float_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + if (b.imag == 0) { + return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + float denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_float_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { + __pyx_t_float_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrtf(z.real*z.real + z.imag*z.imag); + #else + return hypotf(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { + __pyx_t_float_complex z; + float r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + float denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + return __Pyx_c_prod_float(a, a); + case 3: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, a); + case 4: + z = __Pyx_c_prod_float(a, a); + return __Pyx_c_prod_float(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = powf(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2f(0.0, -1.0); + } + } else { + r = __Pyx_c_abs_float(a); + theta = atan2f(a.imag, a.real); + } + lnr = logf(r); + z_r = expf(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cosf(z_theta); + z.imag = z_r * sinf(z_theta); + return z; + } + #endif +#endif + +/* Declarations */ + #if CYTHON_CCOMPLEX + #ifdef __cplusplus + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return ::std::complex< double >(x, y); + } + #else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + return x + y*(__pyx_t_double_complex)_Complex_I; + } + #endif +#else + static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { + __pyx_t_double_complex z; + z.real = x; + z.imag = y; + return z; + } +#endif + +/* Arithmetic */ + #if CYTHON_CCOMPLEX +#else + static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + return (a.real == b.real) && (a.imag == b.imag); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real + b.real; + z.imag = a.imag + b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real - b.real; + z.imag = a.imag - b.imag; + return z; + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + z.real = a.real * b.real - a.imag * b.imag; + z.imag = a.real * b.imag + a.imag * b.real; + return z; + } + #if 1 + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else if (fabs(b.real) >= fabs(b.imag)) { + if (b.real == 0 && b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); + } else { + double r = b.imag / b.real; + double s = (double)(1.0) / (b.real + b.imag * r); + return __pyx_t_double_complex_from_parts( + (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); + } + } else { + double r = b.real / b.imag; + double s = (double)(1.0) / (b.imag + b.real * r); + return __pyx_t_double_complex_from_parts( + (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); + } + } + #else + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + if (b.imag == 0) { + return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); + } else { + double denom = b.real * b.real + b.imag * b.imag; + return __pyx_t_double_complex_from_parts( + (a.real * b.real + a.imag * b.imag) / denom, + (a.imag * b.real - a.real * b.imag) / denom); + } + } + #endif + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = -a.real; + z.imag = -a.imag; + return z; + } + static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { + return (a.real == 0) && (a.imag == 0); + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { + __pyx_t_double_complex z; + z.real = a.real; + z.imag = -a.imag; + return z; + } + #if 1 + static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { + #if !defined(HAVE_HYPOT) || defined(_MSC_VER) + return sqrt(z.real*z.real + z.imag*z.imag); + #else + return hypot(z.real, z.imag); + #endif + } + static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { + __pyx_t_double_complex z; + double r, lnr, theta, z_r, z_theta; + if (b.imag == 0 && b.real == (int)b.real) { + if (b.real < 0) { + double denom = a.real * a.real + a.imag * a.imag; + a.real = a.real / denom; + a.imag = -a.imag / denom; + b.real = -b.real; + } + switch ((int)b.real) { + case 0: + z.real = 1; + z.imag = 0; + return z; + case 1: + return a; + case 2: + return __Pyx_c_prod_double(a, a); + case 3: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, a); + case 4: + z = __Pyx_c_prod_double(a, a); + return __Pyx_c_prod_double(z, z); + } + } + if (a.imag == 0) { + if (a.real == 0) { + return a; + } else if (b.imag == 0) { + z.real = pow(a.real, b.real); + z.imag = 0; + return z; + } else if (a.real > 0) { + r = a.real; + theta = 0; + } else { + r = -a.real; + theta = atan2(0.0, -1.0); + } + } else { + r = __Pyx_c_abs_double(a); + theta = atan2(a.imag, a.real); + } + lnr = log(r); + z_r = exp(lnr * b.real - theta * b.imag); + z_theta = theta * b.real + lnr * b.imag; + z.real = z_r * cos(z_theta); + z.imag = z_r * sin(z_theta); + return z; + } + #endif +#endif + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { + const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(int) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(int) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(int) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(int), + little, !is_unsigned); + } +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value) { + const enum NPY_TYPES neg_one = (enum NPY_TYPES) ((enum NPY_TYPES) 0 - (enum NPY_TYPES) 1), const_zero = (enum NPY_TYPES) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(enum NPY_TYPES) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(enum NPY_TYPES) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(enum NPY_TYPES) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(enum NPY_TYPES), + little, !is_unsigned); + } +} + +/* MemviewSliceCopyTemplate */ + static __Pyx_memviewslice +__pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, + const char *mode, int ndim, + size_t sizeof_dtype, int contig_flag, + int dtype_is_object) +{ + __Pyx_RefNannyDeclarations + int i; + __Pyx_memviewslice new_mvs = { 0, 0, { 0 }, { 0 }, { 0 } }; + struct __pyx_memoryview_obj *from_memview = from_mvs->memview; + Py_buffer *buf = &from_memview->view; + PyObject *shape_tuple = NULL; + PyObject *temp_int = NULL; + struct __pyx_array_obj *array_obj = NULL; + struct __pyx_memoryview_obj *memview_obj = NULL; + __Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0); + for (i = 0; i < ndim; i++) { + if (from_mvs->suboffsets[i] >= 0) { + PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with " + "indirect dimensions (axis %d)", i); + goto fail; + } + } + shape_tuple = PyTuple_New(ndim); + if (unlikely(!shape_tuple)) { + goto fail; + } + __Pyx_GOTREF(shape_tuple); + for(i = 0; i < ndim; i++) { + temp_int = PyInt_FromSsize_t(from_mvs->shape[i]); + if(unlikely(!temp_int)) { + goto fail; + } else { + PyTuple_SET_ITEM(shape_tuple, i, temp_int); + temp_int = NULL; + } + } + array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL); + if (unlikely(!array_obj)) { + goto fail; + } + __Pyx_GOTREF(array_obj); + memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( + (PyObject *) array_obj, contig_flag, + dtype_is_object, + from_mvs->memview->typeinfo); + if (unlikely(!memview_obj)) + goto fail; + if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0)) + goto fail; + if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim, + dtype_is_object) < 0)) + goto fail; + goto no_fail; +fail: + __Pyx_XDECREF(new_mvs.memview); + new_mvs.memview = NULL; + new_mvs.data = NULL; +no_fail: + __Pyx_XDECREF(shape_tuple); + __Pyx_XDECREF(temp_int); + __Pyx_XDECREF(array_obj); + __Pyx_RefNannyFinishContext(); + return new_mvs; +} + +/* CIntFromPy */ + static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { + const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(int) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (int) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { + return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { + return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { + return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (int) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(int) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (int) 0; + case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) + case -2: + if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(int) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(int) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(int) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { + return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); + } + } + break; + } +#endif + if (sizeof(int) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + int val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (int) -1; + } + } else { + int val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (int) -1; + val = __Pyx_PyInt_As_int(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to int"); + return (int) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to int"); + return (int) -1; +} + +/* CIntFromPy */ + static CYTHON_INLINE size_t __Pyx_PyInt_As_size_t(PyObject *x) { + const size_t neg_one = (size_t) ((size_t) 0 - (size_t) 1), const_zero = (size_t) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(size_t) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(size_t, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (size_t) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (size_t) 0; + case 1: __PYX_VERIFY_RETURN_INT(size_t, digit, digits[0]) + case 2: + if (8 * sizeof(size_t) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) >= 2 * PyLong_SHIFT) { + return (size_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(size_t) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) >= 3 * PyLong_SHIFT) { + return (size_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(size_t) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) >= 4 * PyLong_SHIFT) { + return (size_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (size_t) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(size_t) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(size_t, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(size_t) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(size_t, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (size_t) 0; + case -1: __PYX_VERIFY_RETURN_INT(size_t, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(size_t, digit, +digits[0]) + case -2: + if (8 * sizeof(size_t) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) - 1 > 2 * PyLong_SHIFT) { + return (size_t) (((size_t)-1)*(((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(size_t) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) - 1 > 2 * PyLong_SHIFT) { + return (size_t) ((((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(size_t) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) - 1 > 3 * PyLong_SHIFT) { + return (size_t) (((size_t)-1)*(((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(size_t) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) - 1 > 3 * PyLong_SHIFT) { + return (size_t) ((((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(size_t) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) - 1 > 4 * PyLong_SHIFT) { + return (size_t) (((size_t)-1)*(((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(size_t) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(size_t) - 1 > 4 * PyLong_SHIFT) { + return (size_t) ((((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); + } + } + break; + } +#endif + if (sizeof(size_t) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(size_t, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(size_t) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(size_t, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + size_t val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (size_t) -1; + } + } else { + size_t val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (size_t) -1; + val = __Pyx_PyInt_As_size_t(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to size_t"); + return (size_t) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to size_t"); + return (size_t) -1; +} + +/* CIntFromPy */ + static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { + const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(long) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (long) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { + return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { + return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { + return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (long) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(long) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (long) 0; + case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) + case -2: + if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(long) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(long) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(long) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { + return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); + } + } + break; + } +#endif + if (sizeof(long) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + long val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (long) -1; + } + } else { + long val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (long) -1; + val = __Pyx_PyInt_As_long(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to long"); + return (long) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to long"); + return (long) -1; +} + +/* CIntToPy */ + static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { + const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; + const int is_unsigned = neg_one > const_zero; + if (is_unsigned) { + if (sizeof(long) < sizeof(long)) { + return PyInt_FromLong((long) value); + } else if (sizeof(long) <= sizeof(unsigned long)) { + return PyLong_FromUnsignedLong((unsigned long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { + return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); +#endif + } + } else { + if (sizeof(long) <= sizeof(long)) { + return PyInt_FromLong((long) value); +#ifdef HAVE_LONG_LONG + } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { + return PyLong_FromLongLong((PY_LONG_LONG) value); +#endif + } + } + { + int one = 1; int little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&value; + return _PyLong_FromByteArray(bytes, sizeof(long), + little, !is_unsigned); + } +} + +/* CIntFromPy */ + static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { + const char neg_one = (char) ((char) 0 - (char) 1), const_zero = (char) 0; + const int is_unsigned = neg_one > const_zero; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x))) { + if (sizeof(char) < sizeof(long)) { + __PYX_VERIFY_RETURN_INT(char, long, PyInt_AS_LONG(x)) + } else { + long val = PyInt_AS_LONG(x); + if (is_unsigned && unlikely(val < 0)) { + goto raise_neg_overflow; + } + return (char) val; + } + } else +#endif + if (likely(PyLong_Check(x))) { + if (is_unsigned) { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (char) 0; + case 1: __PYX_VERIFY_RETURN_INT(char, digit, digits[0]) + case 2: + if (8 * sizeof(char) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) >= 2 * PyLong_SHIFT) { + return (char) (((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); + } + } + break; + case 3: + if (8 * sizeof(char) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) >= 3 * PyLong_SHIFT) { + return (char) (((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); + } + } + break; + case 4: + if (8 * sizeof(char) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) >= 4 * PyLong_SHIFT) { + return (char) (((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); + } + } + break; + } +#endif +#if CYTHON_COMPILING_IN_CPYTHON + if (unlikely(Py_SIZE(x) < 0)) { + goto raise_neg_overflow; + } +#else + { + int result = PyObject_RichCompareBool(x, Py_False, Py_LT); + if (unlikely(result < 0)) + return (char) -1; + if (unlikely(result == 1)) + goto raise_neg_overflow; + } +#endif + if (sizeof(char) <= sizeof(unsigned long)) { + __PYX_VERIFY_RETURN_INT_EXC(char, unsigned long, PyLong_AsUnsignedLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(char) <= sizeof(unsigned PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(char, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) +#endif + } + } else { +#if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)x)->ob_digit; + switch (Py_SIZE(x)) { + case 0: return (char) 0; + case -1: __PYX_VERIFY_RETURN_INT(char, sdigit, (sdigit) (-(sdigit)digits[0])) + case 1: __PYX_VERIFY_RETURN_INT(char, digit, +digits[0]) + case -2: + if (8 * sizeof(char) - 1 > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { + return (char) (((char)-1)*(((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case 2: + if (8 * sizeof(char) > 1 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { + return (char) ((((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case -3: + if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { + return (char) (((char)-1)*(((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case 3: + if (8 * sizeof(char) > 2 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { + return (char) ((((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case -4: + if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { + return (char) (((char)-1)*(((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + case 4: + if (8 * sizeof(char) > 3 * PyLong_SHIFT) { + if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { + __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) + } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { + return (char) ((((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); + } + } + break; + } +#endif + if (sizeof(char) <= sizeof(long)) { + __PYX_VERIFY_RETURN_INT_EXC(char, long, PyLong_AsLong(x)) +#ifdef HAVE_LONG_LONG + } else if (sizeof(char) <= sizeof(PY_LONG_LONG)) { + __PYX_VERIFY_RETURN_INT_EXC(char, PY_LONG_LONG, PyLong_AsLongLong(x)) +#endif + } + } + { +#if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) + PyErr_SetString(PyExc_RuntimeError, + "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); +#else + char val; + PyObject *v = __Pyx_PyNumber_IntOrLong(x); + #if PY_MAJOR_VERSION < 3 + if (likely(v) && !PyLong_Check(v)) { + PyObject *tmp = v; + v = PyNumber_Long(tmp); + Py_DECREF(tmp); + } + #endif + if (likely(v)) { + int one = 1; int is_little = (int)*(unsigned char *)&one; + unsigned char *bytes = (unsigned char *)&val; + int ret = _PyLong_AsByteArray((PyLongObject *)v, + bytes, sizeof(val), + is_little, !is_unsigned); + Py_DECREF(v); + if (likely(!ret)) + return val; + } +#endif + return (char) -1; + } + } else { + char val; + PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); + if (!tmp) return (char) -1; + val = __Pyx_PyInt_As_char(tmp); + Py_DECREF(tmp); + return val; + } +raise_overflow: + PyErr_SetString(PyExc_OverflowError, + "value too large to convert to char"); + return (char) -1; +raise_neg_overflow: + PyErr_SetString(PyExc_OverflowError, + "can't convert negative value to char"); + return (char) -1; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj, int writable_flag) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, + PyBUF_RECORDS_RO | writable_flag, 2, + &__Pyx_TypeInfo_double, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* ObjectToMemviewSlice */ + static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_long(PyObject *obj, int writable_flag) { + __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; + __Pyx_BufFmt_StackElem stack[1]; + int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; + int retcode; + if (obj == Py_None) { + result.memview = (struct __pyx_memoryview_obj *) Py_None; + return result; + } + retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, + PyBUF_RECORDS_RO | writable_flag, 2, + &__Pyx_TypeInfo_long, stack, + &result, obj); + if (unlikely(retcode == -1)) + goto __pyx_fail; + return result; +__pyx_fail: + result.memview = NULL; + result.data = NULL; + return result; +} + +/* CheckBinaryVersion */ + static int __Pyx_check_binary_version(void) { + char ctversion[4], rtversion[4]; + PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); + PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); + if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) { + char message[200]; + PyOS_snprintf(message, sizeof(message), + "compiletime version %s of module '%.100s' " + "does not match runtime version %s", + ctversion, __Pyx_MODULE_NAME, rtversion); + return PyErr_WarnEx(NULL, message, 1); + } + return 0; +} + +/* InitStrings */ + static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { + while (t->p) { + #if PY_MAJOR_VERSION < 3 + if (t->is_unicode) { + *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); + } else if (t->intern) { + *t->p = PyString_InternFromString(t->s); + } else { + *t->p = PyString_FromStringAndSize(t->s, t->n - 1); + } + #else + if (t->is_unicode | t->is_str) { + if (t->intern) { + *t->p = PyUnicode_InternFromString(t->s); + } else if (t->encoding) { + *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); + } else { + *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); + } + } else { + *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); + } + #endif + if (!*t->p) + return -1; + if (PyObject_Hash(*t->p) == -1) + return -1; + ++t; + } + return 0; +} + +static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { + return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); +} +static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { + Py_ssize_t ignore; + return __Pyx_PyObject_AsStringAndSize(o, &ignore); +} +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT +#if !CYTHON_PEP393_ENABLED +static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + char* defenc_c; + PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); + if (!defenc) return NULL; + defenc_c = PyBytes_AS_STRING(defenc); +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + { + char* end = defenc_c + PyBytes_GET_SIZE(defenc); + char* c; + for (c = defenc_c; c < end; c++) { + if ((unsigned char) (*c) >= 128) { + PyUnicode_AsASCIIString(o); + return NULL; + } + } + } +#endif + *length = PyBytes_GET_SIZE(defenc); + return defenc_c; +} +#else +static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { + if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + if (likely(PyUnicode_IS_ASCII(o))) { + *length = PyUnicode_GET_LENGTH(o); + return PyUnicode_AsUTF8(o); + } else { + PyUnicode_AsASCIIString(o); + return NULL; + } +#else + return PyUnicode_AsUTF8AndSize(o, length); +#endif +} +#endif +#endif +static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { +#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT + if ( +#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII + __Pyx_sys_getdefaultencoding_not_ascii && +#endif + PyUnicode_Check(o)) { + return __Pyx_PyUnicode_AsStringAndSize(o, length); + } else +#endif +#if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) + if (PyByteArray_Check(o)) { + *length = PyByteArray_GET_SIZE(o); + return PyByteArray_AS_STRING(o); + } else +#endif + { + char* result; + int r = PyBytes_AsStringAndSize(o, &result, length); + if (unlikely(r < 0)) { + return NULL; + } else { + return result; + } + } +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { + int is_true = x == Py_True; + if (is_true | (x == Py_False) | (x == Py_None)) return is_true; + else return PyObject_IsTrue(x); +} +static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { + int retval; + if (unlikely(!x)) return -1; + retval = __Pyx_PyObject_IsTrue(x); + Py_DECREF(x); + return retval; +} +static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { +#if PY_MAJOR_VERSION >= 3 + if (PyLong_Check(result)) { + if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, + "__int__ returned non-int (type %.200s). " + "The ability to return an instance of a strict subclass of int " + "is deprecated, and may be removed in a future version of Python.", + Py_TYPE(result)->tp_name)) { + Py_DECREF(result); + return NULL; + } + return result; + } +#endif + PyErr_Format(PyExc_TypeError, + "__%.4s__ returned non-%.4s (type %.200s)", + type_name, type_name, Py_TYPE(result)->tp_name); + Py_DECREF(result); + return NULL; +} +static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { +#if CYTHON_USE_TYPE_SLOTS + PyNumberMethods *m; +#endif + const char *name = NULL; + PyObject *res = NULL; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_Check(x) || PyLong_Check(x))) +#else + if (likely(PyLong_Check(x))) +#endif + return __Pyx_NewRef(x); +#if CYTHON_USE_TYPE_SLOTS + m = Py_TYPE(x)->tp_as_number; + #if PY_MAJOR_VERSION < 3 + if (m && m->nb_int) { + name = "int"; + res = m->nb_int(x); + } + else if (m && m->nb_long) { + name = "long"; + res = m->nb_long(x); + } + #else + if (likely(m && m->nb_int)) { + name = "int"; + res = m->nb_int(x); + } + #endif +#else + if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { + res = PyNumber_Int(x); + } +#endif + if (likely(res)) { +#if PY_MAJOR_VERSION < 3 + if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { +#else + if (unlikely(!PyLong_CheckExact(res))) { +#endif + return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); + } + } + else if (!PyErr_Occurred()) { + PyErr_SetString(PyExc_TypeError, + "an integer is required"); + } + return res; +} +static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { + Py_ssize_t ival; + PyObject *x; +#if PY_MAJOR_VERSION < 3 + if (likely(PyInt_CheckExact(b))) { + if (sizeof(Py_ssize_t) >= sizeof(long)) + return PyInt_AS_LONG(b); + else + return PyInt_AsSsize_t(b); + } +#endif + if (likely(PyLong_CheckExact(b))) { + #if CYTHON_USE_PYLONG_INTERNALS + const digit* digits = ((PyLongObject*)b)->ob_digit; + const Py_ssize_t size = Py_SIZE(b); + if (likely(__Pyx_sst_abs(size) <= 1)) { + ival = likely(size) ? digits[0] : 0; + if (size == -1) ival = -ival; + return ival; + } else { + switch (size) { + case 2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -2: + if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -3: + if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case 4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + case -4: + if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { + return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); + } + break; + } + } + #endif + return PyLong_AsSsize_t(b); + } + x = PyNumber_Index(b); + if (!x) return -1; + ival = PyInt_AsSsize_t(x); + Py_DECREF(x); + return ival; +} +static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { + return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); +} +static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { + return PyInt_FromSize_t(ival); +} + + +#endif /* Py_PYTHON_H */ diff --git a/eval/src/utils/libsimplify/simplify_mesh.pyx b/eval/src/utils/libsimplify/simplify_mesh.pyx new file mode 100644 index 0000000..ca12f36 --- /dev/null +++ b/eval/src/utils/libsimplify/simplify_mesh.pyx @@ -0,0 +1,89 @@ +# distutils: language = c++ +from libcpp.vector cimport vector +import numpy as np +cimport numpy as np + + +cdef extern from "Simplify.h": + cdef struct vec3f: + double x, y, z + + cdef cppclass SymetricMatrix: + SymetricMatrix() except + + + +cdef extern from "Simplify.h" namespace "Simplify": + cdef struct Triangle: + int v[3] + double err[4] + int deleted, dirty, attr + vec3f uvs[3] + int material + + cdef struct Vertex: + vec3f p + int tstart, tcount + SymetricMatrix q + int border + + cdef vector[Triangle] triangles + cdef vector[Vertex] vertices + cdef void simplify_mesh(int, double) + + +cpdef mesh_simplify(double[:, ::1] vertices_in, long[:, ::1] triangles_in, + int f_target, double agressiveness=7.) except +: + vertices.clear() + triangles.clear() + + # Read in vertices and triangles + cdef Vertex v + for iv in range(vertices_in.shape[0]): + v = Vertex() + v.p.x = vertices_in[iv, 0] + v.p.y = vertices_in[iv, 1] + v.p.z = vertices_in[iv, 2] + vertices.push_back(v) + + cdef Triangle t + for it in range(triangles_in.shape[0]): + t = Triangle() + t.v[0] = triangles_in[it, 0] + t.v[1] = triangles_in[it, 1] + t.v[2] = triangles_in[it, 2] + triangles.push_back(t) + + # Simplify + # print('Simplify...') + simplify_mesh(f_target, agressiveness) + + # Only use triangles that are not deleted + cdef vector[Triangle] triangles_notdel + triangles_notdel.reserve(triangles.size()) + + for t in triangles: + if not t.deleted: + triangles_notdel.push_back(t) + + # Read out triangles + vertices_out = np.empty((vertices.size(), 3), dtype=np.float64) + triangles_out = np.empty((triangles_notdel.size(), 3), dtype=np.int64) + + cdef double[:, :] vertices_out_view = vertices_out + cdef long[:, :] triangles_out_view = triangles_out + + for iv in range(vertices.size()): + vertices_out_view[iv, 0] = vertices[iv].p.x + vertices_out_view[iv, 1] = vertices[iv].p.y + vertices_out_view[iv, 2] = vertices[iv].p.z + + for it in range(triangles_notdel.size()): + triangles_out_view[it, 0] = triangles_notdel[it].v[0] + triangles_out_view[it, 1] = triangles_notdel[it].v[1] + triangles_out_view[it, 2] = triangles_notdel[it].v[2] + + # Clear vertices and triangles + vertices.clear() + triangles.clear() + + return vertices_out, triangles_out \ No newline at end of file diff --git a/eval/src/utils/libsimplify/test.py b/eval/src/utils/libsimplify/test.py new file mode 100644 index 0000000..2977770 --- /dev/null +++ b/eval/src/utils/libsimplify/test.py @@ -0,0 +1,7 @@ +from simplify_mesh import mesh_simplify +import numpy as np + +v = np.random.rand(100, 3) +f = np.random.choice(range(100), (50, 3)) + +mesh_simplify(v, f, 50) \ No newline at end of file diff --git a/eval/src/utils/libvoxelize/.gitignore b/eval/src/utils/libvoxelize/.gitignore new file mode 100644 index 0000000..73cac11 --- /dev/null +++ b/eval/src/utils/libvoxelize/.gitignore @@ -0,0 +1,3 @@ +voxelize.c +voxelize.html +build diff --git a/eval/src/utils/libvoxelize/__init__.py b/eval/src/utils/libvoxelize/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/eval/src/utils/libvoxelize/tribox2.h b/eval/src/utils/libvoxelize/tribox2.h new file mode 100644 index 0000000..85d19ed --- /dev/null +++ b/eval/src/utils/libvoxelize/tribox2.h @@ -0,0 +1,184 @@ +/********************************************************/ +/* AABB-triangle overlap test code */ +/* by Tomas Akenine-M�ller */ +/* Function: int triBoxOverlap(float boxcenter[3], */ +/* float boxhalfsize[3],float triverts[3][3]); */ +/* History: */ +/* 2001-03-05: released the code in its first version */ +/* 2001-06-18: changed the order of the tests, faster */ +/* */ +/* Acknowledgement: Many thanks to Pierre Terdiman for */ +/* suggestions and discussions on how to optimize code. */ +/* Thanks to David Hunt for finding a ">="-bug! */ +/********************************************************/ +#include +#include + +#define X 0 +#define Y 1 +#define Z 2 + +#define CROSS(dest,v1,v2) \ + dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \ + dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \ + dest[2]=v1[0]*v2[1]-v1[1]*v2[0]; + +#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) + +#define SUB(dest,v1,v2) \ + dest[0]=v1[0]-v2[0]; \ + dest[1]=v1[1]-v2[1]; \ + dest[2]=v1[2]-v2[2]; + +#define FINDMINMAX(x0,x1,x2,min,max) \ + min = max = x0; \ + if(x1max) max=x1;\ + if(x2max) max=x2; + +int planeBoxOverlap(float normal[3],float d, float maxbox[3]) +{ + int q; + float vmin[3],vmax[3]; + for(q=X;q<=Z;q++) + { + if(normal[q]>0.0f) + { + vmin[q]=-maxbox[q]; + vmax[q]=maxbox[q]; + } + else + { + vmin[q]=maxbox[q]; + vmax[q]=-maxbox[q]; + } + } + if(DOT(normal,vmin)+d>0.0f) return 0; + if(DOT(normal,vmax)+d>=0.0f) return 1; + + return 0; +} + + +/*======================== X-tests ========================*/ +#define AXISTEST_X01(a, b, fa, fb) \ + p0 = a*v0[Y] - b*v0[Z]; \ + p2 = a*v2[Y] - b*v2[Z]; \ + if(p0rad || max<-rad) return 0; + +#define AXISTEST_X2(a, b, fa, fb) \ + p0 = a*v0[Y] - b*v0[Z]; \ + p1 = a*v1[Y] - b*v1[Z]; \ + if(p0rad || max<-rad) return 0; + +/*======================== Y-tests ========================*/ +#define AXISTEST_Y02(a, b, fa, fb) \ + p0 = -a*v0[X] + b*v0[Z]; \ + p2 = -a*v2[X] + b*v2[Z]; \ + if(p0rad || max<-rad) return 0; + +#define AXISTEST_Y1(a, b, fa, fb) \ + p0 = -a*v0[X] + b*v0[Z]; \ + p1 = -a*v1[X] + b*v1[Z]; \ + if(p0rad || max<-rad) return 0; + +/*======================== Z-tests ========================*/ + +#define AXISTEST_Z12(a, b, fa, fb) \ + p1 = a*v1[X] - b*v1[Y]; \ + p2 = a*v2[X] - b*v2[Y]; \ + if(p2rad || max<-rad) return 0; + +#define AXISTEST_Z0(a, b, fa, fb) \ + p0 = a*v0[X] - b*v0[Y]; \ + p1 = a*v1[X] - b*v1[Y]; \ + if(p0rad || max<-rad) return 0; + +int triBoxOverlap(float boxcenter[3],float boxhalfsize[3],float tri0[3], float tri1[3], float tri2[3]) +{ + + /* use separating axis theorem to test overlap between triangle and box */ + /* need to test for overlap in these directions: */ + /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ + /* we do not even need to test these) */ + /* 2) normal of the triangle */ + /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ + /* this gives 3x3=9 more tests */ + float v0[3],v1[3],v2[3]; + float min,max,d,p0,p1,p2,rad,fex,fey,fez; + float normal[3],e0[3],e1[3],e2[3]; + + /* This is the fastest branch on Sun */ + /* move everything so that the boxcenter is in (0,0,0) */ + SUB(v0, tri0, boxcenter); + SUB(v1, tri1, boxcenter); + SUB(v2, tri2, boxcenter); + + /* compute triangle edges */ + SUB(e0,v1,v0); /* tri edge 0 */ + SUB(e1,v2,v1); /* tri edge 1 */ + SUB(e2,v0,v2); /* tri edge 2 */ + + /* Bullet 3: */ + /* test the 9 tests first (this was faster) */ + fex = fabs(e0[X]); + fey = fabs(e0[Y]); + fez = fabs(e0[Z]); + AXISTEST_X01(e0[Z], e0[Y], fez, fey); + AXISTEST_Y02(e0[Z], e0[X], fez, fex); + AXISTEST_Z12(e0[Y], e0[X], fey, fex); + + fex = fabs(e1[X]); + fey = fabs(e1[Y]); + fez = fabs(e1[Z]); + AXISTEST_X01(e1[Z], e1[Y], fez, fey); + AXISTEST_Y02(e1[Z], e1[X], fez, fex); + AXISTEST_Z0(e1[Y], e1[X], fey, fex); + + fex = fabs(e2[X]); + fey = fabs(e2[Y]); + fez = fabs(e2[Z]); + AXISTEST_X2(e2[Z], e2[Y], fez, fey); + AXISTEST_Y1(e2[Z], e2[X], fez, fex); + AXISTEST_Z12(e2[Y], e2[X], fey, fex); + + /* Bullet 1: */ + /* first test overlap in the {x,y,z}-directions */ + /* find min, max of the triangle each direction, and test for overlap in */ + /* that direction -- this is equivalent to testing a minimal AABB around */ + /* the triangle against the AABB */ + + /* test in X-direction */ + FINDMINMAX(v0[X],v1[X],v2[X],min,max); + if(min>boxhalfsize[X] || max<-boxhalfsize[X]) return 0; + + /* test in Y-direction */ + FINDMINMAX(v0[Y],v1[Y],v2[Y],min,max); + if(min>boxhalfsize[Y] || max<-boxhalfsize[Y]) return 0; + + /* test in Z-direction */ + FINDMINMAX(v0[Z],v1[Z],v2[Z],min,max); + if(min>boxhalfsize[Z] || max<-boxhalfsize[Z]) return 0; + + /* Bullet 2: */ + /* test if the box intersects the plane of the triangle */ + /* compute plane equation of triangle: normal*x+d=0 */ + CROSS(normal,e0,e1); + d=-DOT(normal,v0); /* plane eq: normal.x+d=0 */ + if(!planeBoxOverlap(normal,d,boxhalfsize)) return 0; + + return 1; /* box and triangle overlaps */ +} diff --git a/eval/src/utils/libvoxelize/voxelize.pyx b/eval/src/utils/libvoxelize/voxelize.pyx new file mode 100644 index 0000000..1ba8402 --- /dev/null +++ b/eval/src/utils/libvoxelize/voxelize.pyx @@ -0,0 +1,66 @@ +cimport cython +from libc.math cimport floor, ceil +from cython.view cimport array as cvarray + +cdef extern from "tribox2.h": + int triBoxOverlap(float boxcenter[3], float boxhalfsize[3], + float tri0[3], float tri1[3], float tri2[3]) + + +@cython.boundscheck(False) # Deactivate bounds checking +@cython.wraparound(False) # Deactivate negative indexing. +cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces): + assert(faces.shape[1] == 3) + assert(faces.shape[2] == 3) + + n_faces = faces.shape[0] + cdef int i + for i in range(n_faces): + voxelize_triangle_(occ, faces[i]) + + +@cython.boundscheck(False) # Deactivate bounds checking +@cython.wraparound(False) # Deactivate negative indexing. +cpdef int voxelize_triangle_(bint[:, :, :] occupancies, float[:, ::1] triverts): + cdef int bbox_min[3] + cdef int bbox_max[3] + cdef int i, j, k + cdef float boxhalfsize[3] + cdef float boxcenter[3] + cdef bint intersection + + boxhalfsize[:] = (0.5, 0.5, 0.5) + + for i in range(3): + bbox_min[i] = ( + min(triverts[0, i], triverts[1, i], triverts[2, i]) + ) + bbox_min[i] = min(max(bbox_min[i], 0), occupancies.shape[i] - 1) + + for i in range(3): + bbox_max[i] = ( + max(triverts[0, i], triverts[1, i], triverts[2, i]) + ) + bbox_max[i] = min(max(bbox_max[i], 0), occupancies.shape[i] - 1) + + for i in range(bbox_min[0], bbox_max[0] + 1): + for j in range(bbox_min[1], bbox_max[1] + 1): + for k in range(bbox_min[2], bbox_max[2] + 1): + boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5) + intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], + &triverts[0, 0], &triverts[1, 0], &triverts[2, 0]) + occupancies[i, j, k] |= intersection + + +@cython.boundscheck(False) # Deactivate bounds checking +@cython.wraparound(False) # Deactivate negative indexing. +cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts): + assert(boxcenter.shape[0] == 3) + assert(boxhalfsize.shape[0] == 3) + assert(triverts.shape[0] == triverts.shape[1] == 3) + + # print(triverts) + # Call functions + cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], + &triverts[0, 0], &triverts[1, 0], &triverts[2, 0]) + return result diff --git a/eval/src/utils/mesh.py b/eval/src/utils/mesh.py new file mode 100644 index 0000000..4b2d2da --- /dev/null +++ b/eval/src/utils/mesh.py @@ -0,0 +1,220 @@ +from scipy.spatial import Delaunay +from itertools import combinations +import numpy as np +from im2mesh.utils import voxels + + +class MultiGridExtractor(object): + def __init__(self, resolution0, threshold): + # Attributes + self.resolution = resolution0 + self.threshold = threshold + + # Voxels are active or inactive, + # values live on the space between voxels and are either + # known exactly or guessed by interpolation (unknown) + shape_voxels = (resolution0,) * 3 + shape_values = (resolution0 + 1,) * 3 + self.values = np.empty(shape_values) + self.value_known = np.full(shape_values, False) + self.voxel_active = np.full(shape_voxels, True) + + def query(self): + # Query locations in grid that are active but unkown + idx1, idx2, idx3 = np.where( + ~self.value_known & self.value_active + ) + points = np.stack([idx1, idx2, idx3], axis=-1) + return points + + def update(self, points, values): + # Update locations and set known status to true + idx0, idx1, idx2 = points.transpose() + self.values[idx0, idx1, idx2] = values + self.value_known[idx0, idx1, idx2] = True + + # Update activity status of voxels accordings to new values + self.voxel_active = ~self.voxel_empty + # ( + # # self.voxel_active & + # self.voxel_known & ~self.voxel_empty + # ) + + def increase_resolution(self): + self.resolution = 2 * self.resolution + shape_values = (self.resolution + 1,) * 3 + + value_known = np.full(shape_values, False) + value_known[::2, ::2, ::2] = self.value_known + values = upsample3d_nn(self.values) + values = values[:-1, :-1, :-1] + + self.values = values + self.value_known = value_known + self.voxel_active = upsample3d_nn(self.voxel_active) + + @property + def occupancies(self): + return (self.values < self.threshold) + + @property + def value_active(self): + value_active = np.full(self.values.shape, False) + # Active if adjacent to active voxel + value_active[:-1, :-1, :-1] |= self.voxel_active + value_active[:-1, :-1, 1:] |= self.voxel_active + value_active[:-1, 1:, :-1] |= self.voxel_active + value_active[:-1, 1:, 1:] |= self.voxel_active + value_active[1:, :-1, :-1] |= self.voxel_active + value_active[1:, :-1, 1:] |= self.voxel_active + value_active[1:, 1:, :-1] |= self.voxel_active + value_active[1:, 1:, 1:] |= self.voxel_active + + return value_active + + @property + def voxel_known(self): + value_known = self.value_known + voxel_known = voxels.check_voxel_occupied(value_known) + return voxel_known + + @property + def voxel_empty(self): + occ = self.occupancies + return ~voxels.check_voxel_boundary(occ) + + +def upsample3d_nn(x): + xshape = x.shape + yshape = (2*xshape[0], 2*xshape[1], 2*xshape[2]) + + y = np.zeros(yshape, dtype=x.dtype) + y[::2, ::2, ::2] = x + y[::2, ::2, 1::2] = x + y[::2, 1::2, ::2] = x + y[::2, 1::2, 1::2] = x + y[1::2, ::2, ::2] = x + y[1::2, ::2, 1::2] = x + y[1::2, 1::2, ::2] = x + y[1::2, 1::2, 1::2] = x + + return y + + +class DelauneyMeshExtractor(object): + """Algorithm for extacting meshes from implicit function using + delauney triangulation and random sampling.""" + def __init__(self, points, values, threshold=0.): + self.points = points + self.values = values + self.delaunay = Delaunay(self.points) + self.threshold = threshold + + def update(self, points, values, reduce_to_active=True): + # Find all active points + if reduce_to_active: + active_simplices = self.active_simplices() + active_point_idx = np.unique(active_simplices.flatten()) + self.points = self.points[active_point_idx] + self.values = self.values[active_point_idx] + + self.points = np.concatenate([self.points, points], axis=0) + self.values = np.concatenate([self.values, values], axis=0) + self.delaunay = Delaunay(self.points) + + def extract_mesh(self): + threshold = self.threshold + vertices = [] + triangles = [] + vertex_dict = dict() + + active_simplices = self.active_simplices() + active_simplices.sort(axis=1) + for simplex in active_simplices: + new_vertices = [] + for i1, i2 in combinations(simplex, 2): + assert(i1 < i2) + v1 = self.values[i1] + v2 = self.values[i2] + if (v1 < threshold) ^ (v2 < threshold): + # Subdivide edge + vertex_idx = vertex_dict.get((i1, i2), len(vertices)) + vertex_idx = len(vertices) + if vertex_idx == len(vertices): + tau = (threshold - v1) / (v2 - v1) + assert(0 <= tau <= 1) + p = (1 - tau) * self.points[i1] + tau * self.points[i2] + vertices.append(p) + vertex_dict[i1, i2] = vertex_idx + new_vertices.append(vertex_idx) + + assert(len(new_vertices) in (3, 4)) + p0 = self.points[simplex[0]] + v0 = self.values[simplex[0]] + if len(new_vertices) == 3: + i1, i2, i3 = new_vertices + p1, p2, p3 = vertices[i1], vertices[i2], vertices[i3] + vol = get_tetrahedon_volume(np.asarray([p0, p1, p2, p3])) + if vol * (v0 - threshold) <= 0: + triangles.append((i1, i2, i3)) + else: + triangles.append((i1, i3, i2)) + elif len(new_vertices) == 4: + i1, i2, i3, i4 = new_vertices + p1, p2, p3, p4 = \ + vertices[i1], vertices[i2], vertices[i3], vertices[i4] + vol = get_tetrahedon_volume(np.asarray([p0, p1, p2, p3])) + if vol * (v0 - threshold) <= 0: + triangles.append((i1, i2, i3)) + else: + triangles.append((i1, i3, i2)) + + vol = get_tetrahedon_volume(np.asarray([p0, p2, p3, p4])) + if vol * (v0 - threshold) <= 0: + triangles.append((i2, i3, i4)) + else: + triangles.append((i2, i4, i3)) + + vertices = np.asarray(vertices, dtype=np.float32) + triangles = np.asarray(triangles, dtype=np.int32) + + return vertices, triangles + + def query(self, size): + active_simplices = self.active_simplices() + active_simplices_points = self.points[active_simplices] + new_points = sample_tetraheda(active_simplices_points, size=size) + return new_points + + def active_simplices(self): + occ = (self.values >= self.threshold) + simplices = self.delaunay.simplices + simplices_occ = occ[simplices] + + active = ( + np.any(simplices_occ, axis=1) & np.any(~simplices_occ, axis=1) + ) + + simplices = self.delaunay.simplices[active] + return simplices + + +def sample_tetraheda(tetraheda_points, size): + N_tetraheda = tetraheda_points.shape[0] + volume = np.abs(get_tetrahedon_volume(tetraheda_points)) + probs = volume / volume.sum() + + tetraheda_rnd = np.random.choice(range(N_tetraheda), p=probs, size=size) + tetraheda_rnd_points = tetraheda_points[tetraheda_rnd] + weights_rnd = np.random.dirichlet([1, 1, 1, 1], size=size) + weights_rnd = weights_rnd.reshape(size, 4, 1) + points_rnd = (weights_rnd * tetraheda_rnd_points).sum(axis=1) + # points_rnd = tetraheda_rnd_points.mean(1) + + return points_rnd + + +def get_tetrahedon_volume(points): + vectors = points[..., :3, :] - points[..., 3:, :] + volume = 1/6 * np.linalg.det(vectors) + return volume diff --git a/eval/src/utils/visualize.py b/eval/src/utils/visualize.py new file mode 100644 index 0000000..0b4c857 --- /dev/null +++ b/eval/src/utils/visualize.py @@ -0,0 +1,117 @@ +import numpy as np +from matplotlib import pyplot as plt +from mpl_toolkits.mplot3d import Axes3D +from torchvision.utils import save_image +import im2mesh.common as common + + +def visualize_data(data, data_type, out_file): + r''' Visualizes the data with regard to its type. + + Args: + data (tensor): batch of data + data_type (string): data type (img, voxels or pointcloud) + out_file (string): output file + ''' + if data_type == 'img': + if data.dim() == 3: + data = data.unsqueeze(0) + save_image(data, out_file, nrow=4) + elif data_type == 'voxels': + visualize_voxels(data, out_file=out_file) + elif data_type == 'pointcloud': + visualize_pointcloud(data, out_file=out_file) + elif data_type is None or data_type == 'idx': + pass + else: + raise ValueError('Invalid data_type "%s"' % data_type) + + +def visualize_voxels(voxels, out_file=None, show=False): + r''' Visualizes voxel data. + + Args: + voxels (tensor): voxel data + out_file (string): output file + show (bool): whether the plot should be shown + ''' + # Use numpy + voxels = np.asarray(voxels) + # Create plot + fig = plt.figure() + ax = fig.gca(projection=Axes3D.name) + voxels = voxels.transpose(2, 0, 1) + ax.voxels(voxels, edgecolor='k') + ax.set_xlabel('Z') + ax.set_ylabel('X') + ax.set_zlabel('Y') + ax.view_init(elev=30, azim=45) + if out_file is not None: + plt.savefig(out_file) + if show: + plt.show() + plt.close(fig) + + +def visualize_pointcloud(points, normals=None, + out_file=None, show=False): + r''' Visualizes point cloud data. + + Args: + points (tensor): point data + normals (tensor): normal data (if existing) + out_file (string): output file + show (bool): whether the plot should be shown + ''' + # Use numpy + points = np.asarray(points) + # Create plot + fig = plt.figure() + ax = fig.gca(projection=Axes3D.name) + ax.scatter(points[:, 2], points[:, 0], points[:, 1]) + if normals is not None: + ax.quiver( + points[:, 2], points[:, 0], points[:, 1], + normals[:, 2], normals[:, 0], normals[:, 1], + length=0.1, color='k' + ) + ax.set_xlabel('Z') + ax.set_ylabel('X') + ax.set_zlabel('Y') + ax.set_xlim(-0.5, 0.5) + ax.set_ylim(-0.5, 0.5) + ax.set_zlim(-0.5, 0.5) + ax.view_init(elev=30, azim=45) + if out_file is not None: + plt.savefig(out_file) + if show: + plt.show() + plt.close(fig) + + +def visualise_projection( + self, points, world_mat, camera_mat, img, output_file='out.png'): + r''' Visualizes the transformation and projection to image plane. + + The first points of the batch are transformed and projected to the + respective image. After performing the relevant transformations, the + visualization is saved in the provided output_file path. + + Arguments: + points (tensor): batch of point cloud points + world_mat (tensor): batch of matrices to rotate pc to camera-based + coordinates + camera_mat (tensor): batch of camera matrices to project to 2D image + plane + img (tensor): tensor of batch GT image files + output_file (string): where the output should be saved + ''' + points_transformed = common.transform_points(points, world_mat) + points_img = common.project_to_camera(points_transformed, camera_mat) + pimg2 = points_img[0].detach().cpu().numpy() + image = img[0].cpu().numpy() + plt.imshow(image.transpose(1, 2, 0)) + plt.plot( + (pimg2[:, 0] + 1)*image.shape[1]/2, + (pimg2[:, 1] + 1) * image.shape[2]/2, 'x') + plt.savefig(output_file) diff --git a/eval/src/utils/voxels.py b/eval/src/utils/voxels.py new file mode 100644 index 0000000..6a2b36c --- /dev/null +++ b/eval/src/utils/voxels.py @@ -0,0 +1,287 @@ + +import numpy as np +import trimesh +from scipy import ndimage +from skimage.measure import block_reduce +from im2mesh.utils.libvoxelize.voxelize import voxelize_mesh_ +from im2mesh.utils.libmesh import check_mesh_contains +from im2mesh.common import make_3d_grid + + +class VoxelGrid: + def __init__(self, data, loc=(0., 0., 0.), scale=1): + assert(data.shape[0] == data.shape[1] == data.shape[2]) + data = np.asarray(data, dtype=np.bool) + loc = np.asarray(loc) + self.data = data + self.loc = loc + self.scale = scale + + @classmethod + def from_mesh(cls, mesh, resolution, loc=None, scale=None, method='ray'): + bounds = mesh.bounds + # Default location is center + if loc is None: + loc = (bounds[0] + bounds[1]) / 2 + + # Default scale, scales the mesh to [-0.45, 0.45]^3 + if scale is None: + scale = (bounds[1] - bounds[0]).max()/0.9 + + loc = np.asarray(loc) + scale = float(scale) + + # Transform mesh + mesh = mesh.copy() + mesh.apply_translation(-loc) + mesh.apply_scale(1/scale) + + # Apply method + if method == 'ray': + voxel_data = voxelize_ray(mesh, resolution) + elif method == 'fill': + voxel_data = voxelize_fill(mesh, resolution) + + voxels = cls(voxel_data, loc, scale) + return voxels + + def down_sample(self, factor=2): + if not (self.resolution % factor) == 0: + raise ValueError('Resolution must be divisible by factor.') + new_data = block_reduce(self.data, (factor,) * 3, np.max) + return VoxelGrid(new_data, self.loc, self.scale) + + def to_mesh(self): + # Shorthand + occ = self.data + + # Shape of voxel grid + nx, ny, nz = occ.shape + # Shape of corresponding occupancy grid + grid_shape = (nx + 1, ny + 1, nz + 1) + + # Convert values to occupancies + occ = np.pad(occ, 1, 'constant') + + # Determine if face present + f1_r = (occ[:-1, 1:-1, 1:-1] & ~occ[1:, 1:-1, 1:-1]) + f2_r = (occ[1:-1, :-1, 1:-1] & ~occ[1:-1, 1:, 1:-1]) + f3_r = (occ[1:-1, 1:-1, :-1] & ~occ[1:-1, 1:-1, 1:]) + + f1_l = (~occ[:-1, 1:-1, 1:-1] & occ[1:, 1:-1, 1:-1]) + f2_l = (~occ[1:-1, :-1, 1:-1] & occ[1:-1, 1:, 1:-1]) + f3_l = (~occ[1:-1, 1:-1, :-1] & occ[1:-1, 1:-1, 1:]) + + f1 = f1_r | f1_l + f2 = f2_r | f2_l + f3 = f3_r | f3_l + + assert(f1.shape == (nx + 1, ny, nz)) + assert(f2.shape == (nx, ny + 1, nz)) + assert(f3.shape == (nx, ny, nz + 1)) + + # Determine if vertex present + v = np.full(grid_shape, False) + + v[:, :-1, :-1] |= f1 + v[:, :-1, 1:] |= f1 + v[:, 1:, :-1] |= f1 + v[:, 1:, 1:] |= f1 + + v[:-1, :, :-1] |= f2 + v[:-1, :, 1:] |= f2 + v[1:, :, :-1] |= f2 + v[1:, :, 1:] |= f2 + + v[:-1, :-1, :] |= f3 + v[:-1, 1:, :] |= f3 + v[1:, :-1, :] |= f3 + v[1:, 1:, :] |= f3 + + # Calculate indices for vertices + n_vertices = v.sum() + v_idx = np.full(grid_shape, -1) + v_idx[v] = np.arange(n_vertices) + + # Vertices + v_x, v_y, v_z = np.where(v) + v_x = v_x / nx - 0.5 + v_y = v_y / ny - 0.5 + v_z = v_z / nz - 0.5 + vertices = np.stack([v_x, v_y, v_z], axis=1) + + # Face indices + f1_l_x, f1_l_y, f1_l_z = np.where(f1_l) + f2_l_x, f2_l_y, f2_l_z = np.where(f2_l) + f3_l_x, f3_l_y, f3_l_z = np.where(f3_l) + + f1_r_x, f1_r_y, f1_r_z = np.where(f1_r) + f2_r_x, f2_r_y, f2_r_z = np.where(f2_r) + f3_r_x, f3_r_y, f3_r_z = np.where(f3_r) + + faces_1_l = np.stack([ + v_idx[f1_l_x, f1_l_y, f1_l_z], + v_idx[f1_l_x, f1_l_y, f1_l_z + 1], + v_idx[f1_l_x, f1_l_y + 1, f1_l_z + 1], + v_idx[f1_l_x, f1_l_y + 1, f1_l_z], + ], axis=1) + + faces_1_r = np.stack([ + v_idx[f1_r_x, f1_r_y, f1_r_z], + v_idx[f1_r_x, f1_r_y + 1, f1_r_z], + v_idx[f1_r_x, f1_r_y + 1, f1_r_z + 1], + v_idx[f1_r_x, f1_r_y, f1_r_z + 1], + ], axis=1) + + faces_2_l = np.stack([ + v_idx[f2_l_x, f2_l_y, f2_l_z], + v_idx[f2_l_x + 1, f2_l_y, f2_l_z], + v_idx[f2_l_x + 1, f2_l_y, f2_l_z + 1], + v_idx[f2_l_x, f2_l_y, f2_l_z + 1], + ], axis=1) + + faces_2_r = np.stack([ + v_idx[f2_r_x, f2_r_y, f2_r_z], + v_idx[f2_r_x, f2_r_y, f2_r_z + 1], + v_idx[f2_r_x + 1, f2_r_y, f2_r_z + 1], + v_idx[f2_r_x + 1, f2_r_y, f2_r_z], + ], axis=1) + + faces_3_l = np.stack([ + v_idx[f3_l_x, f3_l_y, f3_l_z], + v_idx[f3_l_x, f3_l_y + 1, f3_l_z], + v_idx[f3_l_x + 1, f3_l_y + 1, f3_l_z], + v_idx[f3_l_x + 1, f3_l_y, f3_l_z], + ], axis=1) + + faces_3_r = np.stack([ + v_idx[f3_r_x, f3_r_y, f3_r_z], + v_idx[f3_r_x + 1, f3_r_y, f3_r_z], + v_idx[f3_r_x + 1, f3_r_y + 1, f3_r_z], + v_idx[f3_r_x, f3_r_y + 1, f3_r_z], + ], axis=1) + + faces = np.concatenate([ + faces_1_l, faces_1_r, + faces_2_l, faces_2_r, + faces_3_l, faces_3_r, + ], axis=0) + + vertices = self.loc + self.scale * vertices + mesh = trimesh.Trimesh(vertices, faces, process=False) + return mesh + + @property + def resolution(self): + assert(self.data.shape[0] == self.data.shape[1] == self.data.shape[2]) + return self.data.shape[0] + + def contains(self, points): + nx = self.resolution + + # Rescale bounding box to [-0.5, 0.5]^3 + points = (points - self.loc) / self.scale + # Discretize points to [0, nx-1]^3 + points_i = ((points + 0.5) * nx).astype(np.int32) + # i1, i2, i3 have sizes (batch_size, T) + i1, i2, i3 = points_i[..., 0], points_i[..., 1], points_i[..., 2] + # Only use indices inside bounding box + mask = ( + (i1 >= 0) & (i2 >= 0) & (i3 >= 0) + & (nx > i1) & (nx > i2) & (nx > i3) + ) + # Prevent out of bounds error + i1 = i1[mask] + i2 = i2[mask] + i3 = i3[mask] + + # Compute values, default value outside box is 0 + occ = np.zeros(points.shape[:-1], dtype=np.bool) + occ[mask] = self.data[i1, i2, i3] + + return occ + + +def voxelize_ray(mesh, resolution): + occ_surface = voxelize_surface(mesh, resolution) + # TODO: use surface voxels here? + occ_interior = voxelize_interior(mesh, resolution) + occ = (occ_interior | occ_surface) + return occ + + +def voxelize_fill(mesh, resolution): + bounds = mesh.bounds + if (np.abs(bounds) >= 0.5).any(): + raise ValueError('voxelize fill is only supported if mesh is inside [-0.5, 0.5]^3/') + + occ = voxelize_surface(mesh, resolution) + occ = ndimage.morphology.binary_fill_holes(occ) + return occ + + +def voxelize_surface(mesh, resolution): + vertices = mesh.vertices + faces = mesh.faces + + vertices = (vertices + 0.5) * resolution + + face_loc = vertices[faces] + occ = np.full((resolution,) * 3, 0, dtype=np.int32) + face_loc = face_loc.astype(np.float32) + + voxelize_mesh_(occ, face_loc) + occ = (occ != 0) + + return occ + + +def voxelize_interior(mesh, resolution): + shape = (resolution,) * 3 + bb_min = (0.5,) * 3 + bb_max = (resolution - 0.5,) * 3 + # Create points. Add noise to break symmetry + points = make_3d_grid(bb_min, bb_max, shape=shape).numpy() + points = points + 0.1 * (np.random.rand(*points.shape) - 0.5) + points = (points / resolution - 0.5) + occ = check_mesh_contains(mesh, points) + occ = occ.reshape(shape) + return occ + + +def check_voxel_occupied(occupancy_grid): + occ = occupancy_grid + + occupied = ( + occ[..., :-1, :-1, :-1] + & occ[..., :-1, :-1, 1:] + & occ[..., :-1, 1:, :-1] + & occ[..., :-1, 1:, 1:] + & occ[..., 1:, :-1, :-1] + & occ[..., 1:, :-1, 1:] + & occ[..., 1:, 1:, :-1] + & occ[..., 1:, 1:, 1:] + ) + return occupied + + +def check_voxel_unoccupied(occupancy_grid): + occ = occupancy_grid + + unoccupied = ~( + occ[..., :-1, :-1, :-1] + | occ[..., :-1, :-1, 1:] + | occ[..., :-1, 1:, :-1] + | occ[..., :-1, 1:, 1:] + | occ[..., 1:, :-1, :-1] + | occ[..., 1:, :-1, 1:] + | occ[..., 1:, 1:, :-1] + | occ[..., 1:, 1:, 1:] + ) + return unoccupied + + +def check_voxel_boundary(occupancy_grid): + occupied = check_voxel_occupied(occupancy_grid) + unoccupied = check_voxel_unoccupied(occupancy_grid) + return ~occupied & ~unoccupied diff --git a/eval_meshes.py b/eval_meshes.py new file mode 100644 index 0000000..0cbda34 --- /dev/null +++ b/eval_meshes.py @@ -0,0 +1,93 @@ + +import argparse +import logging +import os +from tqdm import tqdm +import pandas as pd +import trimesh +from lightconvpoint.datasets.dataset import get_dataset +import torch_geometric.transforms as T +import datasets +import numpy as np +from eval.src.eval import MeshEvaluator + +if __name__ == "__main__": + + + parser = argparse.ArgumentParser(description='Evaluate mesh algorithms.') + parser.add_argument("--gendir", type=str, help="Path to generated data", required=True) + parser.add_argument("--gtdir", type=str, help="Path to ground truth data", required=True) + parser.add_argument("--dataset", type=str, help="Dataset name", required=True) + parser.add_argument("--meshdir", type=str, default="") + parser.add_argument("--filter", type=str, default=None) + parser.add_argument("--npoints", type=int, default=100000) + parser.add_argument("--threads", type=int, default=4) + parser.add_argument("--logging", type=str, default="INFO") + parser.add_argument("--num_meshes", type=int, default=None) + parser.add_argument("--split", type=str, default="test") + parser.add_argument("--remove_wall", action="store_true") # specific to SyntheticRooms + args = parser.parse_args() + + logging.getLogger().setLevel(args.logging) + + + DatasetClass = get_dataset(eval("datasets."+args.dataset)) + eval_dataset = DatasetClass(args.gtdir, + split=args.split, + filter_name=args.filter, + num_non_manifold_points=1, + dataset_size=args.num_meshes, + ) + + + evaluator = MeshEvaluator(n_points=args.npoints) + + source_filenames = eval_dataset.filenames + + eval_dicts = [] + for shape_id, source_filename in enumerate(tqdm(source_filenames, ncols=50)): + + # print(source_filename) + + category = eval_dataset.get_category(shape_id) + object_name = eval_dataset.get_object_name(shape_id) + + if args.meshdir is None: + pred_name = os.path.join(args.gendir, category, object_name+".ply") + else: + pred_name = os.path.join(args.gendir, args.meshdir, category, object_name+".ply") + + ## load the ground truth + data_shape, data_space = eval_dataset.get_data_for_evaluation(shape_id) + pointcloud_tgt = data_shape['points'].astype(np.float32) + normals_tgt = data_shape['normals'].astype(np.float32) + points_tgt = data_space["points"].astype(np.float32) + occ_tgt = np.unpackbits(data_space['occupancies']).astype(np.int64) + + # np.savetxt("/root/no_backup/test.xyz", pointcloud_tgt) + + ## load the prediction + pred_mesh = trimesh.load(pred_name, process=False) + out_dict = evaluator.eval_mesh( + pred_mesh, pointcloud_tgt, normals_tgt, points_tgt, occ_tgt, remove_wall=args.remove_wall) + + out_dict['idx'] = shape_id + out_dict['class'] = eval_dataset.get_class_name(shape_id) + out_dict['category'] = category + out_dict['name'] = object_name + + eval_dicts.append(out_dict) + + out_file = os.path.join(args.gendir, 'eval_meshes_full.pkl') + out_file_class = os.path.join(args.gendir, 'eval_meshes.csv') + + # Create pandas dataframe and save + eval_df = pd.DataFrame(eval_dicts) + eval_df.set_index(['idx'], inplace=True) + eval_df.to_pickle(out_file) + + # Create CSV file with main statistics + eval_df_class = eval_df.groupby(by=['class']).mean() + eval_df_class.loc['mean'] = eval_df_class.mean() + eval_df_class.to_csv(out_file_class) + print(eval_df_class) diff --git a/eval_point2surf_datasets.py b/eval_point2surf_datasets.py new file mode 100644 index 0000000..cb17718 --- /dev/null +++ b/eval_point2surf_datasets.py @@ -0,0 +1,26 @@ +import os +import argparse + +import eval.eval_point2surf.evaluation as evaluation + + + +parser = argparse.ArgumentParser(description='Evaluate mesh algorithms.') +parser.add_argument("--gendir", type=str, help="Path to generated data") +parser.add_argument("--meshdir", type=str, default="meshes") +parser.add_argument("--gtdir", type=str, help="Path to gt meshes") +parser.add_argument("--workers", type=int, default=4) +args = parser.parse_args() + + +new_meshes_dir_abs = os.path.join(args.gendir, args.meshdir) +ref_meshes_dir_abs = os.path.join(args.gtdir, '03_meshes') +csv_file = os.path.join(args.gendir, 'hausdorff_dist_pred_rec.csv') +evaluation.mesh_comparison( + new_meshes_dir_abs=new_meshes_dir_abs, + ref_meshes_dir_abs=ref_meshes_dir_abs, + num_processes=args.workers, + report_name=csv_file, + samples_per_model=10000, + #dataset_file_abs=os.path.join(opt.indir, opt.dataset) + ) \ No newline at end of file diff --git a/eval_scenenet.py b/eval_scenenet.py new file mode 100644 index 0000000..dd979a5 --- /dev/null +++ b/eval_scenenet.py @@ -0,0 +1,195 @@ +import argparse +import logging +import os +import pandas as pd +import trimesh +import numpy as np +from datasets import SceneNet +import trimesh +from sklearn.neighbors import KDTree + +from multiprocessing import Pool +from functools import partial + +def distance_p2p(points_src, normals_src, points_tgt, normals_tgt): + ''' Computes minimal distances of each point in points_src to points_tgt. + Args: + points_src (numpy array): source points + normals_src (numpy array): source normals + points_tgt (numpy array): target points + normals_tgt (numpy array): target normals + ''' + + logging.debug(f"distance_p2p - {points_tgt.shape} {points_src.shape}") + + logging.debug("distance_p2p - KDTree construction") + kdtree = KDTree(points_tgt) + + logging.debug("distance_p2p - query") + dist, idx = kdtree.query(points_src) + idx = idx[:,0] + + logging.debug("distance_p2p - normals") + if normals_src is not None and normals_tgt is not None: + normals_src = \ + normals_src / np.linalg.norm(normals_src, axis=-1, keepdims=True) + normals_tgt = \ + normals_tgt / np.linalg.norm(normals_tgt, axis=-1, keepdims=True) + + normals_dot_product = (normals_tgt[idx] * normals_src).sum(axis=-1) + # Handle normals that point into wrong direction gracefully + # (mostly due to mehtod not caring about this in generation) + normals_dot_product = np.abs(normals_dot_product) + else: + normals_dot_product = np.array( + [np.nan] * points_src.shape[0], dtype=np.float32) + return dist, normals_dot_product + +def get_threshold_percentage(dist, thresholds): + ''' Evaluates a point cloud. + Args: + dist (numpy array): calculated distance + thresholds (numpy array): threshold values for the F-score calculation + ''' + in_threshold = [ + (dist <= t).mean() for t in thresholds + ] + return in_threshold + + +def process_meshes(source_filename, F_threshold): + + + source_filename, shape_id = source_filename + + pred_filename = source_filename.split(args.gtdir)[-1] + if pred_filename[0] == "/": + pred_filename = pred_filename[1:] + + category, fname = pred_filename.split("/") + + pred_filename = os.path.join(args.gendir, args.meshdir, pred_filename) + if os.path.splitext(pred_filename)[1] != ".ply": + pred_filename = pred_filename+".ply" + + logging.info(f"{os.getppid()} - {os.getpid()} - {category} - {fname} - {F_threshold}") + + logging.debug("Sampling source") + source_mesh = trimesh.load(source_filename) + source_pts, face_index = trimesh.sample.sample_surface(source_mesh, args.npoints) + source_nls = source_mesh.face_normals[face_index] + + logging.debug("Sampling prediction") + pred_mesh = trimesh.load(pred_filename) + pred_pts, face_index = trimesh.sample.sample_surface(pred_mesh, args.npoints) + pred_nls = pred_mesh.face_normals[face_index] + + pred_pts = pred_pts.astype(np.float32) + pred_nls = pred_nls.astype(np.float32) + source_pts = source_pts.astype(np.float32) + source_nls = source_nls.astype(np.float32) + + logging.debug("Completeness") + # Completeness: how far are the points of gt from the prediction + completeness, completeness_normals = distance_p2p(source_pts.copy(), source_nls.copy(), pred_pts.copy(), pred_nls.copy()) + completeness2 = completeness**2 + recall = (completeness <= F_threshold).mean() + completeness = completeness.mean() + completeness2 = completeness2.mean() + completeness_normals = completeness_normals.mean() + + logging.debug("Accuracy") + # Accuracy: how far are the points of the prediction from the gt + accuracy, accuracy_normals = distance_p2p(pred_pts.copy(), pred_nls.copy(), source_pts.copy(), source_nls.copy()) + accuracy2 = accuracy**2 + precision = (accuracy <= F_threshold).mean() + accuracy = accuracy.mean() + accuracy2 = accuracy2.mean() + accuracy_normals = accuracy_normals.mean() + + logging.debug("Chamfer and F-score") + + # Chamfer distance + chamferL2 = 0.5 * (completeness2 + accuracy2) + chamferL1 = 0.5 * (completeness + accuracy) + + # Normal correctness + normals_consistency = 0.5 * (completeness_normals + accuracy_normals) + + # F-Score + F = 2 * recall * precision / (recall + precision) + + out_dict = { + 'idx': shape_id, + 'class': category, + 'name': fname, + 'completeness': completeness, + 'accuracy': accuracy, + 'normals completeness': completeness_normals, + 'normals accuracy': accuracy_normals, + 'normals_consistency': normals_consistency, + 'completeness2': completeness2, + 'accuracy2': accuracy2, + 'chamfer-L2': chamferL2, + 'chamfer-L1': chamferL1, + 'f-score': F, + } + logging.debug(f"{os.getppid()} - {os.getpid()} - {category} - {fname} - done procesing") + + return out_dict + + +def chunks(lst, n): + """Yield successive n-sized chunks from lst.""" + for i in range(0, len(lst), n): + yield lst[i:i + n] + +if __name__ == "__main__": + + parser = argparse.ArgumentParser(description='Evaluate mesh algorithms.') + parser.add_argument("--gendir", type=str, help="Path to generated data", required=True) + parser.add_argument("--gtdir", type=str, help="Path to ground truth data", required=True) + parser.add_argument("--meshdir", type=str, default="meshes") + parser.add_argument("--filter", type=str, default=None) + parser.add_argument("--npoints", type=int, default=4000000) + parser.add_argument("--Fthreshold", type=float, default=0.025) + parser.add_argument("--threads", type=int, default=4) + parser.add_argument("--logging", type=str, default="INFO") + parser.add_argument("--num_mesh", type=int, default=None) + args = parser.parse_args() + + logging.getLogger().setLevel(args.logging) + + eval_dataset = SceneNet(args.gtdir, + split="test", + filter_name=args.filter, + num_non_manifold_points=1, + ) + + source_filenames =eval_dataset.filenames + F_threshold = args.Fthreshold + + zipped_source_filenames = list(zip(source_filenames, list(range(len(source_filenames))))) + chunked_filenames = list(chunks(zipped_source_filenames, args.threads)) + + eval_dicts = [] + + for ch in chunked_filenames: + with Pool(args.threads) as p: + chunk_eval_dicts = p.map(partial(process_meshes, F_threshold=F_threshold), ch) + eval_dicts += chunk_eval_dicts + + out_file = os.path.join(args.gendir, 'eval_meshes_full.pkl') + out_file_class = os.path.join(args.gendir, 'eval_meshes.csv') + + # Create pandas dataframe and save + eval_df = pd.DataFrame(eval_dicts) + eval_df.set_index(['idx'], inplace=True) + eval_df.to_pickle(out_file) + + # Create CSV file with main statistics + eval_df_class = eval_df.mean() + eval_df_class.to_csv(out_file_class) + + # Print results + print(eval_df_class) \ No newline at end of file diff --git a/generate.py b/generate.py new file mode 100644 index 0000000..ceeed1c --- /dev/null +++ b/generate.py @@ -0,0 +1,596 @@ + +import os +import logging +import numpy as np +from tqdm import tqdm +import math + +from skimage import measure +import open3d as o3d +from scipy.spatial import KDTree +import torch_geometric.transforms as T + +# torch imports +import torch +import torch.nn.functional as F + +# lightconvpoint imports +from lightconvpoint.datasets.dataset import get_dataset +import lightconvpoint.utils.transforms as lcp_T +from lightconvpoint.utils.logs import logs_file +from lightconvpoint.utils.misc import dict_to_device + +import networks +import datasets +import utils.argparseFromFile as argparse + +def export_mesh_and_refine_vertices_region_growing_v2( + network,latent, + resolution, + padding=0, + mc_value=0, + device=None, + num_pts=50000, + refine_iter=10, + simplification_target=None, + input_points=None, + refine_threshold=None, + out_value=np.nan, + step = None, + dilation_size=2, + whole_negative_component=False, + return_volume=False + ): + + bmin=input_points.min() + bmax=input_points.max() + + if step is None: + step = (bmax-bmin) / (resolution -1) + resolutionX = resolution + resolutionY = resolution + resolutionZ = resolution + else: + bmin = input_points.min(axis=0) + bmax = input_points.max(axis=0) + resolutionX = math.ceil((bmax[0]-bmin[0])/step) + resolutionY = math.ceil((bmax[1]-bmin[1])/step) + resolutionZ = math.ceil((bmax[2]-bmin[2])/step) + + bmin_pad = bmin - padding * step + bmax_pad = bmax + padding * step + + pts_ids = (input_points - bmin)/step + padding + pts_ids = pts_ids.astype(np.int) + + # create the volume + volume = np.full((resolutionX+2*padding, resolutionY+2*padding, resolutionZ+2*padding), np.nan, dtype=np.float64) + mask_to_see = np.full((resolutionX+2*padding, resolutionY+2*padding, resolutionZ+2*padding), True, dtype=bool) + while(pts_ids.shape[0] > 0): + + # print("Pts", pts_ids.shape) + + # creat the mask + mask = np.full((resolutionX+2*padding, resolutionY+2*padding, resolutionZ+2*padding), False, dtype=bool) + mask[pts_ids[:,0], pts_ids[:,1], pts_ids[:,2]] = True + + # dilation + for i in tqdm(range(pts_ids.shape[0]), ncols=100, disable=True): + xc = int(pts_ids[i,0]) + yc = int(pts_ids[i,1]) + zc = int(pts_ids[i,2]) + mask[max(0,xc-dilation_size):xc+dilation_size, + max(0,yc-dilation_size):yc+dilation_size, + max(0,zc-dilation_size):zc+dilation_size] = True + + # get the valid points + valid_points_coord = np.argwhere(mask).astype(np.float32) + valid_points = valid_points_coord * step + bmin_pad + + # get the prediction for each valid points + z = [] + near_surface_samples_torch = torch.tensor(valid_points, dtype=torch.float, device=device) + for pnts in tqdm(torch.split(near_surface_samples_torch,num_pts,dim=0), ncols=100, disable=True): + + latent["pos_non_manifold"] = pnts.unsqueeze(0) + occ_hat = network.from_latent(latent) + + # get class and max non class + class_dim = 1 + occ_hat = torch.stack([occ_hat[:, class_dim] , occ_hat[:,[i for i in range(occ_hat.shape[1]) if i!=class_dim]].max(dim=1)[0]], dim=1) + occ_hat = F.softmax(occ_hat, dim=1) + occ_hat[:, 0] = occ_hat[:, 0] * (-1) + if class_dim == 0: + occ_hat = occ_hat * (-1) + + + # occ_hat = -occ_hat.sum(dim=1) + occ_hat = occ_hat.sum(dim=1) + outputs = occ_hat.squeeze(0) + z.append(outputs.detach().cpu().numpy()) + + z = np.concatenate(z,axis=0) + z = z.astype(np.float64) + + # update the volume + volume[mask] = z + + # create the masks + mask_pos = np.full((resolutionX+2*padding, resolutionY+2*padding, resolutionZ+2*padding), False, dtype=bool) + mask_neg = np.full((resolutionX+2*padding, resolutionY+2*padding, resolutionZ+2*padding), False, dtype=bool) + + + # dilation + for i in tqdm(range(pts_ids.shape[0]), ncols=100, disable=True): + xc = int(pts_ids[i,0]) + yc = int(pts_ids[i,1]) + zc = int(pts_ids[i,2]) + mask_to_see[xc,yc,zc] = False + if volume[xc,yc,zc] <= 0: + mask_neg[max(0,xc-dilation_size):xc+dilation_size, + max(0,yc-dilation_size):yc+dilation_size, + max(0,zc-dilation_size):zc+dilation_size] = True + if volume[xc,yc,zc] >= 0: + mask_pos[max(0,xc-dilation_size):xc+dilation_size, + max(0,yc-dilation_size):yc+dilation_size, + max(0,zc-dilation_size):zc+dilation_size] = True + + # get the new points + + new_mask = (mask_neg & (volume>=0) & mask_to_see) | (mask_pos & (volume<=0) & mask_to_see) + pts_ids = np.argwhere(new_mask).astype(np.int) + + volume[0:padding, :, :] = out_value + volume[-padding:, :, :] = out_value + volume[:, 0:padding, :] = out_value + volume[:, -padding:, :] = out_value + volume[:, :, 0:padding] = out_value + volume[:, :, -padding:] = out_value + + # volume[np.isnan(volume)] = out_value + maxi = volume[~np.isnan(volume)].max() + mini = volume[~np.isnan(volume)].min() + + if not (maxi > mc_value and mini < mc_value): + return None + + if return_volume: + return volume + + # compute the marching cubes + verts, faces, _, _ = measure.marching_cubes( + volume=volume.copy(), + level=mc_value, + ) + + # removing the nan values in the vertices + values = verts.sum(axis=1) + o3d_verts = o3d.utility.Vector3dVector(verts) + o3d_faces = o3d.utility.Vector3iVector(faces) + mesh = o3d.geometry.TriangleMesh(o3d_verts, o3d_faces) + mesh.remove_vertices_by_mask(np.isnan(values)) + verts = np.asarray(mesh.vertices) + faces = np.asarray(mesh.triangles) + + + if refine_iter > 0: + + dirs = verts - np.floor(verts) + dirs = (dirs>0).astype(dirs.dtype) + + mask = np.logical_and(dirs.sum(axis=1)>0, dirs.sum(axis=1)<2) + v = verts[mask] + dirs = dirs[mask] + + # initialize the two values (the two vertices for mc grid) + v1 = np.floor(v) + v2 = v1 + dirs + + # get the predicted values for both set of points + v1 = v1.astype(int) + v2 = v2.astype(int) + preds1 = volume[v1[:,0], v1[:,1], v1[:,2]] + preds2 = volume[v2[:,0], v2[:,1], v2[:,2]] + + # get the coordinates in the real coordinate system + v1 = v1.astype(np.float32)*step + bmin_pad + v2 = v2.astype(np.float32)*step + bmin_pad + + # tmp mask + mask_tmp = np.logical_and( + np.logical_not(np.isnan(preds1)), + np.logical_not(np.isnan(preds2)) + ) + v = v[mask_tmp] + dirs = dirs[mask_tmp] + v1 = v1[mask_tmp] + v2 = v2[mask_tmp] + mask[mask] = mask_tmp + + # initialize the vertices + verts = verts * step + bmin_pad + v = v * step + bmin_pad + + # iterate for the refinement step + for iter_id in tqdm(range(refine_iter), ncols=50, disable=True): + + # print(f"iter {iter_id}") + + preds = [] + pnts_all = torch.tensor(v, dtype=torch.float, device=device) + for pnts in tqdm(torch.split(pnts_all,num_pts,dim=0), ncols=100, disable=True): + + + latent["pos_non_manifold"] = pnts.unsqueeze(0) + occ_hat = network.from_latent(latent) + + # get class and max non class + class_dim = 1 + occ_hat = torch.stack([occ_hat[:, class_dim] , occ_hat[:,[i for i in range(occ_hat.shape[1]) if i!=class_dim]].max(dim=1)[0]], dim=1) + occ_hat = F.softmax(occ_hat, dim=1) + occ_hat[:, 0] = occ_hat[:, 0] * (-1) + if class_dim == 0: + occ_hat = occ_hat * (-1) + + + # occ_hat = -occ_hat.sum(dim=1) + occ_hat = occ_hat.sum(dim=1) + outputs = occ_hat.squeeze(0) + + + # outputs = network.predict_from_latent(latent, pnts.unsqueeze(0), with_sigmoid=True) + # outputs = outputs.squeeze(0) + preds.append(outputs.detach().cpu().numpy()) + preds = np.concatenate(preds,axis=0) + + mask1 = (preds*preds1)>0 + v1[mask1] = v[mask1] + preds1[mask1] = preds[mask1] + + mask2 = (preds*preds2)>0 + v2[mask2] = v[mask2] + preds2[mask2] = preds[mask2] + + v = (v2 + v1)/2 + + verts[mask] = v + + # keep only the points that needs to be refined + if refine_threshold is not None: + mask_vertices = (np.linalg.norm(v2 - v1, axis=1) > refine_threshold) + # print("V", mask_vertices.sum() , "/", v.shape[0]) + v = v[mask_vertices] + preds1 = preds1[mask_vertices] + preds2 = preds2[mask_vertices] + v1 = v1[mask_vertices] + v2 = v2[mask_vertices] + mask[mask] = mask_vertices + + if v.shape[0] == 0: + break + # print("V", v.shape[0]) + + else: + verts = verts * step + bmin_pad + + + o3d_verts = o3d.utility.Vector3dVector(verts) + o3d_faces = o3d.utility.Vector3iVector(faces) + mesh = o3d.geometry.TriangleMesh(o3d_verts, o3d_faces) + + if simplification_target is not None and simplification_target > 0: + mesh = o3d.geometry.TriangleMesh.simplify_quadric_decimation(mesh, simplification_target) + + return mesh + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + +def main(config): + + config = eval(str(config)) + logging.getLogger().setLevel(config["logging"]) + disable_log = (config["log_mode"] != "interactive") + device = torch.device(config["device"]) + if config["device"] == "cuda": + torch.backends.cudnn.benchmark = True + + savedir_root = config["save_dir"] + + # create the network + N_LABELS = config["network_n_labels"] + latent_size = config["network_latent_size"] + backbone = config["network_backbone"] + decoder = {'name':config["network_decoder"], 'k': config['network_decoder_k']} + + + logging.info("Creating the network") + def network_function(): + return networks.Network(3, latent_size, N_LABELS, backbone, decoder) + net = network_function() + checkpoint = torch.load(os.path.join(savedir_root, "checkpoint.pth")) + net.load_state_dict(checkpoint["state_dict"]) + net.to(device) + net.eval() + logging.info(f"Network -- Number of parameters {count_parameters(net)}") + + + logging.info("Getting the dataset") + DatasetClass = get_dataset(eval("datasets."+config["dataset_name"])) + test_transform = [] + + # downsample + if config["manifold_points"] is not None and config["manifold_points"] > 0: + test_transform.append(lcp_T.FixedPoints(config["manifold_points"], item_list=["x", "pos", "normal", "y", "y_object"])) + test_transform.append(lcp_T.FixedPoints(1, item_list=["pos_non_manifold", "occupancies", "y_v", "y_v_object"])) + + # add noise to data + if (config["random_noise"] is not None) and (config["random_noise"] > 0): + logging.info("Adding random noise") + test_transform.append(lcp_T.RandomNoiseNormal(sigma=config["random_noise"])) + + # operate the permutations + test_transform = test_transform + [ + lcp_T.Permutation("pos", [1,0]), + lcp_T.Permutation("pos_non_manifold", [1,0]), + lcp_T.Permutation("normal", [1,0]), + lcp_T.Permutation("x", [1,0]), + lcp_T.ToDict(),] + test_transform = T.Compose(test_transform) + + # build the dataset + gen_dataset = DatasetClass(config["dataset_root"], + split=config["test_split"], + transform=test_transform, + network_function=network_function, + filter_name=config["filter_name"], + num_non_manifold_points=config["non_manifold_points"], + dataset_size=config["num_mesh"] + ) + + # build the data loaders + gen_loader = torch.utils.data.DataLoader( + gen_dataset, + batch_size=1, + shuffle=False, + num_workers=0, + ) + + + with torch.no_grad(): + + gen_dir = f"gen_{config['dataset_name']}" + gen_dir += f"_{config['test_split']}" + if config['manifold_points'] <= 0: + gen_dir += f"_allPts" + else: + gen_dir += f"_{config['manifold_points']}" + + if "gen_descriptor" in config: + gen_dir += f"_{config['gen_descriptor']}" + + savedir_mesh_root = os.path.join(savedir_root, gen_dir) + + + for data in tqdm(gen_loader, ncols=100): + + shape_id = data["shape_id"].item() + category_name = gen_dataset.get_category(shape_id) + object_name = gen_dataset.get_object_name(shape_id) + + print(f"{shape_id} | {category_name} - {object_name} - {data['pos'].shape}") + + # create the directories + savedir_points = os.path.join(savedir_mesh_root, "input", category_name) + os.makedirs(savedir_points, exist_ok=True) + savedir_mesh = os.path.join(savedir_mesh_root, "meshes", category_name) + os.makedirs(savedir_mesh, exist_ok=True) + + # if resume skip if the file already exists + if config["resume"]: + if os.path.splitext(object_name)[1] == ".ply": + if os.path.isfile(os.path.join(savedir_mesh, object_name)): + continue + else: + if os.path.isfile(os.path.join(savedir_mesh, object_name+".ply")): + continue + + data = dict_to_device(data, device) + if config["normals"]: + data["x"] = data["normal"] + + + # save the input + pts = data["pos"][0].transpose(1,0).cpu().numpy() + nls = data["x"][0].transpose(1,0).cpu().numpy() + pts = np.concatenate([pts, nls], axis=1) + pts = pts.astype(np.float16) + np.savetxt(os.path.join(savedir_points, object_name+".xyz"), pts) + + # auto scale (for big scenes) + if "gen_autoscale" in config and config["gen_autoscale"]: + logging.info("Autoscale computation") + autoscale_target = config["gen_autoscale_target"] # 0.01 # estimated on shapenet 3000 + pos = data["pos"][0].cpu().transpose(0,1).numpy() + tree = KDTree(pos) + mean_dist = tree.query(pos, 2)[0].max(axis=1).mean() + scale = autoscale_target / mean_dist + logging.info(f"Autoscale {scale}") + else: + scale = 1 + + # scale the points + data["pos"] = data["pos"] * scale + + + # if too musch points and no subsample iteratively compute the latent vectors + if data["pos"].shape[2] > 100000 and (config["gen_subsample_manifold"] is None): + raise NotImplementedError + # create the KDTree + pos = data["pos"][0].cpu().transpose(0,1).numpy() + tree = KDTree(pos) + + # create the latent storage + latent = torch.zeros((pos.shape[0], _config["network"]["latent_size"]), dtype=torch.float) + counts = torch.zeros((pos.shape[0],), dtype=torch.float) + + logging.info(f"Latent computation - {_config['generation']['nviews']} views") + for current_value in range(0,_config["generation"]["nviews"]): + while counts.min() < current_value+1: + valid_ids = np.argwhere(counts.cpu().numpy()==current_value) + # print(valid_ids.shape) + pt_id = torch.randint(0, valid_ids.shape[0], (1,)).item() + pt = pos[valid_ids[pt_id]] + k = 100000 + distances, neighbors = tree.query(pt, k=k) + + neighbors = neighbors[0] + + if _config["generation"]["downscale"] < 1: + num_pts = int(neighbors.shape[0] * _config["generation"]["downscale"]) + ids = torch.randperm(neighbors.shape[0])[:num_pts] + neighbors = neighbors[ids] + + + data_partial = { + "pos": data["pos"][0].transpose(1,0)[neighbors].transpose(1,0).unsqueeze(0), + "x": data["x"][0].transpose(1,0)[neighbors].transpose(1,0).unsqueeze(0) + } + + partial_latent = net.get_latent(data_partial, with_correction=False)["latents"] + + latent[neighbors] += partial_latent[0].cpu().numpy().transpose(1,0) + counts[neighbors] += 1 + + latent = latent / counts.unsqueeze(1) + latent = latent.transpose(1,0).unsqueeze(0).to(device) + data["latents"] = latent + latent = data + logging.info("Latent done") + + elif "gen_subsample_manifold" in config and config["gen_subsample_manifold"] is not None: + logging.info("Submanifold sampling") + + # create the KDTree + pos = data["pos"][0].cpu().transpose(0,1).numpy() + + # create the latent storage + latent = torch.zeros((pos.shape[0], config["network_latent_size"]), dtype=torch.float) + counts = torch.zeros((pos.shape[0],), dtype=torch.float) + + + iteration = 0 + for current_value in range(config["gen_subsample_manifold_iter"]): + while counts.min() < current_value+1: + # print("iter", iteration, current_value) + valid_ids = torch.tensor(np.argwhere(counts.cpu().numpy()==current_value)[:,0]).long() + + if pos.shape[0] >= config["gen_subsample_manifold"]: + + ids = torch.randperm(valid_ids.shape[0])[:config["gen_subsample_manifold"]] + ids = valid_ids[ids] + + if ids.shape[0] < config["gen_subsample_manifold"]: + ids = torch.cat([ids, torch.randperm(pos.shape[0])[:config["gen_subsample_manifold"] - ids.shape[0]]], dim=0) + assert(ids.shape[0] == config["gen_subsample_manifold"]) + else: + ids = torch.arange(pos.shape[0]) + + + data_partial = { + "pos": data["pos"][0].transpose(1,0)[ids].transpose(1,0).unsqueeze(0), + "x": data["x"][0].transpose(1,0)[ids].transpose(1,0).unsqueeze(0) + } + + partial_latent = net.get_latent(data_partial, with_correction=False)["latents"] + latent[ids] += partial_latent[0].cpu().numpy().transpose(1,0) + counts[ids] += 1 + + iteration += 1 + + latent = latent / counts.unsqueeze(1) + latent = latent.transpose(1,0).unsqueeze(0).to(device) + data["latents"] = latent + latent = data + + else: + # all prediction + latent = net.get_latent(data, with_correction=False) + + + if "gen_resolution_metric" in config and config["gen_resolution_metric"] is not None: + step = config['gen_resolution_metric'] * scale + resolution = None + elif config["gen_resolution_global"] is not None: + step = None + resolution = config["gen_resolution_global"] + else: + raise ValueError("You must specify either a global resolution or a metric resolution") + + + + print("POS", data["pos"].shape) + mesh = export_mesh_and_refine_vertices_region_growing_v2( + net, latent, + resolution=resolution, + padding=1, + mc_value=0, + device=device, + input_points=data["pos"][0].cpu().numpy().transpose(1,0), + refine_iter=config["gen_refine_iter"], + out_value=1, + step=step + ) + + + if mesh is not None: + + vertices = np.asarray(mesh.vertices) + vertices = vertices / scale + vertices = o3d.utility.Vector3dVector(vertices) + mesh.vertices = vertices + + print(os.path.join(savedir_mesh, object_name)) + + if os.path.splitext(object_name)[1] == ".ply": + o3d.io.write_triangle_mesh(os.path.join(savedir_mesh, object_name), mesh) + else: + o3d.io.write_triangle_mesh(os.path.join(savedir_mesh, object_name+".ply"), mesh) + + else: + logging.warning("mesh is None") + + +def replace_values_of_config(config, config_update): + + for key, value in config_update.items(): + if key not in config: + print(f"replace warning unknown key '{key}'") + continue + if isinstance(value, dict): + config[key] = replace_values_of_config(config[key], value) + else: + config[key] = value + return config + +if __name__ == "__main__": + + logging.basicConfig(level=logging.INFO) + logging.getLogger("trimesh").setLevel(logging.CRITICAL) + + parser = argparse.ArgumentParserFromFile(description='Process some integers.') + parser.add_argument('--config_default', type=str, default="configs/config_default.yaml") + parser.add_argument('--config', type=str, required=True) + parser.add_argument('--num_mesh', type=int, default=None) + parser.add_argument("--gen_refine_iter", type=int, default=10) + + parser.update_file_arg_names(["config_default", "config"]) + config = parser.parse(use_unknown=True) + + logging.getLogger().setLevel(config["logging"]) + if config["logging"] == "DEBUG": + config["threads"] = 0 + + config["save_dir"] = os.path.dirname(config["config"]) + + main(config) diff --git a/lightconvpoint/__init__.py b/lightconvpoint/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/lightconvpoint/datasets/__init__.py b/lightconvpoint/datasets/__init__.py new file mode 100644 index 0000000..2e2f5a2 --- /dev/null +++ b/lightconvpoint/datasets/__init__.py @@ -0,0 +1,2 @@ +# Dataset +# from .dataset import with_indices_computation #, with_indices_computation_rotation \ No newline at end of file diff --git a/lightconvpoint/datasets/archives/s3dis.py b/lightconvpoint/datasets/archives/s3dis.py new file mode 100644 index 0000000..9e9211c --- /dev/null +++ b/lightconvpoint/datasets/archives/s3dis.py @@ -0,0 +1,186 @@ +import torch +import numpy as np +import os +import random +from tqdm import * +from lightconvpoint.nn import with_indices_computation_rotation +from .helper_ply import read_ply + +from .s3dis_legacy import S3DIS_Pillar_Test, S3DIS_Pillar_TrainVal + + +class S3DIS_Pillar(): + + def compute_mask(self, pt, bs): + # build the mask + mask_x = np.logical_and(self.data[:,0]<=pt[0]+bs/2, self.data[:,0]>=pt[0]-bs/2) + mask_y = np.logical_and(self.data[:,1]<=pt[1]+bs/2, self.data[:,1]>=pt[1]-bs/2) + mask = np.logical_and(mask_x, mask_y) + return mask + + def __init__ (self, + dataset_dir, + config, + split="training", + verbose=False, + network_function=None, + transformations_data=None, + transformations_points=None, + transformations_features=None): + + + self.split = split + self.dataset_dir = dataset_dir + self.cfg = config + self.verbose = verbose + self.t_data = transformations_data + self.t_points = transformations_points + self.t_features = transformations_features + + self.filelist = [] + for area_idx in range(1 ,7): + folder = os.path.join(self.dataset_dir, f"Area_{area_idx}") + if (self.split in ['validation', 'test']) and config['dataset']['val_area']==area_idx: + self.filelist = [os.path.join(f"Area_{area_idx}", dataset) for dataset in os.listdir(folder)] + elif self.split == 'training' and config['dataset']['val_area']!=area_idx: + self.filelist = self.filelist + [os.path.join(f"Area_{area_idx}", dataset) for dataset in os.listdir(folder)] + self.filelist.sort() + + + if network_function is not None: + self.net = network_function() + else: + self.net = None + + + def size(self): + return len(self.filelist) + + def get_points(self): + return self.data[:,:3] + + def get_labels(self): + return self.data[:, 6].astype(int) + + + def __len__(self): + if self.split == "training": + return self.cfg['training']['training_steps'] * self.cfg['training']['batch_size'] + elif self.split == "validation": + return self.cfg['training']['validation_steps'] * self.cfg['training']['batch_size'] + else: # test, requires to have computed the sliding window + return len(self.choices) + + + def compute_sliding_window(self, index, step, npoints): + + # loading the data + filename_data = os.path.join(self.dataset_dir, self.filelist[index], 'xyzrgb.npy') + filename_labels = os.path.join(self.dataset_dir, self.filelist[index], 'label.npy') + data = np.load(filename_data).astype(np.float32) + labels = np.load(filename_labels).astype(np.float32).flatten() + labels = np.expand_dims(labels, axis=1) + self.data = np.concatenate([data, labels], axis=1) + + # compute occupation grid + mini = self.data[:,:2].min(0) + discretized = ((self.data[:,:2]-mini).astype(float)/step).astype(int) + self.pts = np.unique(discretized, axis=0) + self.pts = self.pts.astype(np.float)*step + mini + step/2 + + # compute the masks + self.choices = [] + self.pts_ref = [] + for index in tqdm(range(self.pts.shape[0]), ncols=80, desc="Pillar computation"): + pt_ref = self.pts[index] + mask = self.compute_mask(pt_ref, self.cfg['dataset']['pillar_size']) + + pillar_points_indices = np.where(mask)[0] + valid_points_indices = pillar_points_indices.copy() + + while(valid_points_indices is not None): + # print(valid_points_indices.shape[0]) + if valid_points_indices.shape[0] > npoints: + choice = np.random.choice(valid_points_indices.shape[0], npoints, replace=True) + mask[valid_points_indices[choice]] = False + choice = valid_points_indices[choice] + valid_points_indices = np.where(mask)[0] + else: + choice = np.random.choice(pillar_points_indices.shape[0], npoints-valid_points_indices.shape[0], replace=True) + choice = np.concatenate([valid_points_indices, pillar_points_indices[choice]], axis=0) + valid_points_indices = None + + self.choices.append(choice) + self.pts_ref.append(pt_ref) + + + + + @with_indices_computation_rotation + def __getitem__(self, index): + + if self.split in ["training", "validation"]: + + index = random.randint(0, len(self.filelist)-1) + filename_data = os.path.join(self.dataset_dir, self.filelist[index], 'xyzrgb.npy') + filename_labels = os.path.join(self.dataset_dir, self.filelist[index], 'label.npy') + data = np.load(filename_data).astype(np.float32) + labels = np.load(filename_labels).astype(np.float32).flatten() + labels = np.expand_dims(labels, axis=1) + data = np.concatenate([data, labels], axis=1) + + # apply transformations on data + if self.t_data is not None: + for t in self.t_data: + data = t(data) + + # get the features, labels and points + fts = data[:,3:6] + lbs = data[:, 6].astype(int) + pts = data[:, :3] + + choice = 0 # not used at training or validation + + else: # it is a test + choice = self.choices[index] + pts = self.data[choice] + + # get the features, labels and points + fts = pts[:,3:6] + lbs = pts[:, 6].astype(int) + pts = pts[:, :3] + + # apply transformations on points + if self.t_points is not None: + for t in self.t_points: + pts = t(pts) + + # apply transformations on features + fts = fts / 255 + if self.t_features is not None: + for t in self.t_features: + fts = t(fts) + + pts = torch.from_numpy(pts).float() + fts = torch.from_numpy(fts).float() + lbs = torch.from_numpy(lbs).long() + + pts = pts.transpose(0,1) + fts = fts.transpose(0,1) + + return_dict = { + "pts": pts, + "features": fts, + "target": lbs, + "pts_ids": choice + } + + return return_dict + + + @staticmethod + def get_class_weights(return_torch_tensor=True): + # pre-calculate the number of points in each category + raise NotImplementedError + + diff --git a/lightconvpoint/datasets/archives/s3dis2.py b/lightconvpoint/datasets/archives/s3dis2.py new file mode 100644 index 0000000..2cd0e8a --- /dev/null +++ b/lightconvpoint/datasets/archives/s3dis2.py @@ -0,0 +1,559 @@ +from sklearn.neighbors import KDTree +#from os.path import join, exists, dirname, abspath +import numpy as np +import pandas as pd +import os, sys, glob, pickle +import time +import torch +from .helper_ply import write_ply, read_ply +from .helper_tool import DataProcessing as DP +from lightconvpoint.nn import with_indices_computation_rotation + + +class S3DIS: + + def __init__ (self, + dataset_dir, + config, + split="training", + verbose=False, + network_function=None, + transformations_data=None, + transformations_points=None, + transformations_features=None): + + self.split = split + self.dataset_dir = dataset_dir + self.cfg = config + self.verbose = verbose + self.t_data = transformations_data + self.t_points = transformations_points + self.t_features = transformations_features + + self.label_to_names = {0: 'ceiling', + 1: 'floor', + 2: 'wall', + 3: 'beam', + 4: 'column', + 5: 'window', + 6: 'door', + 7: 'table', + 8: 'chair', + 9: 'sofa', + 10: 'bookcase', + 11: 'board', + 12: 'clutter'} + self.num_classes = len(self.label_to_names) + self.label_values = np.sort([k for k, v in self.label_to_names.items()]) + self.label_to_idx = {l: i for i, l in enumerate(self.label_values)} + self.ignored_labels = np.array([]) + self.val_split = 'Area_' + str(config['dataset_val_area']) + + self.anno_paths = [ + "Area_1/conferenceRoom_1/Annotations", + "Area_1/conferenceRoom_2/Annotations", + "Area_1/copyRoom_1/Annotations", + "Area_1/hallway_1/Annotations", + "Area_1/hallway_2/Annotations", + "Area_1/hallway_3/Annotations", + "Area_1/hallway_4/Annotations", + "Area_1/hallway_5/Annotations", + "Area_1/hallway_6/Annotations", + "Area_1/hallway_7/Annotations", + "Area_1/hallway_8/Annotations", + "Area_1/office_10/Annotations", + "Area_1/office_11/Annotations", + "Area_1/office_12/Annotations", + "Area_1/office_13/Annotations", + "Area_1/office_14/Annotations", + "Area_1/office_15/Annotations", + "Area_1/office_16/Annotations", + "Area_1/office_17/Annotations", + "Area_1/office_18/Annotations", + "Area_1/office_19/Annotations", + "Area_1/office_1/Annotations", + "Area_1/office_20/Annotations", + "Area_1/office_21/Annotations", + "Area_1/office_22/Annotations", + "Area_1/office_23/Annotations", + "Area_1/office_24/Annotations", + "Area_1/office_25/Annotations", + "Area_1/office_26/Annotations", + "Area_1/office_27/Annotations", + "Area_1/office_28/Annotations", + "Area_1/office_29/Annotations", + "Area_1/office_2/Annotations", + "Area_1/office_30/Annotations", + "Area_1/office_31/Annotations", + "Area_1/office_3/Annotations", + "Area_1/office_4/Annotations", + "Area_1/office_5/Annotations", + "Area_1/office_6/Annotations", + "Area_1/office_7/Annotations", + "Area_1/office_8/Annotations", + "Area_1/office_9/Annotations", + "Area_1/pantry_1/Annotations", + "Area_1/WC_1/Annotations", + "Area_2/auditorium_1/Annotations", + "Area_2/auditorium_2/Annotations", + "Area_2/conferenceRoom_1/Annotations", + "Area_2/hallway_10/Annotations", + "Area_2/hallway_11/Annotations", + "Area_2/hallway_12/Annotations", + "Area_2/hallway_1/Annotations", + "Area_2/hallway_2/Annotations", + "Area_2/hallway_3/Annotations", + "Area_2/hallway_4/Annotations", + "Area_2/hallway_5/Annotations", + "Area_2/hallway_6/Annotations", + "Area_2/hallway_7/Annotations", + "Area_2/hallway_8/Annotations", + "Area_2/hallway_9/Annotations", + "Area_2/office_10/Annotations", + "Area_2/office_11/Annotations", + "Area_2/office_12/Annotations", + "Area_2/office_13/Annotations", + "Area_2/office_14/Annotations", + "Area_2/office_1/Annotations", + "Area_2/office_2/Annotations", + "Area_2/office_3/Annotations", + "Area_2/office_4/Annotations", + "Area_2/office_5/Annotations", + "Area_2/office_6/Annotations", + "Area_2/office_7/Annotations", + "Area_2/office_8/Annotations", + "Area_2/office_9/Annotations", + "Area_2/storage_1/Annotations", + "Area_2/storage_2/Annotations", + "Area_2/storage_3/Annotations", + "Area_2/storage_4/Annotations", + "Area_2/storage_5/Annotations", + "Area_2/storage_6/Annotations", + "Area_2/storage_7/Annotations", + "Area_2/storage_8/Annotations", + "Area_2/storage_9/Annotations", + "Area_2/WC_1/Annotations", + "Area_2/WC_2/Annotations", + "Area_3/conferenceRoom_1/Annotations", + "Area_3/hallway_1/Annotations", + "Area_3/hallway_2/Annotations", + "Area_3/hallway_3/Annotations", + "Area_3/hallway_4/Annotations", + "Area_3/hallway_5/Annotations", + "Area_3/hallway_6/Annotations", + "Area_3/lounge_1/Annotations", + "Area_3/lounge_2/Annotations", + "Area_3/office_10/Annotations", + "Area_3/office_1/Annotations", + "Area_3/office_2/Annotations", + "Area_3/office_3/Annotations", + "Area_3/office_4/Annotations", + "Area_3/office_5/Annotations", + "Area_3/office_6/Annotations", + "Area_3/office_7/Annotations", + "Area_3/office_8/Annotations", + "Area_3/office_9/Annotations", + "Area_3/storage_1/Annotations", + "Area_3/storage_2/Annotations", + "Area_3/WC_1/Annotations", + "Area_3/WC_2/Annotations", + "Area_4/conferenceRoom_1/Annotations", + "Area_4/conferenceRoom_2/Annotations", + "Area_4/conferenceRoom_3/Annotations", + "Area_4/hallway_10/Annotations", + "Area_4/hallway_11/Annotations", + "Area_4/hallway_12/Annotations", + "Area_4/hallway_13/Annotations", + "Area_4/hallway_14/Annotations", + "Area_4/hallway_1/Annotations", + "Area_4/hallway_2/Annotations", + "Area_4/hallway_3/Annotations", + "Area_4/hallway_4/Annotations", + "Area_4/hallway_5/Annotations", + "Area_4/hallway_6/Annotations", + "Area_4/hallway_7/Annotations", + "Area_4/hallway_8/Annotations", + "Area_4/hallway_9/Annotations", + "Area_4/lobby_1/Annotations", + "Area_4/lobby_2/Annotations", + "Area_4/office_10/Annotations", + "Area_4/office_11/Annotations", + "Area_4/office_12/Annotations", + "Area_4/office_13/Annotations", + "Area_4/office_14/Annotations", + "Area_4/office_15/Annotations", + "Area_4/office_16/Annotations", + "Area_4/office_17/Annotations", + "Area_4/office_18/Annotations", + "Area_4/office_19/Annotations", + "Area_4/office_1/Annotations", + "Area_4/office_20/Annotations", + "Area_4/office_21/Annotations", + "Area_4/office_22/Annotations", + "Area_4/office_2/Annotations", + "Area_4/office_3/Annotations", + "Area_4/office_4/Annotations", + "Area_4/office_5/Annotations", + "Area_4/office_6/Annotations", + "Area_4/office_7/Annotations", + "Area_4/office_8/Annotations", + "Area_4/office_9/Annotations", + "Area_4/storage_1/Annotations", + "Area_4/storage_2/Annotations", + "Area_4/storage_3/Annotations", + "Area_4/storage_4/Annotations", + "Area_4/WC_1/Annotations", + "Area_4/WC_2/Annotations", + "Area_4/WC_3/Annotations", + "Area_4/WC_4/Annotations", + "Area_5/conferenceRoom_1/Annotations", + "Area_5/conferenceRoom_2/Annotations", + "Area_5/conferenceRoom_3/Annotations", + "Area_5/hallway_10/Annotations", + "Area_5/hallway_11/Annotations", + "Area_5/hallway_12/Annotations", + "Area_5/hallway_13/Annotations", + "Area_5/hallway_14/Annotations", + "Area_5/hallway_15/Annotations", + "Area_5/hallway_1/Annotations", + "Area_5/hallway_2/Annotations", + "Area_5/hallway_3/Annotations", + "Area_5/hallway_4/Annotations", + "Area_5/hallway_5/Annotations", + "Area_5/hallway_6/Annotations", + "Area_5/hallway_7/Annotations", + "Area_5/hallway_8/Annotations", + "Area_5/hallway_9/Annotations", + "Area_5/lobby_1/Annotations", + "Area_5/office_10/Annotations", + "Area_5/office_11/Annotations", + "Area_5/office_12/Annotations", + "Area_5/office_13/Annotations", + "Area_5/office_14/Annotations", + "Area_5/office_15/Annotations", + "Area_5/office_16/Annotations", + "Area_5/office_17/Annotations", + "Area_5/office_18/Annotations", + "Area_5/office_19/Annotations", + "Area_5/office_1/Annotations", + "Area_5/office_20/Annotations", + "Area_5/office_21/Annotations", + "Area_5/office_22/Annotations", + "Area_5/office_23/Annotations", + "Area_5/office_24/Annotations", + "Area_5/office_25/Annotations", + "Area_5/office_26/Annotations", + "Area_5/office_27/Annotations", + "Area_5/office_28/Annotations", + "Area_5/office_29/Annotations", + "Area_5/office_2/Annotations", + "Area_5/office_30/Annotations", + "Area_5/office_31/Annotations", + "Area_5/office_32/Annotations", + "Area_5/office_33/Annotations", + "Area_5/office_34/Annotations", + "Area_5/office_35/Annotations", + "Area_5/office_36/Annotations", + "Area_5/office_37/Annotations", + "Area_5/office_38/Annotations", + "Area_5/office_39/Annotations", + "Area_5/office_3/Annotations", + "Area_5/office_40/Annotations", + "Area_5/office_41/Annotations", + "Area_5/office_42/Annotations", + "Area_5/office_4/Annotations", + "Area_5/office_5/Annotations", + "Area_5/office_6/Annotations", + "Area_5/office_7/Annotations", + "Area_5/office_8/Annotations", + "Area_5/office_9/Annotations", + "Area_5/pantry_1/Annotations", + "Area_5/storage_1/Annotations", + "Area_5/storage_2/Annotations", + "Area_5/storage_3/Annotations", + "Area_5/storage_4/Annotations", + "Area_5/WC_1/Annotations", + "Area_5/WC_2/Annotations", + "Area_6/conferenceRoom_1/Annotations", + "Area_6/copyRoom_1/Annotations", + "Area_6/hallway_1/Annotations", + "Area_6/hallway_2/Annotations", + "Area_6/hallway_3/Annotations", + "Area_6/hallway_4/Annotations", + "Area_6/hallway_5/Annotations", + "Area_6/hallway_6/Annotations", + "Area_6/lounge_1/Annotations", + "Area_6/office_10/Annotations", + "Area_6/office_11/Annotations", + "Area_6/office_12/Annotations", + "Area_6/office_13/Annotations", + "Area_6/office_14/Annotations", + "Area_6/office_15/Annotations", + "Area_6/office_16/Annotations", + "Area_6/office_17/Annotations", + "Area_6/office_18/Annotations", + "Area_6/office_19/Annotations", + "Area_6/office_1/Annotations", + "Area_6/office_20/Annotations", + "Area_6/office_21/Annotations", + "Area_6/office_22/Annotations", + "Area_6/office_23/Annotations", + "Area_6/office_24/Annotations", + "Area_6/office_25/Annotations", + "Area_6/office_26/Annotations", + "Area_6/office_27/Annotations", + "Area_6/office_28/Annotations", + "Area_6/office_29/Annotations", + "Area_6/office_2/Annotations", + "Area_6/office_30/Annotations", + "Area_6/office_31/Annotations", + "Area_6/office_32/Annotations", + "Area_6/office_33/Annotations", + "Area_6/office_34/Annotations", + "Area_6/office_35/Annotations", + "Area_6/office_36/Annotations", + "Area_6/office_37/Annotations", + "Area_6/office_3/Annotations", + "Area_6/office_4/Annotations", + "Area_6/office_5/Annotations", + "Area_6/office_6/Annotations", + "Area_6/office_7/Annotations", + "Area_6/office_8/Annotations", + "Area_6/office_9/Annotations", + "Area_6/openspace_1/Annotations", + "Area_6/pantry_1/Annotations",] + + self.gt_class = [ + "ceiling", + "floor", + "wall", + "beam", + "column", + "window", + "door", + "table", + "chair", + "sofa", + "bookcase", + "board", + "clutter",] + + sub_grid_size = config['dataset_sub_grid_size'] + if (not os.path.exists(os.path.join(self.dataset_dir, 'original_ply'))) or (not os.path.exists(os.path.join(self.dataset_dir, f'input_{sub_grid_size:.3f}'))): + # path does not exists + + anno_paths = [os.path.join(self.dataset_dir, p) for p in self.anno_paths] + gt_class2label = {cls: i for i, cls in enumerate(self.gt_class)} + + original_pc_folder = os.path.join(self.dataset_dir, 'original_ply') + sub_pc_folder = os.path.join(self.dataset_dir, f'input_{sub_grid_size:.3f}') + os.makedirs(original_pc_folder, exist_ok=True) + os.makedirs(sub_pc_folder, exist_ok=True) + out_format = '.ply' + + # Note: there is an extra character in the v1.2 data in Area_5/hallway_6. It's fixed manually. + for annotation_path in anno_paths: + print(annotation_path) + elements = str(annotation_path).split('/') + out_file_name = elements[-3] + '_' + elements[-2] + out_format + + save_path = os.path.join(original_pc_folder, out_file_name) + + # convert_pc2ply(annotation_path, save_path) + + data_list = [] + + for f in glob.glob(os.path.join(annotation_path, '*.txt')): + class_name = os.path.basename(f).split('_')[0] + if class_name not in self.gt_class: # note: in some room there is 'staris' class.. + class_name = 'clutter' + pc = pd.read_csv(f, header=None, delim_whitespace=True).values + labels = np.ones((pc.shape[0], 1)) * gt_class2label[class_name] + data_list.append(np.concatenate([pc, labels], 1)) # Nx7 + + pc_label = np.concatenate(data_list, 0) + xyz_min = np.amin(pc_label, axis=0)[0:3] + pc_label[:, 0:3] -= xyz_min + + xyz = pc_label[:, :3].astype(np.float32) + colors = pc_label[:, 3:6].astype(np.uint8) + labels = pc_label[:, 6].astype(np.uint8) + write_ply(save_path, (xyz, colors, labels), ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + + # save sub_cloud and KDTree file + sub_xyz, sub_colors, sub_labels = DP.grid_sub_sampling(xyz, colors, labels, sub_grid_size) + sub_colors = sub_colors / 255.0 + sub_ply_file = os.path.join(sub_pc_folder, save_path.split('/')[-1][:-4] + '.ply') + write_ply(sub_ply_file, [sub_xyz, sub_colors, sub_labels], ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + + search_tree = KDTree(sub_xyz) + kd_tree_file = os.path.join(sub_pc_folder, str(save_path.split('/')[-1][:-4]) + '_KDTree.pkl') + with open(kd_tree_file, 'wb') as f: + pickle.dump(search_tree, f) + + proj_idx = np.squeeze(search_tree.query(xyz, return_distance=False)) + proj_idx = proj_idx.astype(np.int32) + proj_save = os.path.join(sub_pc_folder, str(save_path.split('/')[-1][:-4]) + '_proj.pkl') + with open(proj_save, 'wb') as f: + pickle.dump([proj_idx, labels], f) + + + self.all_files = glob.glob(os.path.join(self.dataset_dir, 'original_ply', '*.ply')) + + # Initiate containers + self.input_trees = [] + self.input_colors = [] + self.input_labels = [] + self.input_names = [] + self.val_proj = [] + self.val_labels = [] + + self.load_sub_sampled_clouds(sub_grid_size) + + self.possibility = None + self.min_possibility = None + + if network_function is not None: + self.net = network_function() + else: + self.net = None + + + def load_sub_sampled_clouds(self, sub_grid_size): + tree_path = os.path.join(self.dataset_dir, 'input_{:.3f}'.format(sub_grid_size)) + for i, file_path in enumerate(self.all_files): + t0 = time.time() + cloud_name = file_path.split('/')[-1][:-4] + if self.val_split in cloud_name: + cloud_split = 'validation' + else: + cloud_split = 'training' + + if cloud_split != self.split: + continue + + # Name of the input files + kd_tree_file = os.path.join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name)) + sub_ply_file = os.path.join(tree_path, '{:s}.ply'.format(cloud_name)) + + data = read_ply(sub_ply_file) + sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T + sub_labels = data['class'] + + # Read pkl with search tree + with open(kd_tree_file, 'rb') as f: + search_tree = pickle.load(f) + + self.input_trees += [search_tree] + self.input_colors += [sub_colors] + self.input_labels += [sub_labels] + self.input_names += [cloud_name] + + size = sub_colors.shape[0] * 4 * 7 + print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.split('/')[-1], size * 1e-6, time.time() - t0)) + + + # Get validation and test reprojected indices + if self.split=='validation': + print('\nPreparing reprojected indices for testing') + for i, file_path in enumerate(self.all_files): + t0 = time.time() + cloud_name = file_path.split('/')[-1][:-4] + + # Validation projection and labels + if self.val_split in cloud_name: + proj_file = os.path.join(tree_path, '{:s}_proj.pkl'.format(cloud_name)) + with open(proj_file, 'rb') as f: + proj_idx, labels = pickle.load(f) + self.val_proj += [proj_idx] + self.val_labels += [labels] + print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0)) + + + def __len__(self): + if self.split == "training": + return self.cfg['epoch_size'] + elif self.split == "validation": + return self.cfg['val_size'] + + + + def init_possibility(self): + + if self.verbose: + print("Init possibility...", end="", flush=True) + + self.possibility = [] + self.min_possibility = [] + # Random initialize + for _, tree in enumerate(self.input_colors): + self.possibility += [torch.rand(tree.data.shape[0]).numpy() * 1e-3] + self.min_possibility += [float(np.min(self.possibility[-1]))] + + if self.verbose: + print("Done", end="", flush=True) + + @with_indices_computation_rotation + def __getitem__(self, index): + + if self.possibility is None: + self.init_possibility() + + # Choose the cloud with the lowest probability + cloud_idx = int(np.argmin(self.min_possibility)) + + # choose the point with the minimum of possibility in the cloud as query point + point_ind = np.argmin(self.possibility[cloud_idx]) + + # Get all points within the cloud from tree structure + points = np.array(self.input_trees[cloud_idx].data, copy=False) + + # Center point of input region + center_point = points[point_ind, :].reshape(1, -1) + + # Add noise to the center point + noise = np.random.normal(scale=self.cfg['noise_init'] / 10, size=center_point.shape) + pick_point = center_point + noise.astype(center_point.dtype) + + # Check if the number of points in the selected cloud is less than the predefined num_points + if len(points) < self.cfg['num_points']: + # Query all points within the cloud + queried_idx = self.input_trees[cloud_idx].query(pick_point, k=len(points))[1][0] + additional = torch.randint(low=0, high=len(points), size=[self.cfg['num_points']-len(points)]).numpy() + queried_idx = np.concatenate([queried_idx, additional], axis=0) + else: + # Query the predefined number of points + queried_idx = self.input_trees[cloud_idx].query(pick_point, k=self.cfg["num_points"])[1][0] + + # Shuffle index + queried_idx = DP.shuffle_idx(queried_idx) + # Get corresponding points and colors based on the index + queried_pc_xyz = points[queried_idx] + queried_pc_xyz = queried_pc_xyz - pick_point + queried_pc_colors = self.input_colors[cloud_idx][queried_idx] + queried_pc_labels = self.input_labels[cloud_idx][queried_idx] + + # Update the possibility of the selected points + dists = np.sum(np.square((points[queried_idx] - pick_point).astype(np.float32)), axis=1) + delta = np.square(1 - dists / np.max(dists)) + self.possibility[cloud_idx][queried_idx] += delta + self.min_possibility[cloud_idx] = float(np.min(self.possibility[cloud_idx])) + + # up_sampled with replacement + if len(points) < self.cfg["num_points"]: + queried_pc_xyz, queried_pc_colors, queried_idx, queried_pc_labels = \ + DP.data_aug(queried_pc_xyz, queried_pc_colors, queried_pc_labels, queried_idx, self.cfg['num_points']) + + + queried_pc_xyz = torch.tensor(queried_pc_xyz, dtype=torch.float) + queried_pc_colors = torch.tensor(queried_pc_colors, dtype=torch.float) + queried_pc_labels = torch.tensor(queried_pc_labels, dtype=torch.long) + queried_idx = torch.tensor(queried_idx, dtype=torch.long) + + return { + "pts": queried_pc_xyz.transpose(0,1), + "features": queried_pc_colors.transpose(0,1), + "targets": queried_pc_labels, + "pts_idx": queried_idx, + "cloud_idx": cloud_idx + } \ No newline at end of file diff --git a/lightconvpoint/datasets/archives/s3dis_legacy.py b/lightconvpoint/datasets/archives/s3dis_legacy.py new file mode 100644 index 0000000..218c7d8 --- /dev/null +++ b/lightconvpoint/datasets/archives/s3dis_legacy.py @@ -0,0 +1,259 @@ + +import torch +import numpy as np +import lightconvpoint.nn +import os +import random +from torchvision import transforms +from PIL import Image +import time +from tqdm import * +from plyfile import PlyData, PlyElement +from lightconvpoint.nn import with_indices_computation_rotation + +import glob +import pickle +from .helper_ply import read_ply + + +class S3DIS_Pillar_TrainVal(): + + def __init__ (self, + dataset_dir, + config, + split="training", + verbose=False, + network_function=None, + transformations_data=None, + transformations_points=None, + transformations_features=None): + + + self.split = split + self.dataset_dir = dataset_dir + self.cfg = config + self.verbose = verbose + self.t_data = transformations_data + self.t_points = transformations_points + self.t_features = transformations_features + + self.filelist = [] + for area_idx in range(1 ,7): + folder = os.path.join(self.dataset_dir, f"Area_{area_idx}") + if self.split == 'validation' and config['dataset']['val_area']==area_idx: + self.filelist = [os.path.join(f"Area_{area_idx}", dataset) for dataset in os.listdir(folder)] + elif self.split == 'training' and config['dataset']['val_area']!=area_idx: + self.filelist = self.filelist + [os.path.join(f"Area_{area_idx}", dataset) for dataset in os.listdir(folder)] + self.filelist.sort() + + + if network_function is not None: + self.net = network_function() + else: + self.net = None + + @with_indices_computation_rotation + def __getitem__(self, index): + + index = random.randint(0, len(self.filelist)-1) + filename_data = os.path.join(self.dataset_dir, self.filelist[index], 'xyzrgb.npy') + filename_labels = os.path.join(self.dataset_dir, self.filelist[index], 'label.npy') + data = np.load(filename_data).astype(np.float32) + labels = np.load(filename_labels).astype(np.float32).flatten() + labels = np.expand_dims(labels, axis=1) + data = np.concatenate([data, labels], axis=1) + + # apply transformations on data + if self.t_data is not None: + for t in self.t_data: + data = t(data) + + # get the features, labels and points + fts = data[:,3:6] + lbs = data[:, 6].astype(int) + pts = data[:, :3] + + # apply transformations on points + if self.t_points is not None: + for t in self.t_points: + pts = t(pts) + + # apply transformations on features + fts = fts / 255 + if self.t_features is not None: + for t in self.t_features: + fts = t(fts) + + + pts = torch.from_numpy(pts).float() + fts = torch.from_numpy(fts).float() + lbs = torch.from_numpy(lbs).long() + + pts = pts.transpose(0,1) + fts = fts.transpose(0,1) + + return_dict = { + "pts": pts, + "features": fts, + "target": lbs, + } + + return return_dict + + def __len__(self): + if self.split == "training": + return self.cfg['training']['training_steps'] * self.cfg['training']['batch_size'] + else: + return self.cfg['training']['validation_steps'] * self.cfg['training']['batch_size'] + + + @staticmethod + def get_class_weights(return_torch_tensor=True): + # pre-calculate the number of points in each category + # from RandLaNet directory + num_per_class = np.array([3370714, 2856755, 4919229, 318158, 375640, 478001, 974733, + 650464, 791496, 88727, 1284130, 229758, 2272837], dtype=np.int32) + weight = num_per_class / float(sum(num_per_class)) + ce_label_weight = 1 / (weight + 0.02) + if return_torch_tensor: + return torch.tensor(ce_label_weight, dtype=torch.float) + else: + return ce_label_weight + + +class S3DIS_Pillar_Test(): + + def compute_mask(self, pt, bs): + # build the mask + mask_x = np.logical_and(self.data[:,0]<=pt[0]+bs/2, self.data[:,0]>=pt[0]-bs/2) + mask_y = np.logical_and(self.data[:,1]<=pt[1]+bs/2, self.data[:,1]>=pt[1]-bs/2) + mask = np.logical_and(mask_x, mask_y) + return mask + + def __init__ (self, + dataset_dir, + config, + split="training", + verbose=False, + network_function=None, + transformations_data=None, + transformations_points=None, + transformations_features=None): + + + self.split = split + self.dataset_dir = dataset_dir + self.cfg = config + self.verbose = verbose + self.t_data = transformations_data + self.t_points = transformations_points + self.t_features = transformations_features + + self.filelist = [] + for area_idx in range(1 ,7): + folder = os.path.join(self.dataset_dir, f"Area_{area_idx}") + if self.split == 'validation' and config['dataset']['val_area']==area_idx: + self.filelist = [os.path.join(f"Area_{area_idx}", dataset) for dataset in os.listdir(folder)] + elif self.split == 'training' and config['dataset']['val_area']!=area_idx: + self.filelist = self.filelist + [os.path.join(f"Area_{area_idx}", dataset) for dataset in os.listdir(folder)] + self.filelist.sort() + + + if network_function is not None: + self.net = network_function() + else: + self.net = None + + + def size(self): + return len(self.filelist) + + def compute_sliding_window(self, index, step, npoints): + + # loading the data + filename_data = os.path.join(self.dataset_dir, self.filelist[index], 'xyzrgb.npy') + filename_labels = os.path.join(self.dataset_dir, self.filelist[index], 'label.npy') + data = np.load(filename_data).astype(np.float32) + labels = np.load(filename_labels).astype(np.float32).flatten() + labels = np.expand_dims(labels, axis=1) + self.data = np.concatenate([data, labels], axis=1) + + # compute occupation grid + mini = self.data[:,:2].min(0) + discretized = ((self.data[:,:2]-mini).astype(float)/step).astype(int) + self.pts = np.unique(discretized, axis=0) + self.pts = self.pts.astype(np.float)*step + mini + step/2 + + # compute the masks + self.choices = [] + self.pts_ref = [] + for index in tqdm(range(self.pts.shape[0]), ncols=80, desc="Pillar computation"): + pt_ref = self.pts[index] + mask = self.compute_mask(pt_ref, self.cfg['dataset']['pillar_size']) + + pillar_points_indices = np.where(mask)[0] + valid_points_indices = pillar_points_indices.copy() + + while(valid_points_indices is not None): + # print(valid_points_indices.shape[0]) + if valid_points_indices.shape[0] > npoints: + choice = np.random.choice(valid_points_indices.shape[0], npoints, replace=True) + mask[valid_points_indices[choice]] = False + choice = valid_points_indices[choice] + valid_points_indices = np.where(mask)[0] + else: + choice = np.random.choice(pillar_points_indices.shape[0], npoints-valid_points_indices.shape[0], replace=True) + choice = np.concatenate([valid_points_indices, pillar_points_indices[choice]], axis=0) + valid_points_indices = None + + self.choices.append(choice) + self.pts_ref.append(pt_ref) + + def get_points(self): + return self.data[:,:3] + + def get_labels(self): + return self.data[:, 6].astype(int) + + + def __len__(self): + return len(self.choices) + + + @with_indices_computation_rotation + def __getitem__(self, index): + + choice = self.choices[index] + pts = self.data[choice] + + # get the features, labels and points + fts = pts[:,3:6] + lbs = pts[:, 6].astype(int) + pts = pts[:, :3] + + # apply transformations on points + if self.t_points is not None: + for t in self.t_points: + pts = t(pts) + + # apply transformations on features + fts = fts / 255 + if self.t_features is not None: + for t in self.t_features: + fts = t(fts) + + pts = torch.from_numpy(pts).float() + fts = torch.from_numpy(fts).float() + lbs = torch.from_numpy(lbs).long() + + pts = pts.transpose(0,1) + fts = fts.transpose(0,1) + + return_dict = { + "pts": pts, + "features": fts, + "target": lbs, + "pts_ids": choice + } + + return return_dict diff --git a/lightconvpoint/datasets/data.py b/lightconvpoint/datasets/data.py new file mode 100644 index 0000000..ccda379 --- /dev/null +++ b/lightconvpoint/datasets/data.py @@ -0,0 +1,9 @@ +import torch_geometric.data + +class Data(torch_geometric.data.Data): + + def __init__(self, x=None, edge_index=None, edge_attr=None, y=None, + pos=None, normal=None, face=None, **kwargs): + super().__init__(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, pos=pos, normal=normal, face=face, **kwargs) + for key, value in kwargs.items(): + self.__dict__[key] = value \ No newline at end of file diff --git a/lightconvpoint/datasets/dataset.py b/lightconvpoint/datasets/dataset.py new file mode 100644 index 0000000..422fec6 --- /dev/null +++ b/lightconvpoint/datasets/dataset.py @@ -0,0 +1,74 @@ +import torch +from torch.utils.data._utils.collate import default_collate +from torch_geometric.data import Data + + +def collate(data_list): + + batch = [] + for data in data_list: + d = {} + for key in data.keys: + d[key] = data[key] + batch.append(d) + + batch = default_collate(batch) + + return Data(**batch) + + +def get_dataset(base_class): + + # create a dataset class that will inherit from base_class + class LCPDataset(base_class): + + def __init__(self, *args, **kwargs): + + if "network_function" in kwargs: + net_func = kwargs["network_function"] + del kwargs["network_function"] + else: + net_func = None + + super().__init__(*args, **kwargs) + + if net_func is not None: + self.net = net_func() + else: + self.net = None + + + def download(self): + super().download() + + def process(self): + super().process() + + def __getitem__(self, idx): + + data = super().__getitem__(idx) + + if (self.net is not None) and ("lcp_preprocess" in self.net.__dict__) and (self.net.__dict__["lcp_preprocess"]): + + with torch.no_grad(): + return_data = self.net(data, spatial_only=True) + + for key in return_data.keys(): + if return_data[key] is not None: + if isinstance(return_data[key], torch.Tensor): + data[key] = return_data[key].detach() + else: + data[key] = return_data[key] + + # remove None type keys + to_delete_keys = [] + for key in data: + if data[key] is None: + to_delete_keys.append(key) + + for key in to_delete_keys: + data.pop(key, None) + + return data + + return LCPDataset \ No newline at end of file diff --git a/lightconvpoint/datasets/helper_ply.py b/lightconvpoint/datasets/helper_ply.py new file mode 100644 index 0000000..dfe254b --- /dev/null +++ b/lightconvpoint/datasets/helper_ply.py @@ -0,0 +1,339 @@ +# +# +# 0===============================0 +# | PLY files reader/writer | +# 0===============================0 +# +# +# ---------------------------------------------------------------------------------------------------------------------- +# +# function to read/write .ply files +# +# ---------------------------------------------------------------------------------------------------------------------- +# +# Hugues THOMAS - 10/02/2017 +# + + +# ---------------------------------------------------------------------------------------------------------------------- +# +# Imports and global variables +# \**********************************/ +# + + +# Basic libs +import numpy as np +import sys + + +# Define PLY types +ply_dtypes = dict([ + (b'int8', 'i1'), + (b'char', 'i1'), + (b'uint8', 'u1'), + (b'uchar', 'u1'), + (b'int16', 'i2'), + (b'short', 'i2'), + (b'uint16', 'u2'), + (b'ushort', 'u2'), + (b'int32', 'i4'), + (b'int', 'i4'), + (b'uint32', 'u4'), + (b'uint', 'u4'), + (b'float32', 'f4'), + (b'float', 'f4'), + (b'float64', 'f8'), + (b'double', 'f8') +]) + +# Numpy reader format +valid_formats = {'ascii': '', 'binary_big_endian': '>', + 'binary_little_endian': '<'} + + +# ---------------------------------------------------------------------------------------------------------------------- +# +# Functions +# \***************/ +# + + +def parse_header(plyfile, ext): + # Variables + line = [] + properties = [] + num_points = None + + while b'end_header' not in line and line != b'': + line = plyfile.readline() + + if b'element' in line: + line = line.split() + num_points = int(line[2]) + + elif b'property' in line: + line = line.split() + properties.append((line[2].decode(), ext + ply_dtypes[line[1]])) + + return num_points, properties + + +def parse_mesh_header(plyfile, ext): + # Variables + line = [] + vertex_properties = [] + num_points = None + num_faces = None + current_element = None + + + while b'end_header' not in line and line != b'': + line = plyfile.readline() + + # Find point element + if b'element vertex' in line: + current_element = 'vertex' + line = line.split() + num_points = int(line[2]) + + elif b'element face' in line: + current_element = 'face' + line = line.split() + num_faces = int(line[2]) + + elif b'property' in line: + if current_element == 'vertex': + line = line.split() + vertex_properties.append((line[2].decode(), ext + ply_dtypes[line[1]])) + elif current_element == 'vertex': + if not line.startswith('property list uchar int'): + raise ValueError('Unsupported faces property : ' + line) + + return num_points, num_faces, vertex_properties + + +def read_ply(filename, triangular_mesh=False): + """ + Read ".ply" files + Parameters + ---------- + filename : string + the name of the file to read. + Returns + ------- + result : array + data stored in the file + Examples + -------- + Store data in file + >>> points = np.random.rand(5, 3) + >>> values = np.random.randint(2, size=10) + >>> write_ply('example.ply', [points, values], ['x', 'y', 'z', 'values']) + Read the file + >>> data = read_ply('example.ply') + >>> values = data['values'] + array([0, 0, 1, 1, 0]) + + >>> points = np.vstack((data['x'], data['y'], data['z'])).T + array([[ 0.466 0.595 0.324] + [ 0.538 0.407 0.654] + [ 0.850 0.018 0.988] + [ 0.395 0.394 0.363] + [ 0.873 0.996 0.092]]) + """ + + with open(filename, 'rb') as plyfile: + + + # Check if the file start with ply + if b'ply' not in plyfile.readline(): + raise ValueError('The file does not start whith the word ply') + + # get binary_little/big or ascii + fmt = plyfile.readline().split()[1].decode() + if fmt == "ascii": + raise ValueError('The file is not binary') + + # get extension for building the numpy dtypes + ext = valid_formats[fmt] + + # PointCloud reader vs mesh reader + if triangular_mesh: + + # Parse header + num_points, num_faces, properties = parse_mesh_header(plyfile, ext) + + # Get point data + vertex_data = np.fromfile(plyfile, dtype=properties, count=num_points) + + # Get face data + face_properties = [('k', ext + 'u1'), + ('v1', ext + 'i4'), + ('v2', ext + 'i4'), + ('v3', ext + 'i4')] + faces_data = np.fromfile(plyfile, dtype=face_properties, count=num_faces) + + # Return vertex data and concatenated faces + faces = np.vstack((faces_data['v1'], faces_data['v2'], faces_data['v3'])).T + data = [vertex_data, faces] + + else: + + # Parse header + num_points, properties = parse_header(plyfile, ext) + + # Get data + data = np.fromfile(plyfile, dtype=properties, count=num_points) + + return data + + +def header_properties(field_list, field_names): + + # List of lines to write + lines = [] + + # First line describing element vertex + lines.append('element vertex %d' % field_list[0].shape[0]) + + # Properties lines + i = 0 + for fields in field_list: + for field in fields.T: + lines.append('property %s %s' % (field.dtype.name, field_names[i])) + i += 1 + + return lines + + +def write_ply(filename, field_list, field_names, triangular_faces=None): + """ + Write ".ply" files + Parameters + ---------- + filename : string + the name of the file to which the data is saved. A '.ply' extension will be appended to the + file name if it does no already have one. + field_list : list, tuple, numpy array + the fields to be saved in the ply file. Either a numpy array, a list of numpy arrays or a + tuple of numpy arrays. Each 1D numpy array and each column of 2D numpy arrays are considered + as one field. + field_names : list + the name of each fields as a list of strings. Has to be the same length as the number of + fields. + Examples + -------- + >>> points = np.random.rand(10, 3) + >>> write_ply('example1.ply', points, ['x', 'y', 'z']) + >>> values = np.random.randint(2, size=10) + >>> write_ply('example2.ply', [points, values], ['x', 'y', 'z', 'values']) + >>> colors = np.random.randint(255, size=(10,3), dtype=np.uint8) + >>> field_names = ['x', 'y', 'z', 'red', 'green', 'blue', values'] + >>> write_ply('example3.ply', [points, colors, values], field_names) + """ + + # Format list input to the right form + field_list = list(field_list) if (type(field_list) == list or type(field_list) == tuple) else list((field_list,)) + for i, field in enumerate(field_list): + if field.ndim < 2: + field_list[i] = field.reshape(-1, 1) + if field.ndim > 2: + print('fields have more than 2 dimensions') + return False + + # check all fields have the same number of data + n_points = [field.shape[0] for field in field_list] + if not np.all(np.equal(n_points, n_points[0])): + print('wrong field dimensions') + return False + + # Check if field_names and field_list have same nb of column + n_fields = np.sum([field.shape[1] for field in field_list]) + if (n_fields != len(field_names)): + print('wrong number of field names') + return False + + # Add extension if not there + if not filename.endswith('.ply'): + filename += '.ply' + + # open in text mode to write the header + with open(filename, 'w') as plyfile: + + # First magical word + header = ['ply'] + + # Encoding format + header.append('format binary_' + sys.byteorder + '_endian 1.0') + + # Points properties description + header.extend(header_properties(field_list, field_names)) + + # Add faces if needded + if triangular_faces is not None: + header.append('element face {:d}'.format(triangular_faces.shape[0])) + header.append('property list uchar int vertex_indices') + + # End of header + header.append('end_header') + + # Write all lines + for line in header: + plyfile.write("%s\n" % line) + + # open in binary/append to use tofile + with open(filename, 'ab') as plyfile: + + # Create a structured array + i = 0 + type_list = [] + for fields in field_list: + for field in fields.T: + type_list += [(field_names[i], field.dtype.str)] + i += 1 + data = np.empty(field_list[0].shape[0], dtype=type_list) + i = 0 + for fields in field_list: + for field in fields.T: + data[field_names[i]] = field + i += 1 + + data.tofile(plyfile) + + if triangular_faces is not None: + triangular_faces = triangular_faces.astype(np.int32) + type_list = [('k', 'uint8')] + [(str(ind), 'int32') for ind in range(3)] + data = np.empty(triangular_faces.shape[0], dtype=type_list) + data['k'] = np.full((triangular_faces.shape[0],), 3, dtype=np.uint8) + data['0'] = triangular_faces[:, 0] + data['1'] = triangular_faces[:, 1] + data['2'] = triangular_faces[:, 2] + data.tofile(plyfile) + + return True + + +def describe_element(name, df): + """ Takes the columns of the dataframe and builds a ply-like description + Parameters + ---------- + name: str + df: pandas DataFrame + Returns + ------- + element: list[str] + """ + property_formats = {'f': 'float', 'u': 'uchar', 'i': 'int'} + element = ['element ' + name + ' ' + str(len(df))] + + if name == 'face': + element.append("property list uchar int points_indices") + + else: + for i in range(len(df.columns)): + # get first letter of dtype to infer format + f = property_formats[str(df.dtypes[i])[0]] + element.append('property ' + f + ' ' + df.columns.values[i]) + + return element \ No newline at end of file diff --git a/lightconvpoint/datasets/helper_tool.py b/lightconvpoint/datasets/helper_tool.py new file mode 100644 index 0000000..68516a8 --- /dev/null +++ b/lightconvpoint/datasets/helper_tool.py @@ -0,0 +1,187 @@ +#from open3d import linux as open3d +# import open3d +from os.path import join +import numpy as np +import colorsys, random, os, sys +import pandas as pd + +import torch +from torch_geometric.transforms import GridSampling +from torch_geometric.data import Data + + +class DataProcessing: + @staticmethod + def load_pc_semantic3d(filename): + pc_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.float16) + pc = pc_pd.values + return pc + + @staticmethod + def load_label_semantic3d(filename): + label_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.uint8) + cloud_labels = label_pd.values + return cloud_labels + + @staticmethod + def load_pc_kitti(pc_path): + scan = np.fromfile(pc_path, dtype=np.float32) + scan = scan.reshape((-1, 4)) + points = scan[:, 0:3] # get xyz + return points + + @staticmethod + def load_label_kitti(label_path, remap_lut): + label = np.fromfile(label_path, dtype=np.uint32) + label = label.reshape((-1)) + sem_label = label & 0xFFFF # semantic label in lower half + inst_label = label >> 16 # instance id in upper half + assert ((sem_label + (inst_label << 16) == label).all()) + sem_label = remap_lut[sem_label] + return sem_label.astype(np.int32) + + @staticmethod + def get_file_list(dataset_path, test_scan_num): + seq_list = np.sort(os.listdir(dataset_path)) + + train_file_list = [] + test_file_list = [] + val_file_list = [] + for seq_id in seq_list: + seq_path = join(dataset_path, seq_id) + pc_path = join(seq_path, 'velodyne') + if seq_id == '08': + val_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))]) + if seq_id == test_scan_num: + test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))]) + elif int(seq_id) >= 11 and seq_id == test_scan_num: + test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))]) + elif seq_id in ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']: + train_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))]) + + train_file_list = np.concatenate(train_file_list, axis=0) + val_file_list = np.concatenate(val_file_list, axis=0) + test_file_list = np.concatenate(test_file_list, axis=0) + return train_file_list, val_file_list, test_file_list + + @staticmethod + def knn_search(support_pts, query_pts, k): + """ + :param support_pts: points you have, B*N1*3 + :param query_pts: points you want to know the neighbour index, B*N2*3 + :param k: Number of neighbours in knn search + :return: neighbor_idx: neighboring points indexes, B*N2*k + """ + + neighbor_idx = nearest_neighbors.knn_batch(support_pts, query_pts, k, omp=True) + return neighbor_idx.astype(np.int32) + + @staticmethod + def data_aug(xyz, color, labels, idx, num_out): + num_in = len(xyz) + dup = np.random.choice(num_in, num_out - num_in) + xyz_dup = xyz[dup, ...] + xyz_aug = np.concatenate([xyz, xyz_dup], 0) + color_dup = color[dup, ...] + color_aug = np.concatenate([color, color_dup], 0) + idx_dup = list(range(num_in)) + list(dup) + idx_aug = idx[idx_dup] + label_aug = labels[idx_dup] + return xyz_aug, color_aug, idx_aug, label_aug + + @staticmethod + def shuffle_idx(x): + # random shuffle the index + idx = np.arange(len(x)) + np.random.shuffle(idx) + return x[idx] + + @staticmethod + def shuffle_list(data_list): + indices = np.arange(np.shape(data_list)[0]) + np.random.shuffle(indices) + data_list = data_list[indices] + return data_list + + @staticmethod + def grid_sub_sampling(points, features=None, labels=None, grid_size=0.1, verbose=0): + """ + CPP wrapper for a grid sub_sampling (method = barycenter for points and features + :param points: (N, 3) matrix of input points + :param features: optional (N, d) matrix of features (floating number) + :param labels: optional (N,) matrix of integer labels + :param grid_size: parameter defining the size of grid voxels + :param verbose: 1 to display + :return: sub_sampled points, with features and/or labels depending of the input + """ + grid_sampler = GridSampling(grid_size) + if (features is None) and (labels is None): + data = Data( + pos = torch.tensor(points, dtype=torch.float32)) + data = grid_sampler(data) + return (data.pos).numpy(), None, None + elif labels is None: + data = Data( + x = torch.tensor(features, dtype=torch.float32), + pos = torch.tensor(points, dtype=torch.float32)) + data = grid_sampler(data) + return (data.pos).numpy(), (data.x).numpy(), None + elif features is None: + data = Data( + y = torch.tensor(labels,dtype=torch.long), + pos = torch.tensor(points, dtype=torch.float32)) + data = grid_sampler(data) + return (data.pos).numpy(), None, (data.y).numpy().astype(np.int32) + else: + data = Data( + x = (torch.tensor(features, dtype=torch.float32) if features is not None else None), + y = (torch.tensor(labels,dtype=torch.long) if labels is not None else None), + pos = (torch.tensor(points, dtype=torch.float32) if points is not None else None)) + data = grid_sampler(data) + return (data.pos).numpy(), (data.x).numpy(), (data.y).numpy().astype(np.int32) + + + @staticmethod + def IoU_from_confusions(confusions): + """ + Computes IoU from confusion matrices. + :param confusions: ([..., n_c, n_c] np.int32). Can be any dimension, the confusion matrices should be described by + the last axes. n_c = number of classes + :return: ([..., n_c] np.float32) IoU score + """ + + # Compute TP, FP, FN. This assume that the second to last axis counts the truths (like the first axis of a + # confusion matrix), and that the last axis counts the predictions (like the second axis of a confusion matrix) + TP = np.diagonal(confusions, axis1=-2, axis2=-1) + TP_plus_FN = np.sum(confusions, axis=-1) + TP_plus_FP = np.sum(confusions, axis=-2) + + # Compute IoU + IoU = TP / (TP_plus_FP + TP_plus_FN - TP + 1e-6) + + # Compute mIoU with only the actual classes + mask = TP_plus_FN < 1e-3 + counts = np.sum(1 - mask, axis=-1, keepdims=True) + mIoU = np.sum(IoU, axis=-1, keepdims=True) / (counts + 1e-6) + + # If class is absent, place mIoU in place of 0 IoU to get the actual mean later + IoU += mask * mIoU + return IoU + + @staticmethod + def get_class_weights(dataset_name): + # pre-calculate the number of points in each category + num_per_class = [] + if dataset_name is 'S3DIS': + num_per_class = np.array([3370714, 2856755, 4919229, 318158, 375640, 478001, 974733, + 650464, 791496, 88727, 1284130, 229758, 2272837], dtype=np.int32) + elif dataset_name is 'Semantic3D': + num_per_class = np.array([5181602, 5012952, 6830086, 1311528, 10476365, 946982, 334860, 269353], + dtype=np.int32) + elif dataset_name is 'SemanticKITTI': + num_per_class = np.array([55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858, + 240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114, + 9833174, 129609852, 4506626, 1168181]) + weight = num_per_class / float(sum(num_per_class)) + ce_label_weight = 1 / (weight + 0.02) + return np.expand_dims(ce_label_weight, axis=0) \ No newline at end of file diff --git a/lightconvpoint/datasets/modelnet.py b/lightconvpoint/datasets/modelnet.py new file mode 100644 index 0000000..15309f4 --- /dev/null +++ b/lightconvpoint/datasets/modelnet.py @@ -0,0 +1,190 @@ +import numpy as np +import torch +import os +import pandas +import h5py + +from torch_geometric.data import Dataset#, Data +from lightconvpoint.datasets.data import Data +import logging + +import importlib +if importlib.util.find_spec("valeodata") is not None: + valeodata_exists = True + import valeodata +else: + valeodata_exists = False + +class Modelnet40_ply_hdf5_2048(Dataset): + + def load_data(self,files): + + train_filenames = [] + for line in open(os.path.join(self.root, files)): + line = line.split("\n")[0] + line = os.path.basename(line) + train_filenames.append(os.path.join(self.root, line)) + + data = [] + labels = [] + for filename in train_filenames: + f = h5py.File(filename, "r") + data.append(f["data"]) + labels.append(f["label"]) + + data = np.concatenate(data, axis=0) + labels = np.concatenate(labels, axis=0) + + return data, labels + + def __init__(self, root, split="training",transform=None, use_normals=False): + super(Modelnet40_ply_hdf5_2048, self).__init__(root, transform, None) + self.split=split + + self.use_normals = use_normals + if self.use_normals: + logging.warning("This version of the dataset does not include normals") + + # get the data + if self.split == 'training': + self.data, self.labels = self.load_data("train_files.txt") + elif self.split == 'test': + self.data, self.labels = self.load_data("test_files.txt") + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + self.download() + + def download(self): + logging.debug("ModelNet dataset download") + if valeodata_exists: + self.root = valeodata.download(self.root) + else: + logging.info(f"Dataset at {self.root}") + logging.debug(f"Dataset at {self.root}") + + def _process(self): + pass + + def process(self): + pass + + def len(self): + return self.data.shape[0] + + def get(self, idx): + """Get item.""" + + # the points and target + pos = torch.tensor(self.data[idx], dtype=torch.float) + x = torch.ones((pos.shape[0],3)) + y = int(self.labels[idx]) + data = Data(pos=pos, y=y, x=x, shape_id=idx) + return data + +class Modelnet40_normal_resampled(Dataset): + + def __init__(self, root, split="training",transform=None, in_memory=False, use_normals=False): + super(Modelnet40_normal_resampled, self).__init__(root, transform, None) + self.split=split + self.in_memory = in_memory + self.use_normals = use_normals + + # load in memory + self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt') + self.cat = [line.rstrip() for line in open(self.catfile)] + self.classes = dict(zip(self.cat, range(len(self.cat)))) + + # get the filepath + shape_ids = {} + if self.split == "training": + shape_ids['training'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))] + elif self.split == "test": + shape_ids['test']= [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))] + else: + raise ValueError("Unknown split name") + shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]] + self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i])+'.txt') for i in range(len(shape_ids[split]))] + + if self.in_memory: + # load everything in memory + self.data = [] + self.labels = [] + for fname in self.datapath: + self.data.append(pandas.read_csv(fname[1], header=0).values.astype(np.float32)) + self.labels.append(int(self.cat.index(fname[0]))) + self.data = np.stack(self.data, axis=0) + self.labels = np.array(self.labels, dtype=np.int64) + + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + self.download() + + def download(self): + logging.debug("ModelNet dataset download") + if valeodata_exists: + self.root = valeodata.download(self.root) + else: + logging.info(f"Dataset at {self.root}") + logging.debug(f"Dataset at {self.root}") + + + def process(self): + pass + + def len(self): + if self.in_memory: + return self.data.shape[0] + else: + return len(self.datapath) + + + def get_targets(self): + targets = [] + for d in self.datapath: + targets.append(self.cat.index(d[0])) + return np.array(targets, dtype=np.int64) + + def get(self, idx): + """Get item.""" + + if self.in_memory: + + # the points and target + pos = torch.tensor(self.data[idx][:,:3], dtype=torch.float) + if self.use_normals: + x = torch.tensor(self.data[idx][:,3:], dtype=torch.float) + else: + x = torch.ones((pos.shape[0],3)) + y = int(self.labels[idx]) + data = Data(pos=pos, y=y, x=x, shape_id=idx) + return data + + else: + + # get the target + data = pandas.read_csv(self.datapath[idx][1], header=0).values.astype(np.float32) + + # the points and target + pos = torch.tensor(data[:,:3], dtype=torch.float) + if self.use_normals: + x = torch.tensor(data[:,3:], dtype=torch.float) + else: + x = torch.ones((pos.shape[0],3)) + y = int(self.cat.index(self.datapath[idx][0])) + return Data(pos=pos, y=y, x=x) \ No newline at end of file diff --git a/lightconvpoint/datasets/s3dis.py b/lightconvpoint/datasets/s3dis.py new file mode 100644 index 0000000..aa912db --- /dev/null +++ b/lightconvpoint/datasets/s3dis.py @@ -0,0 +1,937 @@ +import os +import numpy as np +import glob +import torch +from torch_geometric.data import Dataset +from torch_geometric.data import Data +import pickle +from .helper_ply import write_ply, read_ply +from .helper_tool import DataProcessing as DP +import importlib +if importlib.util.find_spec("valeodata") is not None: + valeodata_exists = True + import valeodata +else: + valeodata_exists = False + +import pandas as pd +from sklearn.neighbors import KDTree +import logging + +class S3DIS(Dataset): + + def __init__(self, + root, + test_area=6, + train=True, + transform=None, + **kwargs): + assert test_area >= 1 and test_area <= 6 + self.test_area = test_area + super().__init__(root, transform, None) + + logging.info(f"S3DIS - training {train} - val area {test_area}") + + self.label_to_names = {0: 'ceiling', + 1: 'floor', + 2: 'wall', + 3: 'beam', + 4: 'column', + 5: 'window', + 6: 'door', + 7: 'table', + 8: 'chair', + 9: 'sofa', + 10: 'bookcase', + 11: 'board', + 12: 'clutter'} + self.num_classes = len(self.label_to_names) + self.label_values = np.sort([k for k, v in self.label_to_names.items()]) + self.label_to_idx = {l: i for i, l in enumerate(self.label_values)} + self.ignored_labels = np.array([]) + + self.anno_paths = [ + "Area_1/conferenceRoom_1/Annotations", + "Area_1/conferenceRoom_2/Annotations", + "Area_1/copyRoom_1/Annotations", + "Area_1/hallway_1/Annotations", + "Area_1/hallway_2/Annotations", + "Area_1/hallway_3/Annotations", + "Area_1/hallway_4/Annotations", + "Area_1/hallway_5/Annotations", + "Area_1/hallway_6/Annotations", + "Area_1/hallway_7/Annotations", + "Area_1/hallway_8/Annotations", + "Area_1/office_10/Annotations", + "Area_1/office_11/Annotations", + "Area_1/office_12/Annotations", + "Area_1/office_13/Annotations", + "Area_1/office_14/Annotations", + "Area_1/office_15/Annotations", + "Area_1/office_16/Annotations", + "Area_1/office_17/Annotations", + "Area_1/office_18/Annotations", + "Area_1/office_19/Annotations", + "Area_1/office_1/Annotations", + "Area_1/office_20/Annotations", + "Area_1/office_21/Annotations", + "Area_1/office_22/Annotations", + "Area_1/office_23/Annotations", + "Area_1/office_24/Annotations", + "Area_1/office_25/Annotations", + "Area_1/office_26/Annotations", + "Area_1/office_27/Annotations", + "Area_1/office_28/Annotations", + "Area_1/office_29/Annotations", + "Area_1/office_2/Annotations", + "Area_1/office_30/Annotations", + "Area_1/office_31/Annotations", + "Area_1/office_3/Annotations", + "Area_1/office_4/Annotations", + "Area_1/office_5/Annotations", + "Area_1/office_6/Annotations", + "Area_1/office_7/Annotations", + "Area_1/office_8/Annotations", + "Area_1/office_9/Annotations", + "Area_1/pantry_1/Annotations", + "Area_1/WC_1/Annotations", + "Area_2/auditorium_1/Annotations", + "Area_2/auditorium_2/Annotations", + "Area_2/conferenceRoom_1/Annotations", + "Area_2/hallway_10/Annotations", + "Area_2/hallway_11/Annotations", + "Area_2/hallway_12/Annotations", + "Area_2/hallway_1/Annotations", + "Area_2/hallway_2/Annotations", + "Area_2/hallway_3/Annotations", + "Area_2/hallway_4/Annotations", + "Area_2/hallway_5/Annotations", + "Area_2/hallway_6/Annotations", + "Area_2/hallway_7/Annotations", + "Area_2/hallway_8/Annotations", + "Area_2/hallway_9/Annotations", + "Area_2/office_10/Annotations", + "Area_2/office_11/Annotations", + "Area_2/office_12/Annotations", + "Area_2/office_13/Annotations", + "Area_2/office_14/Annotations", + "Area_2/office_1/Annotations", + "Area_2/office_2/Annotations", + "Area_2/office_3/Annotations", + "Area_2/office_4/Annotations", + "Area_2/office_5/Annotations", + "Area_2/office_6/Annotations", + "Area_2/office_7/Annotations", + "Area_2/office_8/Annotations", + "Area_2/office_9/Annotations", + "Area_2/storage_1/Annotations", + "Area_2/storage_2/Annotations", + "Area_2/storage_3/Annotations", + "Area_2/storage_4/Annotations", + "Area_2/storage_5/Annotations", + "Area_2/storage_6/Annotations", + "Area_2/storage_7/Annotations", + "Area_2/storage_8/Annotations", + "Area_2/storage_9/Annotations", + "Area_2/WC_1/Annotations", + "Area_2/WC_2/Annotations", + "Area_3/conferenceRoom_1/Annotations", + "Area_3/hallway_1/Annotations", + "Area_3/hallway_2/Annotations", + "Area_3/hallway_3/Annotations", + "Area_3/hallway_4/Annotations", + "Area_3/hallway_5/Annotations", + "Area_3/hallway_6/Annotations", + "Area_3/lounge_1/Annotations", + "Area_3/lounge_2/Annotations", + "Area_3/office_10/Annotations", + "Area_3/office_1/Annotations", + "Area_3/office_2/Annotations", + "Area_3/office_3/Annotations", + "Area_3/office_4/Annotations", + "Area_3/office_5/Annotations", + "Area_3/office_6/Annotations", + "Area_3/office_7/Annotations", + "Area_3/office_8/Annotations", + "Area_3/office_9/Annotations", + "Area_3/storage_1/Annotations", + "Area_3/storage_2/Annotations", + "Area_3/WC_1/Annotations", + "Area_3/WC_2/Annotations", + "Area_4/conferenceRoom_1/Annotations", + "Area_4/conferenceRoom_2/Annotations", + "Area_4/conferenceRoom_3/Annotations", + "Area_4/hallway_10/Annotations", + "Area_4/hallway_11/Annotations", + "Area_4/hallway_12/Annotations", + "Area_4/hallway_13/Annotations", + "Area_4/hallway_14/Annotations", + "Area_4/hallway_1/Annotations", + "Area_4/hallway_2/Annotations", + "Area_4/hallway_3/Annotations", + "Area_4/hallway_4/Annotations", + "Area_4/hallway_5/Annotations", + "Area_4/hallway_6/Annotations", + "Area_4/hallway_7/Annotations", + "Area_4/hallway_8/Annotations", + "Area_4/hallway_9/Annotations", + "Area_4/lobby_1/Annotations", + "Area_4/lobby_2/Annotations", + "Area_4/office_10/Annotations", + "Area_4/office_11/Annotations", + "Area_4/office_12/Annotations", + "Area_4/office_13/Annotations", + "Area_4/office_14/Annotations", + "Area_4/office_15/Annotations", + "Area_4/office_16/Annotations", + "Area_4/office_17/Annotations", + "Area_4/office_18/Annotations", + "Area_4/office_19/Annotations", + "Area_4/office_1/Annotations", + "Area_4/office_20/Annotations", + "Area_4/office_21/Annotations", + "Area_4/office_22/Annotations", + "Area_4/office_2/Annotations", + "Area_4/office_3/Annotations", + "Area_4/office_4/Annotations", + "Area_4/office_5/Annotations", + "Area_4/office_6/Annotations", + "Area_4/office_7/Annotations", + "Area_4/office_8/Annotations", + "Area_4/office_9/Annotations", + "Area_4/storage_1/Annotations", + "Area_4/storage_2/Annotations", + "Area_4/storage_3/Annotations", + "Area_4/storage_4/Annotations", + "Area_4/WC_1/Annotations", + "Area_4/WC_2/Annotations", + "Area_4/WC_3/Annotations", + "Area_4/WC_4/Annotations", + "Area_5/conferenceRoom_1/Annotations", + "Area_5/conferenceRoom_2/Annotations", + "Area_5/conferenceRoom_3/Annotations", + "Area_5/hallway_10/Annotations", + "Area_5/hallway_11/Annotations", + "Area_5/hallway_12/Annotations", + "Area_5/hallway_13/Annotations", + "Area_5/hallway_14/Annotations", + "Area_5/hallway_15/Annotations", + "Area_5/hallway_1/Annotations", + "Area_5/hallway_2/Annotations", + "Area_5/hallway_3/Annotations", + "Area_5/hallway_4/Annotations", + "Area_5/hallway_5/Annotations", + "Area_5/hallway_6/Annotations", + "Area_5/hallway_7/Annotations", + "Area_5/hallway_8/Annotations", + "Area_5/hallway_9/Annotations", + "Area_5/lobby_1/Annotations", + "Area_5/office_10/Annotations", + "Area_5/office_11/Annotations", + "Area_5/office_12/Annotations", + "Area_5/office_13/Annotations", + "Area_5/office_14/Annotations", + "Area_5/office_15/Annotations", + "Area_5/office_16/Annotations", + "Area_5/office_17/Annotations", + "Area_5/office_18/Annotations", + "Area_5/office_19/Annotations", + "Area_5/office_1/Annotations", + "Area_5/office_20/Annotations", + "Area_5/office_21/Annotations", + "Area_5/office_22/Annotations", + "Area_5/office_23/Annotations", + "Area_5/office_24/Annotations", + "Area_5/office_25/Annotations", + "Area_5/office_26/Annotations", + "Area_5/office_27/Annotations", + "Area_5/office_28/Annotations", + "Area_5/office_29/Annotations", + "Area_5/office_2/Annotations", + "Area_5/office_30/Annotations", + "Area_5/office_31/Annotations", + "Area_5/office_32/Annotations", + "Area_5/office_33/Annotations", + "Area_5/office_34/Annotations", + "Area_5/office_35/Annotations", + "Area_5/office_36/Annotations", + "Area_5/office_37/Annotations", + "Area_5/office_38/Annotations", + "Area_5/office_39/Annotations", + "Area_5/office_3/Annotations", + "Area_5/office_40/Annotations", + "Area_5/office_41/Annotations", + "Area_5/office_42/Annotations", + "Area_5/office_4/Annotations", + "Area_5/office_5/Annotations", + "Area_5/office_6/Annotations", + "Area_5/office_7/Annotations", + "Area_5/office_8/Annotations", + "Area_5/office_9/Annotations", + "Area_5/pantry_1/Annotations", + "Area_5/storage_1/Annotations", + "Area_5/storage_2/Annotations", + "Area_5/storage_3/Annotations", + "Area_5/storage_4/Annotations", + "Area_5/WC_1/Annotations", + "Area_5/WC_2/Annotations", + "Area_6/conferenceRoom_1/Annotations", + "Area_6/copyRoom_1/Annotations", + "Area_6/hallway_1/Annotations", + "Area_6/hallway_2/Annotations", + "Area_6/hallway_3/Annotations", + "Area_6/hallway_4/Annotations", + "Area_6/hallway_5/Annotations", + "Area_6/hallway_6/Annotations", + "Area_6/lounge_1/Annotations", + "Area_6/office_10/Annotations", + "Area_6/office_11/Annotations", + "Area_6/office_12/Annotations", + "Area_6/office_13/Annotations", + "Area_6/office_14/Annotations", + "Area_6/office_15/Annotations", + "Area_6/office_16/Annotations", + "Area_6/office_17/Annotations", + "Area_6/office_18/Annotations", + "Area_6/office_19/Annotations", + "Area_6/office_1/Annotations", + "Area_6/office_20/Annotations", + "Area_6/office_21/Annotations", + "Area_6/office_22/Annotations", + "Area_6/office_23/Annotations", + "Area_6/office_24/Annotations", + "Area_6/office_25/Annotations", + "Area_6/office_26/Annotations", + "Area_6/office_27/Annotations", + "Area_6/office_28/Annotations", + "Area_6/office_29/Annotations", + "Area_6/office_2/Annotations", + "Area_6/office_30/Annotations", + "Area_6/office_31/Annotations", + "Area_6/office_32/Annotations", + "Area_6/office_33/Annotations", + "Area_6/office_34/Annotations", + "Area_6/office_35/Annotations", + "Area_6/office_36/Annotations", + "Area_6/office_37/Annotations", + "Area_6/office_3/Annotations", + "Area_6/office_4/Annotations", + "Area_6/office_5/Annotations", + "Area_6/office_6/Annotations", + "Area_6/office_7/Annotations", + "Area_6/office_8/Annotations", + "Area_6/office_9/Annotations", + "Area_6/openspace_1/Annotations", + "Area_6/pantry_1/Annotations",] + + self.gt_class = [ + "ceiling", + "floor", + "wall", + "beam", + "column", + "window", + "door", + "table", + "chair", + "sofa", + "bookcase", + "board", + "clutter",] + + sub_grid_size = 0.040 + self.sub_grid_size = 0.040 + if (not os.path.exists(os.path.join(self.root, 'original_ply'))) or (not os.path.exists(os.path.join(self.root, f'input_{sub_grid_size:.3f}'))): + # path does not exists + + anno_paths = [os.path.join(self.root, p) for p in self.anno_paths] + gt_class2label = {cls: i for i, cls in enumerate(self.gt_class)} + + original_pc_folder = os.path.join(self.root, 'original_ply') + sub_pc_folder = os.path.join(self.root, f'input_{sub_grid_size:.3f}') + os.makedirs(original_pc_folder, exist_ok=True) + os.makedirs(sub_pc_folder, exist_ok=True) + out_format = '.ply' + + # Note: there is an extra character in the v1.2 data in Area_5/hallway_6. It's fixed manually. + for annotation_path in anno_paths: + print(annotation_path) + elements = str(annotation_path).split('/') + out_file_name = elements[-3] + '_' + elements[-2] + out_format + + save_path = os.path.join(original_pc_folder, out_file_name) + + # convert_pc2ply(annotation_path, save_path) + + data_list = [] + + for f in glob.glob(os.path.join(annotation_path, '*.txt')): + class_name = os.path.basename(f).split('_')[0] + if class_name not in self.gt_class: # note: in some room there is 'staris' class.. + class_name = 'clutter' + pc = pd.read_csv(f, header=None, delim_whitespace=True).values + labels = np.ones((pc.shape[0], 1)) * gt_class2label[class_name] + data_list.append(np.concatenate([pc, labels], 1)) # Nx7 + + pc_label = np.concatenate(data_list, 0) + xyz_min = np.amin(pc_label, axis=0)[0:3] + pc_label[:, 0:3] -= xyz_min + + xyz = pc_label[:, :3].astype(np.float32) + colors = pc_label[:, 3:6].astype(np.uint8) + labels = pc_label[:, 6].astype(np.uint8) + write_ply(save_path, (xyz, colors, labels), ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + + # save sub_cloud and KDTree file + sub_xyz, sub_colors, sub_labels = DP.grid_sub_sampling(xyz, colors, labels, sub_grid_size) + sub_colors = sub_colors / 255.0 + sub_ply_file = os.path.join(sub_pc_folder, save_path.split('/')[-1][:-4] + '.ply') + write_ply(sub_ply_file, [sub_xyz, sub_colors, sub_labels], ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + + search_tree = KDTree(sub_xyz) + kd_tree_file = os.path.join(sub_pc_folder, str(save_path.split('/')[-1][:-4]) + '_KDTree.pkl') + with open(kd_tree_file, 'wb') as f: + pickle.dump(search_tree, f) + + proj_idx = np.squeeze(search_tree.query(xyz, return_distance=False)) + proj_idx = proj_idx.astype(np.int32) + proj_save = os.path.join(sub_pc_folder, str(save_path.split('/')[-1][:-4]) + '_proj.pkl') + with open(proj_save, 'wb') as f: + pickle.dump([proj_idx, labels], f) + + filenames = glob.glob(os.path.join(self.root, 'original_ply', '*.ply')) + + val_area_name = 'Area_' + str(test_area) + self.all_files = [] + for filename in filenames: + if train and val_area_name not in filename: + self.all_files.append(filename) + elif (not train) and (val_area_name in filename): + self.all_files.append(filename) + + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + self.download() + + def download(self): + logging.debug("ShapeNet dataset download") + if valeodata_exists: + self.root = valeodata.download(self.root) + else: + logging.info(f"Dataset at {self.root}") + logging.debug(f"Dataset at {self.root}") + + + def process(self): + pass + + def len(self): + return len(self.all_files) + + def get(self, idx): + """Get item.""" + + tree_path = os.path.join(self.root, 'input_{:.3f}'.format(self.sub_grid_size)) + file_path = self.all_files[idx] + cloud_name = file_path.split('/')[-1][:-4] + sub_ply_file = os.path.join(tree_path, '{:s}.ply'.format(cloud_name)) + data = read_ply(sub_ply_file) + sub_points = np.vstack((data['x'], data['y'], data['z'])).T + sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T + sub_labels = data['class'] + + x = torch.tensor(sub_colors, dtype=torch.float) + pos = torch.tensor(sub_points, dtype=torch.float) + y = torch.tensor(sub_labels, dtype=torch.long) + + data = Data(pos=pos, y=y, x=x) + + return data + + +class S3DIS_TrainVal_NumIter(Dataset): + + def __init__(self, + root, + test_area=6, + train=True, + transform=None, + num_iter=1000, + **kwargs): + assert test_area >= 1 and test_area <= 6 + self.test_area = test_area + super().__init__(root, transform, None) + self.num_iter = num_iter + + logging.info(f"S3DIS - training {train} - val area {test_area}") + + self.label_to_names = {0: 'ceiling', + 1: 'floor', + 2: 'wall', + 3: 'beam', + 4: 'column', + 5: 'window', + 6: 'door', + 7: 'table', + 8: 'chair', + 9: 'sofa', + 10: 'bookcase', + 11: 'board', + 12: 'clutter'} + self.num_classes = len(self.label_to_names) + self.label_values = np.sort([k for k, v in self.label_to_names.items()]) + self.label_to_idx = {l: i for i, l in enumerate(self.label_values)} + self.ignored_labels = np.array([]) + + self.anno_paths = [ + "Area_1/conferenceRoom_1/Annotations", + "Area_1/conferenceRoom_2/Annotations", + "Area_1/copyRoom_1/Annotations", + "Area_1/hallway_1/Annotations", + "Area_1/hallway_2/Annotations", + "Area_1/hallway_3/Annotations", + "Area_1/hallway_4/Annotations", + "Area_1/hallway_5/Annotations", + "Area_1/hallway_6/Annotations", + "Area_1/hallway_7/Annotations", + "Area_1/hallway_8/Annotations", + "Area_1/office_10/Annotations", + "Area_1/office_11/Annotations", + "Area_1/office_12/Annotations", + "Area_1/office_13/Annotations", + "Area_1/office_14/Annotations", + "Area_1/office_15/Annotations", + "Area_1/office_16/Annotations", + "Area_1/office_17/Annotations", + "Area_1/office_18/Annotations", + "Area_1/office_19/Annotations", + "Area_1/office_1/Annotations", + "Area_1/office_20/Annotations", + "Area_1/office_21/Annotations", + "Area_1/office_22/Annotations", + "Area_1/office_23/Annotations", + "Area_1/office_24/Annotations", + "Area_1/office_25/Annotations", + "Area_1/office_26/Annotations", + "Area_1/office_27/Annotations", + "Area_1/office_28/Annotations", + "Area_1/office_29/Annotations", + "Area_1/office_2/Annotations", + "Area_1/office_30/Annotations", + "Area_1/office_31/Annotations", + "Area_1/office_3/Annotations", + "Area_1/office_4/Annotations", + "Area_1/office_5/Annotations", + "Area_1/office_6/Annotations", + "Area_1/office_7/Annotations", + "Area_1/office_8/Annotations", + "Area_1/office_9/Annotations", + "Area_1/pantry_1/Annotations", + "Area_1/WC_1/Annotations", + "Area_2/auditorium_1/Annotations", + "Area_2/auditorium_2/Annotations", + "Area_2/conferenceRoom_1/Annotations", + "Area_2/hallway_10/Annotations", + "Area_2/hallway_11/Annotations", + "Area_2/hallway_12/Annotations", + "Area_2/hallway_1/Annotations", + "Area_2/hallway_2/Annotations", + "Area_2/hallway_3/Annotations", + "Area_2/hallway_4/Annotations", + "Area_2/hallway_5/Annotations", + "Area_2/hallway_6/Annotations", + "Area_2/hallway_7/Annotations", + "Area_2/hallway_8/Annotations", + "Area_2/hallway_9/Annotations", + "Area_2/office_10/Annotations", + "Area_2/office_11/Annotations", + "Area_2/office_12/Annotations", + "Area_2/office_13/Annotations", + "Area_2/office_14/Annotations", + "Area_2/office_1/Annotations", + "Area_2/office_2/Annotations", + "Area_2/office_3/Annotations", + "Area_2/office_4/Annotations", + "Area_2/office_5/Annotations", + "Area_2/office_6/Annotations", + "Area_2/office_7/Annotations", + "Area_2/office_8/Annotations", + "Area_2/office_9/Annotations", + "Area_2/storage_1/Annotations", + "Area_2/storage_2/Annotations", + "Area_2/storage_3/Annotations", + "Area_2/storage_4/Annotations", + "Area_2/storage_5/Annotations", + "Area_2/storage_6/Annotations", + "Area_2/storage_7/Annotations", + "Area_2/storage_8/Annotations", + "Area_2/storage_9/Annotations", + "Area_2/WC_1/Annotations", + "Area_2/WC_2/Annotations", + "Area_3/conferenceRoom_1/Annotations", + "Area_3/hallway_1/Annotations", + "Area_3/hallway_2/Annotations", + "Area_3/hallway_3/Annotations", + "Area_3/hallway_4/Annotations", + "Area_3/hallway_5/Annotations", + "Area_3/hallway_6/Annotations", + "Area_3/lounge_1/Annotations", + "Area_3/lounge_2/Annotations", + "Area_3/office_10/Annotations", + "Area_3/office_1/Annotations", + "Area_3/office_2/Annotations", + "Area_3/office_3/Annotations", + "Area_3/office_4/Annotations", + "Area_3/office_5/Annotations", + "Area_3/office_6/Annotations", + "Area_3/office_7/Annotations", + "Area_3/office_8/Annotations", + "Area_3/office_9/Annotations", + "Area_3/storage_1/Annotations", + "Area_3/storage_2/Annotations", + "Area_3/WC_1/Annotations", + "Area_3/WC_2/Annotations", + "Area_4/conferenceRoom_1/Annotations", + "Area_4/conferenceRoom_2/Annotations", + "Area_4/conferenceRoom_3/Annotations", + "Area_4/hallway_10/Annotations", + "Area_4/hallway_11/Annotations", + "Area_4/hallway_12/Annotations", + "Area_4/hallway_13/Annotations", + "Area_4/hallway_14/Annotations", + "Area_4/hallway_1/Annotations", + "Area_4/hallway_2/Annotations", + "Area_4/hallway_3/Annotations", + "Area_4/hallway_4/Annotations", + "Area_4/hallway_5/Annotations", + "Area_4/hallway_6/Annotations", + "Area_4/hallway_7/Annotations", + "Area_4/hallway_8/Annotations", + "Area_4/hallway_9/Annotations", + "Area_4/lobby_1/Annotations", + "Area_4/lobby_2/Annotations", + "Area_4/office_10/Annotations", + "Area_4/office_11/Annotations", + "Area_4/office_12/Annotations", + "Area_4/office_13/Annotations", + "Area_4/office_14/Annotations", + "Area_4/office_15/Annotations", + "Area_4/office_16/Annotations", + "Area_4/office_17/Annotations", + "Area_4/office_18/Annotations", + "Area_4/office_19/Annotations", + "Area_4/office_1/Annotations", + "Area_4/office_20/Annotations", + "Area_4/office_21/Annotations", + "Area_4/office_22/Annotations", + "Area_4/office_2/Annotations", + "Area_4/office_3/Annotations", + "Area_4/office_4/Annotations", + "Area_4/office_5/Annotations", + "Area_4/office_6/Annotations", + "Area_4/office_7/Annotations", + "Area_4/office_8/Annotations", + "Area_4/office_9/Annotations", + "Area_4/storage_1/Annotations", + "Area_4/storage_2/Annotations", + "Area_4/storage_3/Annotations", + "Area_4/storage_4/Annotations", + "Area_4/WC_1/Annotations", + "Area_4/WC_2/Annotations", + "Area_4/WC_3/Annotations", + "Area_4/WC_4/Annotations", + "Area_5/conferenceRoom_1/Annotations", + "Area_5/conferenceRoom_2/Annotations", + "Area_5/conferenceRoom_3/Annotations", + "Area_5/hallway_10/Annotations", + "Area_5/hallway_11/Annotations", + "Area_5/hallway_12/Annotations", + "Area_5/hallway_13/Annotations", + "Area_5/hallway_14/Annotations", + "Area_5/hallway_15/Annotations", + "Area_5/hallway_1/Annotations", + "Area_5/hallway_2/Annotations", + "Area_5/hallway_3/Annotations", + "Area_5/hallway_4/Annotations", + "Area_5/hallway_5/Annotations", + "Area_5/hallway_6/Annotations", + "Area_5/hallway_7/Annotations", + "Area_5/hallway_8/Annotations", + "Area_5/hallway_9/Annotations", + "Area_5/lobby_1/Annotations", + "Area_5/office_10/Annotations", + "Area_5/office_11/Annotations", + "Area_5/office_12/Annotations", + "Area_5/office_13/Annotations", + "Area_5/office_14/Annotations", + "Area_5/office_15/Annotations", + "Area_5/office_16/Annotations", + "Area_5/office_17/Annotations", + "Area_5/office_18/Annotations", + "Area_5/office_19/Annotations", + "Area_5/office_1/Annotations", + "Area_5/office_20/Annotations", + "Area_5/office_21/Annotations", + "Area_5/office_22/Annotations", + "Area_5/office_23/Annotations", + "Area_5/office_24/Annotations", + "Area_5/office_25/Annotations", + "Area_5/office_26/Annotations", + "Area_5/office_27/Annotations", + "Area_5/office_28/Annotations", + "Area_5/office_29/Annotations", + "Area_5/office_2/Annotations", + "Area_5/office_30/Annotations", + "Area_5/office_31/Annotations", + "Area_5/office_32/Annotations", + "Area_5/office_33/Annotations", + "Area_5/office_34/Annotations", + "Area_5/office_35/Annotations", + "Area_5/office_36/Annotations", + "Area_5/office_37/Annotations", + "Area_5/office_38/Annotations", + "Area_5/office_39/Annotations", + "Area_5/office_3/Annotations", + "Area_5/office_40/Annotations", + "Area_5/office_41/Annotations", + "Area_5/office_42/Annotations", + "Area_5/office_4/Annotations", + "Area_5/office_5/Annotations", + "Area_5/office_6/Annotations", + "Area_5/office_7/Annotations", + "Area_5/office_8/Annotations", + "Area_5/office_9/Annotations", + "Area_5/pantry_1/Annotations", + "Area_5/storage_1/Annotations", + "Area_5/storage_2/Annotations", + "Area_5/storage_3/Annotations", + "Area_5/storage_4/Annotations", + "Area_5/WC_1/Annotations", + "Area_5/WC_2/Annotations", + "Area_6/conferenceRoom_1/Annotations", + "Area_6/copyRoom_1/Annotations", + "Area_6/hallway_1/Annotations", + "Area_6/hallway_2/Annotations", + "Area_6/hallway_3/Annotations", + "Area_6/hallway_4/Annotations", + "Area_6/hallway_5/Annotations", + "Area_6/hallway_6/Annotations", + "Area_6/lounge_1/Annotations", + "Area_6/office_10/Annotations", + "Area_6/office_11/Annotations", + "Area_6/office_12/Annotations", + "Area_6/office_13/Annotations", + "Area_6/office_14/Annotations", + "Area_6/office_15/Annotations", + "Area_6/office_16/Annotations", + "Area_6/office_17/Annotations", + "Area_6/office_18/Annotations", + "Area_6/office_19/Annotations", + "Area_6/office_1/Annotations", + "Area_6/office_20/Annotations", + "Area_6/office_21/Annotations", + "Area_6/office_22/Annotations", + "Area_6/office_23/Annotations", + "Area_6/office_24/Annotations", + "Area_6/office_25/Annotations", + "Area_6/office_26/Annotations", + "Area_6/office_27/Annotations", + "Area_6/office_28/Annotations", + "Area_6/office_29/Annotations", + "Area_6/office_2/Annotations", + "Area_6/office_30/Annotations", + "Area_6/office_31/Annotations", + "Area_6/office_32/Annotations", + "Area_6/office_33/Annotations", + "Area_6/office_34/Annotations", + "Area_6/office_35/Annotations", + "Area_6/office_36/Annotations", + "Area_6/office_37/Annotations", + "Area_6/office_3/Annotations", + "Area_6/office_4/Annotations", + "Area_6/office_5/Annotations", + "Area_6/office_6/Annotations", + "Area_6/office_7/Annotations", + "Area_6/office_8/Annotations", + "Area_6/office_9/Annotations", + "Area_6/openspace_1/Annotations", + "Area_6/pantry_1/Annotations",] + + self.gt_class = [ + "ceiling", + "floor", + "wall", + "beam", + "column", + "window", + "door", + "table", + "chair", + "sofa", + "bookcase", + "board", + "clutter",] + + sub_grid_size = 0.040 + self.sub_grid_size = 0.040 + if (not os.path.exists(os.path.join(self.root, 'original_ply'))) or (not os.path.exists(os.path.join(self.root, f'input_{sub_grid_size:.3f}'))): + # path does not exists + + anno_paths = [os.path.join(self.root, p) for p in self.anno_paths] + gt_class2label = {cls: i for i, cls in enumerate(self.gt_class)} + + original_pc_folder = os.path.join(self.root, 'original_ply') + sub_pc_folder = os.path.join(self.root, f'input_{sub_grid_size:.3f}') + os.makedirs(original_pc_folder, exist_ok=True) + os.makedirs(sub_pc_folder, exist_ok=True) + out_format = '.ply' + + # Note: there is an extra character in the v1.2 data in Area_5/hallway_6. It's fixed manually. + for annotation_path in anno_paths: + print(annotation_path) + elements = str(annotation_path).split('/') + out_file_name = elements[-3] + '_' + elements[-2] + out_format + + save_path = os.path.join(original_pc_folder, out_file_name) + + # convert_pc2ply(annotation_path, save_path) + + data_list = [] + + for f in glob.glob(os.path.join(annotation_path, '*.txt')): + class_name = os.path.basename(f).split('_')[0] + if class_name not in self.gt_class: # note: in some room there is 'staris' class.. + class_name = 'clutter' + pc = pd.read_csv(f, header=None, delim_whitespace=True).values + labels = np.ones((pc.shape[0], 1)) * gt_class2label[class_name] + data_list.append(np.concatenate([pc, labels], 1)) # Nx7 + + pc_label = np.concatenate(data_list, 0) + xyz_min = np.amin(pc_label, axis=0)[0:3] + pc_label[:, 0:3] -= xyz_min + + xyz = pc_label[:, :3].astype(np.float32) + colors = pc_label[:, 3:6].astype(np.uint8) + labels = pc_label[:, 6].astype(np.uint8) + write_ply(save_path, (xyz, colors, labels), ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + + # save sub_cloud and KDTree file + sub_xyz, sub_colors, sub_labels = DP.grid_sub_sampling(xyz, colors, labels, sub_grid_size) + sub_colors = sub_colors / 255.0 + sub_ply_file = os.path.join(sub_pc_folder, save_path.split('/')[-1][:-4] + '.ply') + write_ply(sub_ply_file, [sub_xyz, sub_colors, sub_labels], ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + + search_tree = KDTree(sub_xyz) + kd_tree_file = os.path.join(sub_pc_folder, str(save_path.split('/')[-1][:-4]) + '_KDTree.pkl') + with open(kd_tree_file, 'wb') as f: + pickle.dump(search_tree, f) + + proj_idx = np.squeeze(search_tree.query(xyz, return_distance=False)) + proj_idx = proj_idx.astype(np.int32) + proj_save = os.path.join(sub_pc_folder, str(save_path.split('/')[-1][:-4]) + '_proj.pkl') + with open(proj_save, 'wb') as f: + pickle.dump([proj_idx, labels], f) + + filenames = glob.glob(os.path.join(self.root, 'original_ply', '*.ply')) + + val_area_name = 'Area_' + str(test_area) + self.all_files = [] + for filename in filenames: + if train and val_area_name not in filename: + self.all_files.append(filename) + elif (not train) and (val_area_name in filename): + self.all_files.append(filename) + + # computing the picking probability + self.prob_all_files = [] + for idx in range(len(self.all_files)): + tree_path = os.path.join(self.root, 'input_{:.3f}'.format(self.sub_grid_size)) + file_path = self.all_files[idx] + cloud_name = file_path.split('/')[-1][:-4] + sub_ply_file = os.path.join(tree_path, '{:s}.ply'.format(cloud_name)) + data = read_ply(sub_ply_file) + num_points_in_file = data['x'].shape[0] + self.prob_all_files.append(num_points_in_file) + self.prob_all_files = np.array(self.prob_all_files, dtype=np.float64) + self.prob_all_files /= self.prob_all_files.sum() + self.prob_all_files = np.cumsum(self.prob_all_files) + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + self.download() + + def download(self): + logging.debug("ShapeNet dataset download") + if valeodata_exists: + self.root = valeodata.download(self.root) + else: + logging.info(f"Dataset at {self.root}") + logging.debug(f"Dataset at {self.root}") + + def _process(self): + pass + + def process(self): + pass + + def len(self): + return self.num_iter + + def get(self, idx): + """Get item.""" + + # pick a random number + # prob = torch.rand((1,)).item() + # idx = 0 + # for id_file, prob_file in enumerate(self.prob_all_files): + # if prob < prob_file: + # idx = id_file + # break + + idx = idx % len(self.all_files) + + # tree_path = os.path.join(self.root, 'input_{:.3f}'.format(self.sub_grid_size)) + # file_path = self.all_files[idx] + # cloud_name = file_path.split('/')[-1][:-4] + # sub_ply_file = os.path.join(tree_path, '{:s}.ply'.format(cloud_name)) + # data = read_ply(sub_ply_file) + # sub_points = np.vstack((data['x'], data['y'], data['z'])).T + # sub_points = sub_points.astype(np.float32) + # sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T + # sub_labels = data['class'] + + tree_path = os.path.join(self.root, 'original_ply'.format(self.sub_grid_size)) + file_path = self.all_files[idx] + cloud_name = file_path.split('/')[-1][:-4] + sub_ply_file = os.path.join(tree_path, '{:s}.ply'.format(cloud_name)) + data = read_ply(sub_ply_file) + sub_points = np.vstack((data['x'], data['y'], data['z'])).T + sub_points = sub_points.astype(np.float32) + sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T + sub_colors = sub_colors.astype(np.float32)/255 + sub_labels = data['class'] + + + + x = torch.tensor(sub_colors, dtype=torch.float) + pos = torch.tensor(sub_points, dtype=torch.float) + y = torch.tensor(sub_labels, dtype=torch.long) + + data = Data(pos=pos, y=y, x=x) + + return data \ No newline at end of file diff --git a/lightconvpoint/datasets/semantic_kitti.py b/lightconvpoint/datasets/semantic_kitti.py new file mode 100644 index 0000000..606044c --- /dev/null +++ b/lightconvpoint/datasets/semantic_kitti.py @@ -0,0 +1,230 @@ +import os +import numpy as np +import glob +import torch +from torch_geometric.data import Dataset +from torch_geometric.data import Data +import pickle +from .helper_ply import write_ply, read_ply +from .helper_tool import DataProcessing as DP +import importlib +if importlib.util.find_spec("valeodata") is not None: + valeodata_exists = True + import valeodata +else: + valeodata_exists = False + +from sklearn.neighbors import KDTree +import logging +from pathlib import Path +import yaml + +class SemanticKITTI(Dataset): + + def __init__(self, + root, + split="train", + transform=None, + pre_grid_sampling=None, + **kwargs): + self.split = split + self.n_frames = 1 + self.pre_grid_sampling = pre_grid_sampling + super().__init__(root, transform, None) + logging.info(f"SemanticKITTI - split {split}") + + + + + for i in range(len(self.all_files)): + fname = str(self.all_files[i]).split("/")[-3:] + fname = os.path.join(fname[0], fname[1], fname[2]) + self.all_files[i] = fname + + # Read labels + if self.n_frames == 1: + config_file = os.path.join(self.root, 'semantic-kitti.yaml') + elif self.n_frames > 1: + config_file = os.path.join(self.root, 'semantic-kitti-all.yaml') + else: + raise ValueError('number of frames has to be >= 1') + + with open(config_file, 'r') as stream: + doc = yaml.safe_load(stream) + all_labels = doc['labels'] + learning_map_inv = doc['learning_map_inv'] + learning_map = doc['learning_map'] + self.learning_map = np.zeros((np.max([k for k in learning_map.keys()]) + 1), dtype=np.int32) + for k, v in learning_map.items(): + self.learning_map[k] = v + + self.learning_map_inv = np.zeros((np.max([k for k in learning_map_inv.keys()]) + 1), dtype=np.int32) + for k, v in learning_map_inv.items(): + self.learning_map_inv[k] = v + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + self.download() + + def download(self): + + if valeodata_exists: + if self.pre_grid_sampling is not None: + try: + self.root = valeodata.download(os.path.join(self.root, f"processed_{self.pre_grid_sampling}_{self.n_frames}")) + self.is_preprocessed=True + except FileExistsError: + logging.warning(f"preprocessed dataset processed_{self.pre_grid_sampling}_{self.n_frames} does not exist, downloading full dataset") + self.root = valeodata.download(self.root) + self.is_preprocessed=False + else: + self.root = valeodata.download(self.root) + self.is_preprocessed=True # no need for preprocessings + + else: + if self.pre_grid_sampling is not None: + if f"processed_{self.pre_grid_sampling}_{self.n_frames}" in self.root: + self.is_preprocessed = True + else: + self.is_preprocessed = False + + logging.info(f"Dataset at {self.root}, preprocessed {self.is_preprocessed}") + + def _process(self): + + # Get a list of sequences + if self.split in ["training", "train"]: + self.sequences = ['{:02d}'.format(i) for i in range(11) if i != 8] + elif self.split in ["validation", "val"]: + self.sequences = ['{:02d}'.format(i) for i in range(11) if i == 8] + elif self.split in ["trainVal", "train_val"]: + self.sequences = ['{:02d}'.format(i) for i in range(11)] + elif self.split in ["test"]: + self.sequences = ['{:02d}'.format(i) for i in range(11, 22)] + else: + raise ValueError('Unknown set for SemanticKitti data: ', self.set) + + if not self.is_preprocessed: # requiring a pre-processing + self.process() + + # get the filenames + self.all_files = [] + for sequence in self.sequences: + if self.pre_grid_sampling is not None: + self.all_files += [path for path in Path(os.path.join(self.root, sequence, "velodyne")).rglob('*.ply')] + else: + self.all_files += [path for path in Path(os.path.join(self.root, "dataset", "sequences", sequence, "velodyne")).rglob('*.bin')] + + + def process(self): + raise NotImplementedError + + def len(self): + return len(self.all_files) + + def get(self, idx): + """Get item.""" + + if self.pre_grid_sampling: + fname_points = self.all_files[idx] + data = read_ply(os.path.join(self.root, fname_points)) + pos = np.vstack((data['x'], data['y'], data['z'])).T + x = np.ones((pos.shape[0], 1), dtype=np.float32) + y = data['class'] + + else: + + # get the filenamess + fname_points = self.all_files[idx] + fname_labels = str(fname_points).replace("velodyne", "labels").replace(".bin", ".label") + + # load the data + pos = np.fromfile(os.path.join(self.root, "dataset", "sequences",fname_points), dtype=np.float32).reshape((-1, 4)) + pos = pos[:,:3] + y = np.fromfile(os.path.join(self.root, "dataset", "sequences",fname_labels), dtype=np.int32) + y = y & 0xFFFF # semantic label in lower half + y = self.learning_map[y] + + # remove unlabeled data + mask = (y>0) + pos = pos[mask] + y = y[mask] + x = np.ones((pos.shape[0], 1), dtype=np.float32) + + pos = torch.tensor(pos, dtype=torch.float) + x = torch.tensor(x, dtype=torch.float) + y = torch.tensor(y, dtype=torch.long) + + data = Data(pos=pos, y=y, x=x) + return data + + + # if self.pre_grid_sampling is not None: + + # dir_processed = os.path.join(self.root, f"processed_{self.pre_grid_sampling}_{self.n_frames}") + # fname_processed_points = os.path.join(dir_processed, str(fname_points).replace(".bin",".ply")) + # fname_processed_proj = os.path.join(dir_processed, str(fname_points).replace(".bin","_proj.pkl")) + + # if not os.path.isfile(fname_processed_points): + # pos = np.fromfile(os.path.join(self.root, "dataset", "sequences",fname_points), dtype=np.float32).reshape((-1, 4)) + # x = pos[:,3:] + # pos = pos[:,:3] + # y = np.fromfile(os.path.join(self.root, "dataset", "sequences",fname_labels), dtype=np.int32) + # y = y & 0xFFFF # semantic label in lower half + # y = self.learning_map[y] + + # pos = pos.astype(np.float32) + # x = np.repeat((x*255).astype(np.uint8), 3, axis=1) + # y = y.astype(np.uint8) + + # mask = (y>0) + # pos = pos[mask] + # x = x[mask] + # y = y[mask] + + # sub_pos, sub_x, sub_y = DP.grid_sub_sampling(pos, x, y, self.pre_grid_sampling) + + # os.makedirs(os.path.dirname(fname_processed_points), exist_ok=True) + # # write_ply(fname_processed_points, (sub_pos, sub_x, sub_y), ['x', 'y', 'z', 'red', 'green', 'blue', 'class']) + # write_ply(fname_processed_points, (sub_pos, sub_y), ['x', 'y', 'z', 'class']) + + # search_tree = KDTree(sub_pos) + # proj_idx = np.squeeze(search_tree.query(pos, return_distance=False)) + # proj_idx = proj_idx.astype(np.int32) + # with open(fname_processed_proj, 'wb') as f: + # pickle.dump([proj_idx, y], f) + + # data = read_ply(fname_processed_points) + # pos = np.vstack((data['x'], data['y'], data['z'])).T + # # x = np.expand_dims(data['red'].astype(np.float32)/255, axis=1) + # x = np.ones((pos.shape[0], 1), dtype=np.float32) + # y = data['class'] + + + # else: + # pos = np.fromfile(os.path.join(self.root, "dataset", "sequences",fname_points), dtype=np.float32).reshape((-1, 4)) + # pos = pos[:,:3] + # y = np.fromfile(os.path.join(self.root, "dataset", "sequences",fname_labels), dtype=np.int32) + # y = y & 0xFFFF # semantic label in lower half + # y = self.learning_map[y] + + # mask = (y>0) + # pos = pos[mask] + # y = y[mask] + + # x = np.ones((pos.shape[0], 1), dtype=np.float32) + + # pos = torch.tensor(pos, dtype=torch.float) + # x = torch.tensor(x, dtype=torch.float) + # y = torch.tensor(y, dtype=torch.long) + + # data = Data(pos=pos, y=y, x=x) + + # return data \ No newline at end of file diff --git a/lightconvpoint/datasets/shapenet.py b/lightconvpoint/datasets/shapenet.py new file mode 100644 index 0000000..1cfcb29 --- /dev/null +++ b/lightconvpoint/datasets/shapenet.py @@ -0,0 +1,151 @@ +from unicodedata import category +import torch +import numpy as np +import lightconvpoint.utils.data_utils as data_utils +import os + +from torch_geometric.data import Dataset +from lightconvpoint.datasets.data import Data +import logging + +import importlib +if importlib.util.find_spec("valeodata") is not None: + valeodata_exists = True + import valeodata +else: + valeodata_exists = False + + + + +class ShapeNet(Dataset): + + def __init__( + self, root, split="training",transform=None): + super().__init__(root, transform, None) + self.split = split + self.num_classes = 50 + self.label_names = [ + ["Airplane", 4], + ["Bag", 2], + ["Cap", 2], + ["Car", 4], + ["Chair", 4], + ["Earphone", 3], + ["Guitar", 3], + ["Knife", 2], + ["Lamp", 4], + ["Laptop", 2], + ["Motorbike", 6], + ["Mug", 2], + ["Pistol", 3], + ["Rocket", 3], + ["Skateboard", 3], + ["Table", 3], + ] + + self.category_range = [] + count = 0 + for element in self.label_names: + part_start = count + count += element[1] + part_end = count + self.category_range.append([part_start, part_end]) + + if self.split == 'training': + filelist_train = os.path.join(self.root, "train_files.txt") + filelist_val = os.path.join(self.root, "val_files.txt") + ( + data_train, + labels_shape_train, + data_num_train, + labels_pts_train, + _, + ) = data_utils.load_seg(filelist_train) + ( + data_val, + labels_shape_val, + data_num_val, + labels_pts_val, + _, + ) = data_utils.load_seg(filelist_val) + self.data = np.concatenate([data_train, data_val], axis=0) + self.labels_shape = np.concatenate([labels_shape_train, labels_shape_val], axis=0) + self.data_num = np.concatenate([data_num_train, data_num_val], axis=0) + self.labels_pts = np.concatenate([labels_pts_train, labels_pts_val], axis=0) + + + elif self.split == 'test': + filelist_test = os.path.join(self.root, "test_files.txt") + ( + data_test, + labels_shape_test, + data_num_test, + labels_pts_test, + _, + ) = data_utils.load_seg(filelist_test) + self.data = data_test + self.labels_shape = labels_shape_test + self.data_num = data_num_test + self.labels_pts = labels_pts_test + + + @property + def raw_file_names(self): + return [] + + @property + def processed_file_names(self): + return [] + + def _download(self): # override _download to remove makedirs + self.download() + + def download(self): + logging.debug("ShapeNet dataset download") + if valeodata_exists: + self.root = valeodata.download(self.root) + else: + logging.info(f"Dataset at {self.root}") + logging.debug(f"Dataset at {self.root}") + + def process(self): + pass + + def len(self): + return self.data.shape[0] + + def get(self, idx): + """Get item.""" + # get the data + npts = self.data_num[idx] + shape_label = int(self.labels_shape[idx]) + + # the points and target + pos = torch.tensor(self.data[idx, :npts], dtype=torch.float) + y = torch.tensor(self.labels_pts[idx, :npts], dtype=torch.long) + x = torch.ones_like(pos) + category_filter = torch.zeros(self.num_classes, dtype=torch.float) + part_start, part_end = self.category_range[shape_label] + category_filter[part_start: part_end] = 1 + category_filter = category_filter + data = Data(pos=pos, y=y, x=x, + shape_id=idx, shape_label=shape_label, + category_filter=category_filter) + return data + + # def get_weights(self): + + # if self.split == 'training': + # frequences = [0 for i in range(len(self.label_names))] + # for i in range(len(self.label_names)): + # frequences[i] += (self.labels_shape == i).sum() + # for i in range(len(self.label_names)): + # frequences[i] /= self.label_names[i][1] + # frequences = np.array(frequences) + # frequences = frequences.mean() / frequences + # repeat_factor = [sh[1] for sh in self.label_names] + # weights = np.repeat(frequences, repeat_factor) + # else: + # weights = None + # return weights \ No newline at end of file diff --git a/lightconvpoint/knn/__init__.py b/lightconvpoint/knn/__init__.py new file mode 100644 index 0000000..ca22813 --- /dev/null +++ b/lightconvpoint/knn/__init__.py @@ -0,0 +1,5 @@ +from .knn_op import knn +from .sampling_quantized_op import sampling_knn_quantized, sampling_quantized +from .sampling_random_op import sampling_random, sampling_knn_random +from .sampling_fps_op import sampling_fps, sampling_knn_fps +from .sampling_convpoint_op import sampling_knn_convpoint \ No newline at end of file diff --git a/lightconvpoint/knn/knn_op.py b/lightconvpoint/knn/knn_op.py new file mode 100644 index 0000000..8023190 --- /dev/null +++ b/lightconvpoint/knn/knn_op.py @@ -0,0 +1,34 @@ +import torch +from torch_geometric.nn.pool import knn as tc_knn + +import importlib +knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') + +if knn_c_func_spec is not None: + knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) + knn_c_func_spec.loader.exec_module(knn_c_func) + +def knn(points: torch.Tensor, queries: torch.Tensor, K: int): + + if knn_c_func_spec is not None: + return knn_c_func.knn(points, queries, K) + + bs = points.shape[0] + dim= points.shape[1] + nx = points.shape[2] + ny = queries.shape[2] + + K = min(K, nx) + + batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) + batch_y = torch.arange(0, bs, dtype=torch.long, device=queries.device).unsqueeze(1).expand(bs,ny) + + x = points.transpose(1,2).reshape(-1, dim) + y = queries.transpose(1,2).reshape(-1, dim) + batch_x = batch_x.view(-1) + batch_y = batch_y.view(-1) + + indices = tc_knn(x,y,K,batch_x=batch_x, batch_y=batch_y) + indices = indices[1] + return indices.view(bs,ny,K) + diff --git a/lightconvpoint/knn/sampling_convpoint_op.py b/lightconvpoint/knn/sampling_convpoint_op.py new file mode 100644 index 0000000..d7f716c --- /dev/null +++ b/lightconvpoint/knn/sampling_convpoint_op.py @@ -0,0 +1,19 @@ +import torch +import math +from torch_geometric.nn.pool import voxel_grid +from lcp.knn import knn + +import importlib +knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') + +if knn_c_func_spec is not None: + knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) + knn_c_func_spec.loader.exec_module(knn_c_func) + + +def sampling_knn_convpoint(points: torch.Tensor, nqueries: int, K: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_knn_convpoint(points, nqueries, K) + else: + raise NotImplementedError diff --git a/lightconvpoint/knn/sampling_fps_op.py b/lightconvpoint/knn/sampling_fps_op.py new file mode 100644 index 0000000..ecb436e --- /dev/null +++ b/lightconvpoint/knn/sampling_fps_op.py @@ -0,0 +1,62 @@ +import torch +import math +from torch_geometric.nn.pool import fps +from lcp.knn import knn + +import importlib +knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') + +if knn_c_func_spec is not None: + knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) + knn_c_func_spec.loader.exec_module(knn_c_func) + +def sampling_fps(points: torch.Tensor, nqueries: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_fps(points, nqueries) + + bs, dim, nx = points.shape + + ratio = nqueries / nx + + batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) + + x = points.transpose(1,2).reshape(-1, dim) + batch_x = batch_x.view(-1) + + indices_queries = fps(x, batch_x, ratio) + + indices_queries = indices_queries.view(bs, -1) + + assert(indices_queries.shape[1] == nqueries) + return indices_queries + + + +def sampling_knn_fps(points: torch.Tensor, nqueries: int, K: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_knn_fps(points, nqueries, K) + + bs, dim, nx = points.shape + + ratio = nqueries / nx + + batch_x = torch.arange(0, bs, dtype=torch.long, device=points.device).unsqueeze(1).expand(bs,nx) + + x = points.transpose(1,2).reshape(-1, dim) + batch_x = batch_x.view(-1) + + indices_queries = fps(x, batch_x, ratio) + + points_queries = x[indices_queries] + + indices_queries = indices_queries.view(bs, -1) + points_queries = points_queries.view(bs,-1,3) + points_queries = points_queries.transpose(1,2) + + assert(indices_queries.shape[1] == nqueries) + + indices_knn = knn(points, points_queries, K) + + return indices_queries, indices_knn, points_queries \ No newline at end of file diff --git a/lightconvpoint/knn/sampling_quantized_op.py b/lightconvpoint/knn/sampling_quantized_op.py new file mode 100644 index 0000000..28063e8 --- /dev/null +++ b/lightconvpoint/knn/sampling_quantized_op.py @@ -0,0 +1,144 @@ +import torch +import math +from torch_geometric.nn.pool import voxel_grid +from lightconvpoint.knn import knn + +import importlib +knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') + +if knn_c_func_spec is not None: + knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) + knn_c_func_spec.loader.exec_module(knn_c_func) + +def unique(x, dim=None): + """Unique elements of x and indices of those unique elements + https://github.com/pytorch/pytorch/issues/36748#issuecomment-619514810 + + e.g. + + unique(tensor([ + [1, 2, 3], + [1, 2, 4], + [1, 2, 3], + [1, 2, 5] + ]), dim=0) + => (tensor([[1, 2, 3], + [1, 2, 4], + [1, 2, 5]]), + tensor([0, 1, 3])) + """ + unique, inverse = torch.unique( + x, sorted=True, return_inverse=True, dim=dim) + perm = torch.arange(inverse.size(0), dtype=inverse.dtype, + device=inverse.device) + inverse, perm = inverse.flip([0]), perm.flip([0]) + return unique, inverse.new_empty(unique.size(0)).scatter_(0, inverse, perm) + +def sampling_knn_quantized(points: torch.Tensor, nqueries: int, K: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_knn_quantized(points, nqueries, K) + + bs, dim, nx = points.shape + + mini = points.min(dim=2)[0] + maxi = points.max(dim=2)[0] + + initial_voxel_size = (maxi-mini).norm(2, dim=1) / math.sqrt(nqueries) + + indices_queries = [] + points_queries = [] + + for b_id in range(bs): + voxel_size = initial_voxel_size[b_id] + x = points[b_id].transpose(0,1) + + b_selected_points = [] + count = 0 + + x_ids = torch.arange(x.shape[0]) + + while(True): + batch_x = torch.zeros(x.shape[0], device=points.device, dtype=torch.long) + + voxel_ids = voxel_grid(x,batch_x, voxel_size) + _, unique_indices = unique(voxel_ids) + + if count + unique_indices.shape[0] >= nqueries: + unique_indices = unique_indices[torch.randperm(unique_indices.shape[0])] + b_selected_points.append(x_ids[unique_indices[:nqueries-count]]) + count += unique_indices.shape[0] + break + + b_selected_points.append(x_ids[unique_indices]) + count += unique_indices.shape[0] + + select = torch.ones(x.shape[0], dtype=torch.bool, device=x.device) + select[unique_indices] = False + x = x[select] + x_ids = x_ids[select] + voxel_size /= 2 + + b_selected_points = torch.cat(b_selected_points, dim=0) + indices_queries.append(b_selected_points) + + points_queries.append(points[b_id].transpose(0,1)[b_selected_points]) + + indices_queries = torch.stack(indices_queries, dim=0) + points_queries = torch.stack(points_queries, dim=0) + points_queries = points_queries.transpose(1,2) + + indices_knn = knn(points, points_queries, K) + + return indices_queries, indices_knn, points_queries + +def sampling_quantized(points: torch.Tensor, nqueries: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_quantized(points, nqueries) + + bs, dim, nx = points.shape + + mini = points.min(dim=2)[0] + maxi = points.max(dim=2)[0] + + initial_voxel_size = (maxi-mini).norm(2, dim=1) / math.sqrt(nqueries) + + indices_queries = [] + + for b_id in range(bs): + voxel_size = initial_voxel_size[b_id] + x = points[b_id].transpose(0,1) + + b_selected_points = [] + count = 0 + + x_ids = torch.arange(x.shape[0]) + + while(True): + batch_x = torch.zeros(x.shape[0], device=points.device, dtype=torch.long) + + voxel_ids = voxel_grid(x,batch_x, voxel_size) + _, unique_indices = unique(voxel_ids) + + if count + unique_indices.shape[0] >= nqueries: + unique_indices = unique_indices[torch.randperm(unique_indices.shape[0])] + b_selected_points.append(x_ids[unique_indices[:nqueries-count]]) + count += unique_indices.shape[0] + break + + b_selected_points.append(x_ids[unique_indices]) + count += unique_indices.shape[0] + + select = torch.ones(x.shape[0], dtype=torch.bool, device=x.device) + select[unique_indices] = False + x = x[select] + x_ids = x_ids[select] + voxel_size /= 2 + + b_selected_points = torch.cat(b_selected_points, dim=0) + indices_queries.append(b_selected_points) + + indices_queries = torch.stack(indices_queries, dim=0) + + return indices_queries \ No newline at end of file diff --git a/lightconvpoint/knn/sampling_random_op.py b/lightconvpoint/knn/sampling_random_op.py new file mode 100644 index 0000000..d07138d --- /dev/null +++ b/lightconvpoint/knn/sampling_random_op.py @@ -0,0 +1,55 @@ +import torch +import math +from lightconvpoint.knn import knn + +import importlib +knn_c_func_spec = importlib.util.find_spec('lightconvpoint.knn_c_func') + +if knn_c_func_spec is not None: + knn_c_func = importlib.util.module_from_spec(knn_c_func_spec) + knn_c_func_spec.loader.exec_module(knn_c_func) + +def sampling_random(points: torch.Tensor, nqueries: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_random(points, nqueries) + + bs, dim, nx = points.shape + + indices_queries = [] + + for b_id in range(bs): + + indices_queries_ = torch.randperm(nx)[:nqueries] + indices_queries.append(indices_queries_) + + indices_queries = torch.stack(indices_queries, dim=0) + + return indices_queries + +def sampling_knn_random(points: torch.Tensor, nqueries: int, K: int): + + if knn_c_func_spec is not None: + return knn_c_func.sampling_knn_random(points, nqueries, K) + + bs, dim, nx = points.shape + + indices_queries = [] + points_queries = [] + + for b_id in range(bs): + + indices_queries_ = torch.randperm(nx)[:nqueries] + indices_queries.append(indices_queries_) + + x = points[b_id].transpose(0,1) + points_queries.append(x[indices_queries_]) + + + indices_queries = torch.stack(indices_queries, dim=0) + points_queries = torch.stack(points_queries, dim=0) + points_queries = points_queries.transpose(1,2) + + indices_knn = knn(points, points_queries, K) + + return indices_queries, indices_knn, points_queries \ No newline at end of file diff --git a/lightconvpoint/networks/__init__.py b/lightconvpoint/networks/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/lightconvpoint/networks/convpoint_network.py b/lightconvpoint/networks/convpoint_network.py new file mode 100644 index 0000000..c40bedf --- /dev/null +++ b/lightconvpoint/networks/convpoint_network.py @@ -0,0 +1,239 @@ +import torch +import torch.nn as nn +from lightconvpoint.nn import Convolution_ConvPoint as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import knn, sampling_convpoint as sampling + + +class ConvPointNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64): + super().__init__() + + self.segmentation = segmentation + self.lcp_preprocess = True + + if self.segmentation: + + self.cv0 = Conv(in_channels, hidden, 16, bias=False,) + self.bn0 = nn.BatchNorm1d(hidden) + self.cv1 = Conv(hidden, hidden, 16, bias=False) + self.bn1 = nn.BatchNorm1d(hidden) + self.cv2 = Conv(hidden, hidden, 16, bias=False) + self.bn2 = nn.BatchNorm1d(hidden) + self.cv3 = Conv(hidden, hidden, 16, bias=False) + self.bn3 = nn.BatchNorm1d(hidden) + self.cv4 = Conv(hidden, 2*hidden, 16, bias=False) + self.bn4 = nn.BatchNorm1d(2*hidden) + self.cv5 = Conv(2*hidden, 2*hidden, 16, bias=False) + self.bn5 = nn.BatchNorm1d(2*hidden) + self.cv6 = Conv(2*hidden, 2*hidden, 16, bias=False) + self.bn6 = nn.BatchNorm1d(2*hidden) + + self.cv5d = Conv(2*hidden, 2*hidden, 16, bias=False) + self.bn5d = nn.BatchNorm1d(2*hidden) + self.cv4d = Conv(4*hidden, 2*hidden, 16, bias=False) + self.bn4d = nn.BatchNorm1d(2*hidden) + self.cv3d = Conv(4*hidden, hidden, 16, bias=False) + self.bn3d = nn.BatchNorm1d(hidden) + self.cv2d = Conv(2*hidden, hidden, 16, bias=False) + self.bn2d = nn.BatchNorm1d(hidden) + self.cv1d = Conv(2*hidden, hidden, 16, bias=False) + self.bn1d = nn.BatchNorm1d(hidden) + self.cv0d = Conv(2*hidden, hidden, 16, bias=False) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(2*hidden, out_channels, 1) + + else: + + self.cv1 = Conv(in_channels, hidden, 16, bias=False, sampling=sampling) + self.bn1 = nn.BatchNorm1d(hidden) + self.cv2 = Conv(hidden, 2*hidden, 16, bias=False, sampling=sampling) + self.bn2 = nn.BatchNorm1d(2*hidden) + self.cv3 = Conv(2*hidden, 4*hidden, 16, bias=False, sampling=sampling) + self.bn3 = nn.BatchNorm1d(4*hidden) + self.cv4 = Conv(4*hidden, 4*hidden, 16, bias=False, sampling=sampling) + self.bn4 = nn.BatchNorm1d(4*hidden) + self.cv5 = Conv(4*hidden, 8*hidden, 16, bias=False, sampling=sampling) + self.bn5 = nn.BatchNorm1d(8*hidden) + self.fcout = nn.Linear(8*hidden, out_channels) + + self.activation = nn.ReLU() + self.dropout = nn.Dropout(0.5) + + def forward(self, x, pos, support_points=None, neighbors_indices=None): + + if self.segmentation: + + if support_points is not None: + support1, support2, support3, support4, support5, support6 = support_points + else: + support1, support2, support3, support4, support5, support6 = [None for _ in range(6)] + + if neighbors_indices is not None: + ids0, ids1, ids2, ids3, ids4, ids5, ids6, ids5d, ids4d, ids3d, ids2d, ids1d, ids0d = neighbors_indices + else: + ids0, ids1, ids2, ids3, ids4, ids5, ids6, ids5d, ids4d, ids3d, ids2d, ids1d, ids0d = [None for _ in range(13)] + + support1, _ = sampling(pos, 0.25, support1, None) + ids1 = knn(pos, support1, 16, ids1) + support2, _ = sampling(support1, 0.25, support2, None) + ids2 = knn(support1, support2, 16, ids2) + support3, _ = sampling(support2, 0.25, support3, None) + ids3 = knn(support2, support3, 16, ids3) + support4, _ = sampling(support3, 0.25, support4, None) + ids4 = knn(support3, support4, 16, ids4) + support5, _ = sampling(support4, 0.25, support5, None) + ids5 = knn(support4, support5, 16, ids5) + support6, _ = sampling(support5, 0.25, support6, None) + ids6 = knn(support5, support6, 16, ids6) + ids5d = knn(support6, support5, 4, ids5d) + ids4d = knn(support5, support4, 4, ids4d) + ids3d = knn(support4, support3, 4, ids3d) + ids2d = knn(support3, support2, 8, ids2d) + ids1d = knn(support2, support1, 8, ids1d) + ids0d = knn(support1, pos, 8, ids0d) + ids0 = knn(pos, pos, 16, ids0) + + if x is not None: + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, ids0))) + x1 = self.activation(self.bn1(self.cv1(x0, pos, support1, ids1))) + x2 = self.activation(self.bn2(self.cv2(x1, support1, support2, ids2))) + x3 = self.activation(self.bn3(self.cv3(x2, support2, support3, ids3))) + x4 = self.activation(self.bn4(self.cv4(x3, support3, support4, ids4))) + x5 = self.activation(self.bn5(self.cv5(x4, support4, support5, ids5))) + x6 = self.activation(self.bn6(self.cv6(x5, support5, support6, ids6))) + x = self.activation(self.bn5d(self.cv5d(x6, support6, support5, ids5d))) + x = torch.cat([x, x5], dim=1) + x = self.activation(self.bn4d(self.cv4d(x, support5, support4, ids4d))) + x = torch.cat([x, x4], dim=1) + x = self.activation(self.bn3d(self.cv3d(x, support4, support3, ids3d))) + x = torch.cat([x, x3], dim=1) + x = self.activation(self.bn2d(self.cv2d(x, support3, support2, ids2d))) + x = torch.cat([x, x2], dim=1) + x = self.activation(self.bn1d(self.cv1d(x, support2, support1, ids1d))) + x = torch.cat([x, x1], dim=1) + x = self.activation(self.bn0d(self.cv0d(x, support1, pos, ids0d))) + x = torch.cat([x, x0], dim=1) + x = self.dropout(x) + x = self.fcout(x) + + return x, [support1, support2, support3, support4, support5, support6], [ids0, ids1, ids2, ids3, ids4, ids5, ids6, ids5d, ids4d, ids3d, ids2d, ids1d, ids0d] + + else: + + if support_points is not None: + support1, support2, support3, support4, support5 = support_points + else: + support1, support2, support3, support4, support5 = [None for _ in range(5)] + + if neighbors_indices is not None: + ids1, ids2, ids3, ids4, ids5 = neighbors_indices + else: + ids1, ids2, ids3, ids4, ids5 = [None for _ in range(5)] + + support1, _ = sampling(pos, 0.25, support1, None) + ids1 = knn(pos, support1, 16, ids1) + support2, _ = sampling(support1, 0.25, support2, None) + ids2 = knn(support1, support2, 16, ids2) + support3, _ = sampling(support2, 0.25, support3, None) + ids3 = knn(support2, support3, 16, ids3) + support4, _ = sampling(support3, 0.25, support4, None) + ids4 = knn(support3, support4, 16, ids4) + support5, _ = sampling(support4, 0.25, support5, None) + ids5 = knn(support4, support5, 16, ids5) + + if x is not None: + + x = self.activation(self.bn1(self.cv1(x, pos, support1, ids1))) + x = self.activation(self.bn2(self.cv2(x, support1, support2, ids2))) + x = self.activation(self.bn3(self.cv3(x, support2, support3, ids3))) + x = self.activation(self.bn4(self.cv4(x, support3, support4, ids4))) + x = self.activation(self.bn5(self.cv5(x, support4, support5, ids5))) + x = x.mean(dim=2) + x = self.dropout(x) + x = self.fcout(x) + + return x, [support1, support2, support3, support4, support5], [ids1, ids2, ids3, ids4, ids5] + + + + # def forward_without_features(self, pos, support_points=None, indices=None): + # if self.segmentation: + # _, _, ids0 = self.cv0(None, pos) + # _, support1, ids1 = self.cv1(None, pos) + # _, support2, ids2 = self.cv2(None, support1[0]) + # _, support3, ids3 = self.cv3(None, support2[0]) + # _, support4, ids4 = self.cv4(None, support3[0]) + # _, support5, ids5 = self.cv5(None, support4[0]) + # _, support6, ids6 = self.cv6(None, support5[0]) + + # _, _, ids5d = self.cv5d(None, support6[0], support5[0]) + # _, _, ids4d = self.cv4d(None, support5[0], support4[0]) + # _, _, ids3d = self.cv3d(None, support4[0], support3[0]) + # _, _, ids2d = self.cv2d(None, support3[0], support2[0]) + # _, _, ids1d = self.cv1d(None, support2[0], support1[0]) + # _, _, ids0d = self.cv0d(None, support1[0], pos) + + # support_points = support1 + support2 + support3 + support4 + support5 + support6 + # indices = ids0 + ids1 + ids2 + ids3 + ids4 + ids5 + ids6 + ids5d + ids4d + ids3d + ids2d + ids1d + ids0d + + # return None, support_points, indices + # else: + # _, support1, ids1 = self.cv1(None, pos) + # _, support2, ids2 = self.cv2(None, support1[0]) + # _, support3, ids3 = self.cv3(None, support2[0]) + # _, support4, ids4 = self.cv4(None, support3[0]) + # _, support5, ids5 = self.cv5(None, support4[0]) + + # support_points = support1 + support2 + support3 + support4 + support5 + # indices = ids1 + ids2 + ids3 + ids4 + ids5 + + # return None, support_points, indices + + + # def forward_with_features(self, x, pos, support_points=None, indices=None): + + # if self.segmentation: + + # ids0, ids1, ids2, ids3, ids4, ids5, ids6, ids5d, ids4d, ids3d, ids2d, ids1d, ids0d = indices + # support0, support1, support2, support3, support4, support5, support6 = support_points + + # ids0 = knn(pos, pos, 16, ids0) + # x0 = self.activation(self.bn0(self.cv0(x, pos, support0, ids0))) + # x1 = self.activation(self.bn1(self.cv1(x0, support0, support1, ids1))) + # x2 = self.activation(self.bn2(self.cv2(x1, support1, support2, ids2))) + # x3 = self.activation(self.bn3(self.cv3(x2, support2, support3, ids3))) + # x4 = self.activation(self.bn4(self.cv4(x3, support3, support4, ids4))) + # x5 = self.activation(self.bn5(self.cv5(x4, support4, support5, ids5))) + # x6 = self.activation(self.bn6(self.cv6(x5, support5, support6, ids6))) + # x = self.activation(self.bn5d(self.cv5d(x6, support6, support5, ids5d))) + # x = torch.cat([x, x5], dim=1) + # x = self.activation(self.bn4d(self.cv4d(x, support5, support4, ids4d))) + # x = torch.cat([x, x4], dim=1) + # x = self.activation(self.bn3d(self.cv3d(x, support4, support3, ids3d))) + # x = torch.cat([x, x3], dim=1) + # x = self.activation(self.bn2d(self.cv2d(x, support3, support2, ids2d))) + # x = torch.cat([x, x2], dim=1) + # x = self.activation(self.bn1d(self.cv1d(x, support2, support1, ids1d))) + # x = torch.cat([x, x1], dim=1) + # x = self.activation(self.bn0d(self.cv0d(x, support1, support0, ids0d))) + # x = torch.cat([x, x0], dim=1) + # x = self.dropout(x) + # x = self.fcout(x) + + # else: + + # ids1, ids2, ids3, ids4, ids5 = indices + # support1, support2, support3, support4, support5 = support_points + + # x = self.activation(self.bn1(self.cv1(x, pos, support1, ids1))) + # x = self.activation(self.bn2(self.cv2(x, support1, support2, ids2))) + # x = self.activation(self.bn3(self.cv3(x, support2, support3, ids3))) + # x = self.activation(self.bn4(self.cv4(x, support3, support4, ids4))) + # x = self.activation(self.bn5(self.cv5(x, support4, support5, ids5))) + # x = x.mean(dim=2) + # x = self.dropout(x) + # x = self.fcout(x) + + # return x diff --git a/lightconvpoint/networks/deprecated/__init__.py b/lightconvpoint/networks/deprecated/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/lightconvpoint/networks/deprecated/convpoint_network_.py b/lightconvpoint/networks/deprecated/convpoint_network_.py new file mode 100644 index 0000000..c06e85e --- /dev/null +++ b/lightconvpoint/networks/deprecated/convpoint_network_.py @@ -0,0 +1,162 @@ +import torch +import torch.nn as nn +import lightconvpoint.nn as lcp_nn +from lightconvpoint.nn.convolutions import ConvPoint +from lightconvpoint.nn import Module as LCPModule +from lightconvpoint.spatial import sampling_convpoint, knn + +class ConvPointNetwork(LCPModule): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, + conv_layer=ConvPoint ,sampling=sampling_convpoint, neighborhood_search=knn): + super().__init__() + + self.segmentation = segmentation + + if self.segmentation: + + + + self.cv0 = conv_layer(in_channels, hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=1, neighborhood_size=16) + self.bn0 = nn.BatchNorm1d(hidden) + self.cv1 = conv_layer(hidden, hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn1 = nn.BatchNorm1d(hidden) + self.cv2 = conv_layer(hidden, hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn2 = nn.BatchNorm1d(hidden) + self.cv3 = conv_layer(hidden, hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn3 = nn.BatchNorm1d(hidden) + self.cv4 = conv_layer(hidden, 2*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn4 = nn.BatchNorm1d(2*hidden) + self.cv5 = conv_layer(2*hidden, 2*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn5 = nn.BatchNorm1d(2*hidden) + self.cv6 = conv_layer(2*hidden, 2*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn6 = nn.BatchNorm1d(2*hidden) + + self.cv5d = conv_layer(2*hidden, 2*hidden, 16, bias=False, + neighborhood_search=neighborhood_search, neighborhood_size=4) + self.bn5d = nn.BatchNorm1d(2*hidden) + self.cv4d = conv_layer(4*hidden, 2*hidden, 16, bias=False, + neighborhood_search=neighborhood_search, neighborhood_size=4) + self.bn4d = nn.BatchNorm1d(2*hidden) + self.cv3d = conv_layer(4*hidden, hidden, 16, bias=False, + neighborhood_search=neighborhood_search, neighborhood_size=4) + self.bn3d = nn.BatchNorm1d(hidden) + self.cv2d = conv_layer(2*hidden, hidden, 16, bias=False, + neighborhood_search=neighborhood_search, neighborhood_size=8) + self.bn2d = nn.BatchNorm1d(hidden) + self.cv1d = conv_layer(2*hidden, hidden, 16, bias=False, + neighborhood_search=neighborhood_search, neighborhood_size=8) + self.bn1d = nn.BatchNorm1d(hidden) + self.cv0d = conv_layer(2*hidden, hidden, 16, bias=False, + neighborhood_search=neighborhood_search, neighborhood_size=8) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(2*hidden, out_channels, 1) + + else: + + self.cv1 = conv_layer(in_channels, hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn1 = nn.BatchNorm1d(hidden) + self.cv2 = conv_layer(hidden, 2*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn2 = nn.BatchNorm1d(2*hidden) + self.cv3 = conv_layer(2*hidden, 4*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn3 = nn.BatchNorm1d(4*hidden) + self.cv4 = conv_layer(4*hidden, 4*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn4 = nn.BatchNorm1d(4*hidden) + self.cv5 = conv_layer(4*hidden, 8*hidden, 16, bias=False, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=0.25, neighborhood_size=16) + self.bn5 = nn.BatchNorm1d(8*hidden) + self.fcout = nn.Linear(8*hidden, out_channels) + + self.activation = nn.ReLU() + self.dropout = nn.Dropout(0.5) + + + def forward_without_features(self, pos, support_points=None, indices=None): + if self.segmentation: + _, _, ids0 = self.cv0(None, pos) + _, support1, ids1 = self.cv1(None, pos) + _, support2, ids2 = self.cv2(None, support1[0]) + _, support3, ids3 = self.cv3(None, support2[0]) + _, support4, ids4 = self.cv4(None, support3[0]) + _, support5, ids5 = self.cv5(None, support4[0]) + _, support6, ids6 = self.cv6(None, support5[0]) + + _, _, ids5d = self.cv5d(None, support6[0], support5[0]) + _, _, ids4d = self.cv4d(None, support5[0], support4[0]) + _, _, ids3d = self.cv3d(None, support4[0], support3[0]) + _, _, ids2d = self.cv2d(None, support3[0], support2[0]) + _, _, ids1d = self.cv1d(None, support2[0], support1[0]) + _, _, ids0d = self.cv0d(None, support1[0], pos) + + support_points = support1 + support2 + support3 + support4 + support5 + support6 + indices = ids0 + ids1 + ids2 + ids3 + ids4 + ids5 + ids6 + ids5d + ids4d + ids3d + ids2d + ids1d + ids0d + + return None, support_points, indices + else: + _, support1, ids1 = self.cv1(None, pos) + _, support2, ids2 = self.cv2(None, support1[0]) + _, support3, ids3 = self.cv3(None, support2[0]) + _, support4, ids4 = self.cv4(None, support3[0]) + _, support5, ids5 = self.cv5(None, support4[0]) + + support_points = support1 + support2 + support3 + support4 + support5 + indices = ids1 + ids2 + ids3 + ids4 + ids5 + + return None, support_points, indices + + + def forward_with_features(self, x, pos, support_points=None, indices=None): + + if self.segmentation: + + ids0, ids1, ids2, ids3, ids4, ids5, ids6, ids5d, ids4d, ids3d, ids2d, ids1d, ids0d = indices + support0, support1, support2, support3, support4, support5, support6 = support_points + + x0 = self.activation(self.bn0(self.cv0(x, pos, support0, ids0))) + x1 = self.activation(self.bn1(self.cv1(x0, support0, support1, ids1))) + x2 = self.activation(self.bn2(self.cv2(x1, support1, support2, ids2))) + x3 = self.activation(self.bn3(self.cv3(x2, support2, support3, ids3))) + x4 = self.activation(self.bn4(self.cv4(x3, support3, support4, ids4))) + x5 = self.activation(self.bn5(self.cv5(x4, support4, support5, ids5))) + x6 = self.activation(self.bn6(self.cv6(x5, support5, support6, ids6))) + x = self.activation(self.bn5d(self.cv5d(x6, support6, support5, ids5d))) + x = torch.cat([x, x5], dim=1) + x = self.activation(self.bn4d(self.cv4d(x, support5, support4, ids4d))) + x = torch.cat([x, x4], dim=1) + x = self.activation(self.bn3d(self.cv3d(x, support4, support3, ids3d))) + x = torch.cat([x, x3], dim=1) + x = self.activation(self.bn2d(self.cv2d(x, support3, support2, ids2d))) + x = torch.cat([x, x2], dim=1) + x = self.activation(self.bn1d(self.cv1d(x, support2, support1, ids1d))) + x = torch.cat([x, x1], dim=1) + x = self.activation(self.bn0d(self.cv0d(x, support1, support0, ids0d))) + x = torch.cat([x, x0], dim=1) + x = self.dropout(x) + x = self.fcout(x) + + else: + + ids1, ids2, ids3, ids4, ids5 = indices + support1, support2, support3, support4, support5 = support_points + + x = self.activation(self.bn1(self.cv1(x, pos, support1, ids1))) + x = self.activation(self.bn2(self.cv2(x, support1, support2, ids2))) + x = self.activation(self.bn3(self.cv3(x, support2, support3, ids3))) + x = self.activation(self.bn4(self.cv4(x, support3, support4, ids4))) + x = self.activation(self.bn5(self.cv5(x, support4, support5, ids5))) + x = x.mean(dim=2) + x = self.dropout(x) + x = self.fcout(x) + + return x diff --git a/lightconvpoint/networks/deprecated/fkaconv_network.py b/lightconvpoint/networks/deprecated/fkaconv_network.py new file mode 100644 index 0000000..b5f45c1 --- /dev/null +++ b/lightconvpoint/networks/deprecated/fkaconv_network.py @@ -0,0 +1,156 @@ +import torch +import torch.nn as nn +from lightconvpoint.nn.deprecated.module import Module as LCPModule +from lightconvpoint.nn.deprecated.convolutions import FKAConv +from lightconvpoint.nn.deprecated.pooling import max_pool +from lightconvpoint.spatial.deprecated import sampling_quantized, knn, upsample_nearest +from lightconvpoint.utils.functional import batch_gather + +class ResidualBlock(LCPModule): + + def __init__(self, in_channels, out_channels, kernel_size, conv_layer, sampling, spatial_search, ratio, neighborhood_size): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.bn0 = nn.BatchNorm1d(in_channels//2) + self.cv1 = conv_layer(in_channels//2, in_channels//2, kernel_size, bias=False, sampling=sampling, + spatial_search=spatial_search, ratio=ratio, neighborhood_size=neighborhood_size) + self.bn1 = nn.BatchNorm1d(in_channels//2) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + self.bn2 = nn.BatchNorm1d(out_channels) + self.activation = nn.ReLU() + + self.shortcut = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + + self.ratio = ratio + + def forward_without_features(self, pos, support_points=None, indices=None): + return self.cv1(None, pos) + + def forward_with_features(self, x, pos, support_points, indices): + + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, indices))) + x = self.bn2(self.cv2(x)) + + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, indices) + x_short = self.shortcut(x_short) + + return self.activation(x + x_short) + + +class FKAConvNetwork(LCPModule): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, conv_layer=FKAConv ,sampling=sampling_quantized, neighborhood_search=knn): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + + self.cv0 = conv_layer(in_channels, hidden, 16, sampling=sampling, + neighborhood_search=neighborhood_search, ratio=1, neighborhood_size=16) + self.bn0 = nn.BatchNorm1d(hidden) + + + self.resnetb01 = ResidualBlock(hidden, hidden, 16, conv_layer, sampling, neighborhood_search, 1, 16) + + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16, conv_layer, sampling, neighborhood_search, 0.25, 16) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16, conv_layer, sampling, neighborhood_search, 1, 16) + + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16, conv_layer, sampling, neighborhood_search, 0.25, 16) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16, conv_layer, sampling, neighborhood_search, 1, 16) + + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16, conv_layer, sampling, neighborhood_search, 0.25, 16) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16, conv_layer, sampling, neighborhood_search, 1, 16) + + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16, conv_layer, sampling, neighborhood_search, 0.25, 16) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16, conv_layer, sampling, neighborhood_search, 1, 16) + + if self.segmentation: + self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + self.bn5 = nn.BatchNorm1d(16*hidden) + + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = nn.BatchNorm1d(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = nn.BatchNorm1d(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = nn.BatchNorm1d(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + self.fcout = nn.Linear(1024, out_channels) + + self.dropout = nn.Dropout(0.5) + self.activation = nn.ReLU() + + def forward_without_features(self, pos, support_points=None, indices=None): + + _, _, ids_conv0 = self.cv0(None, pos) + + _, support1, ids10 = self.resnetb10(None, pos) + _, _, ids11 = self.resnetb11(None, support1[0]) + _, support2, ids20 = self.resnetb20(None, support1[0]) + _, _, ids21 = self.resnetb21(None, support2[0]) + _, support3, ids30 = self.resnetb30(None, support2[0]) + _, _, ids31 = self.resnetb31(None, support3[0]) + _, support4, ids40 = self.resnetb40(None, support3[0]) + _, _, ids41 = self.resnetb41(None, support4[0]) + + support_points = support1 + support2 + support3 + support4 + indices = ids_conv0 + ids10 + ids11 + ids20 + ids21 + ids30 + ids31 + ids40 + ids41 + + if self.segmentation: + ids3u = upsample_nearest(support4[0], support3[0]) + ids2u = upsample_nearest(support3[0], support2[0]) + ids1u = upsample_nearest(support2[0], support1[0]) + ids0u = upsample_nearest(support1[0], pos) + indices += [ids3u, ids2u, ids1u, ids0u] + + return None, support_points, indices + + + def forward_with_features(self, x, pos, support_points=None, indices=None): + + if (support_points is None) or (indices is None): + _, indices, support_points = self.compute_indices(pos) + + if self.segmentation: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = indices + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = indices + support1, support2, support3, support4 = support_points + + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, ids0))) + x0 = self.resnetb01(x0, pos, pos, ids0) + x1 = self.resnetb10(x0, pos, support1, ids10) + x1 = self.resnetb11(x1, support1, support1, ids11) + x2 = self.resnetb20(x1, support1, support2, ids20) + x2 = self.resnetb21(x2, support2, support2, ids21) + x3 = self.resnetb30(x2, support2, support3, ids30) + x3 = self.resnetb31(x3, support3, support3, ids31) + x4 = self.resnetb40(x3, support3, support4, ids40) + x4 = self.resnetb41(x4, support4, support4, ids41) + + if self.segmentation: + x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + x4 = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + xout = batch_gather(x4, 2, ids3u) + xout = self.activation(self.bn3d(self.cv3d(torch.cat([xout, x3], dim=1)))) + xout = batch_gather(xout, 2, ids2u) + xout = self.activation(self.bn2d(self.cv2d(torch.cat([xout, x2], dim=1)))) + xout = batch_gather(xout, 2, ids1u) + xout = self.activation(self.bn1d(self.cv1d(torch.cat([xout, x1], dim=1)))) + xout = batch_gather(xout, 2, ids0u) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + else: + xout = x4.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + + return xout \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/fkaconv_network2.py b/lightconvpoint/networks/deprecated/fkaconv_network2.py new file mode 100644 index 0000000..d748354 --- /dev/null +++ b/lightconvpoint/networks/deprecated/fkaconv_network2.py @@ -0,0 +1,319 @@ +import torch +import torch.nn as nn +import torch_geometric +from lightconvpoint import spatial + +from lightconvpoint.nn import Convolution_FKAConv as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import knn, sampling_quantized as sampling +from torch_geometric.data import Data + +class ResidualBlock(torch.nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, neighborhood_size, ratio=None, n_support=None): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.bn0 = nn.BatchNorm1d(in_channels//2) + self.cv1 = Conv(in_channels//2, in_channels//2, kernel_size) + self.bn1 = nn.BatchNorm1d(in_channels//2) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + self.bn2 = nn.BatchNorm1d(out_channels) + self.activation = nn.ReLU(inplace=True) + + self.shortcut = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + self.bn_shortcut = nn.BatchNorm1d(out_channels) if in_channels != out_channels else nn.Identity() + + + + def forward(self, x, pos, support_points, neighbors_indices): + + if x is not None: + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, neighbors_indices))) + x = self.bn2(self.cv2(x)) + + x_short = self.bn_shortcut(self.shortcut(x_short)) + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, neighbors_indices) + + x = self.activation(x + x_short) + + return x + + +class FKAConvNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, dropout=0.5): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + + self.cv0 = Conv(in_channels, hidden, 16) + self.bn0 = nn.BatchNorm1d(hidden) + + + if self.segmentation: + + self.resnetb01 = ResidualBlock(hidden, hidden, 16, 16, ratio=1) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16, 16, ratio=0.25) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16, 16, ratio=1) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16, 16, ratio=0.25) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16, 16, ratio=1) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16, 16, ratio=0.25) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16, 16, ratio=1) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16, 16, ratio=0.25) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16, 16, ratio=1) + self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + self.bn5 = nn.BatchNorm1d(16*hidden) + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = nn.BatchNorm1d(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = nn.BatchNorm1d(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = nn.BatchNorm1d(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + + self.resnetb01 = ResidualBlock(hidden, hidden, 16, 16, ratio=1) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16, 16, n_support=512) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16, 16, ratio=1) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16, 16, ratio=0.25) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16, 16, ratio=1) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16, 16, ratio=0.25) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16, 16, ratio=1) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16, 16, ratio=0.25) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16, 16, ratio=1) + self.fcout = nn.Linear(1024, out_channels) + + self.dropout = nn.Dropout(dropout) + self.activation = nn.ReLU() + + def forward(self, data, spatial_only=False, spectral_only=False, return_all_decoder_features=False): + + pos = data["pos"] + + squeeze_after_computation=False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + squeeze_after_computation = True + pos = pos.transpose(1,2) + + + if not spectral_only: + # compute the support points + support1, _ = sampling(pos, 0.25) + support2, _ = sampling(support1, 0.25) + support3, _ = sampling(support2, 0.25) + support4, _ = sampling(support3, 0.25) + + # compute the ids + ids00 = knn(pos, pos, 16) + ids01 = knn(pos, support1, 16) + ids11 = knn(support1, support1, 16) + ids12 = knn(support1, support2, 16) + ids22 = knn(support2, support2, 16) + ids23 = knn(support2, support3, 16) + ids33 = knn(support3, support3, 16) + ids34 = knn(support3, support4, 16) + ids44 = knn(support4, support4, 16) + + if squeeze_after_computation: + support1 = support1.squeeze(0) + support2 = support2.squeeze(0) + support3 = support3.squeeze(0) + support4 = support4.squeeze(0) + + ids00 = ids00.squeeze(0) + ids01 = ids01.squeeze(0) + ids11 = ids11.squeeze(0) + ids12 = ids12.squeeze(0) + ids22 = ids22.squeeze(0) + ids23 = ids23.squeeze(0) + ids33 = ids33.squeeze(0) + ids34 = ids34.squeeze(0) + ids44 = ids44.squeeze(0) + + data["support1"] = support1 + data["support2"] = support2 + data["support3"] = support3 + data["support4"] = support4 + + data["ids00"] = ids00 + data["ids01"] = ids01 + data["ids11"] = ids11 + data["ids12"] = ids12 + data["ids22"] = ids22 + data["ids23"] = ids23 + data["ids33"] = ids33 + data["ids34"] = ids34 + data["ids44"] = ids44 + + if self.segmentation: + ids43 = knn(support4, support3, 1) + ids32 = knn(support3, support2, 1) + ids21 = knn(support2, support1, 1) + ids10 = knn(support1, pos, 1) + + if squeeze_after_computation: + ids43 = ids43.squeeze(0) + ids32 = ids32.squeeze(0) + ids21 = ids21.squeeze(0) + ids10 = ids10.squeeze(0) + + data["ids43"] = ids43 + data["ids32"] = ids32 + data["ids21"] = ids21 + data["ids10"] = ids10 + + + if not spatial_only: + x = data["x"].transpose(1,2) + pos = data["pos"].transpose(1,2) + + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"]))) + x0 = self.resnetb01(x0, pos, pos, data["ids00"]) + x1 = self.resnetb10(x0, pos, data["support1"], data["ids01"]) + x1 = self.resnetb11(x1, data["support1"], data["support1"], data["ids11"]) + x2 = self.resnetb20(x1, data["support1"], data["support2"], data["ids12"]) + x2 = self.resnetb21(x2, data["support2"], data["support2"], data["ids22"]) + x3 = self.resnetb30(x2, data["support2"], data["support3"], data["ids23"]) + x3 = self.resnetb31(x3, data["support3"], data["support3"], data["ids33"]) + x4 = self.resnetb40(x3, data["support3"], data["support4"], data["ids34"]) + x4 = self.resnetb41(x4, data["support4"], data["support4"], data["ids44"]) + + if self.segmentation: + + x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + x4d = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + + x3d = interpolate(x4d, data["ids43"]) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, data["ids32"]) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, data["ids21"]) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, data["ids10"]) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + + else: + + xout = x4 + xout = xout.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + + data["x"] = xout + + return data + + + + if x is not None: + if len(x.shape) == 2: + x = x.unsqueeze(0) + x = x.transpose(1,2) + + + print(pos.shape, support1.shape, support2.shape) + exit() + + + if self.segmentation: + if ("net_indices" in data) and (data["net_indices"] is not None): + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = data["net_indices"] + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = [None for _ in range(13)] + else: + if ("net_indices" in data) and (data["net_indices"] is not None): + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = data["net_indices"] + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = [None for _ in range(9)] + + if ("net_support" in data) and (data["net_support"] is not None): + support1, support2, support3, support4 = data["net_support"] + else: + support1, support2, support3, support4 = [None for _ in range(4)] + + + ids0 = knn(pos, pos, 16, ids0) + x0 = self.cv0(x, pos, pos, ids0) + if x0 is not None: + x0 = self.activation(self.bn0(x0)) + x0, _, _ = self.resnetb01(x0, pos, pos, ids0) + + x1, support1, ids10 = self.resnetb10(x0, pos, support1, ids10) + x1, _, ids11 = self.resnetb11(x1, support1, support1, ids11) + x2, support2, ids20 = self.resnetb20(x1, support1, support2, ids20) + x2, _, ids21 = self.resnetb21(x2, support2, support2, ids21) + x3, support3, ids30 = self.resnetb30(x2, support2, support3, ids30) + x3, _, ids31 = self.resnetb31(x3, support3, support3, ids31) + x4, support4, ids40 = self.resnetb40(x3, support3, support4, ids40) + x4, _, ids41 = self.resnetb41(x4, support4, support4, ids41) + + if self.segmentation: + xout = x4 + ids3u = knn(support4, support3, 1, ids3u) + ids2u = knn(support3, support2, 1, ids2u) + ids1u = knn(support2, support1, 1, ids1u) + ids0u = knn(support1, pos, 1, ids0u) + + if xout is not None: + x5 = xout.max(dim=2, keepdim=True)[0].expand_as(xout) + x4d = self.activation(self.bn5(self.cv5(torch.cat([xout, x5], dim=1)))) + + x3d = interpolate(x4d, ids3u) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, ids2u) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, ids1u) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, ids0u) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + + if return_all_decoder_features: + xout = [x4d, x3d, x2d, x1d, xout] + + output_data = Data(outputs=xout, + net_support=[support1, support2, support3, support4], + net_indices=[ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u] + ) + + if xout is None: + for support_id, support in enumerate(output_data["net_support"]): + output_data["net_support"][support_id] = support.squeeze(0) + for ids_id, ids in enumerate(output_data["net_indices"]): + output_data["net_indices"][ids_id] = ids.squeeze(0) + + return output_data + + else: + xout = x4 + if xout is not None: + xout = xout.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + output_data = Data(outputs=xout, + net_support=[support1, support2, support3, support4], + net_indices=[ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41]) + + if xout is None: + for support_id, support in enumerate(output_data["net_support"]): + output_data["net_support"][support_id] = support.squeeze(0) + for ids_id, ids in enumerate(output_data["net_indices"]): + output_data["net_indices"][ids_id] = ids.squeeze(0) + return output_data \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/fkaconv_network2_radius.py b/lightconvpoint/networks/deprecated/fkaconv_network2_radius.py new file mode 100644 index 0000000..755316b --- /dev/null +++ b/lightconvpoint/networks/deprecated/fkaconv_network2_radius.py @@ -0,0 +1,331 @@ +import torch +import torch.nn as nn +import torch_geometric +from lightconvpoint import spatial + +from lightconvpoint.nn import Convolution_FKAConv_2 as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import knn, sampling_quantized as sampling, radius_nn +from torch_geometric.data import Data + +class ResidualBlock(torch.nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.bn0 = nn.BatchNorm1d(in_channels//2) + self.cv1 = Conv(in_channels//2, in_channels//2, kernel_size) + self.bn1 = nn.BatchNorm1d(in_channels//2) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + self.bn2 = nn.BatchNorm1d(out_channels) + self.activation = nn.ReLU(inplace=True) + + self.shortcut = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + self.bn_shortcut = nn.BatchNorm1d(out_channels) if in_channels != out_channels else nn.Identity() + + + + def forward(self, x, pos, support_points, neighbors_indices, radius): + + if x is not None: + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, neighbors_indices, radius))) + x = self.bn2(self.cv2(x)) + + x_short = self.bn_shortcut(self.shortcut(x_short)) + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, neighbors_indices) + + x = self.activation(x + x_short) + + return x + + +class FKAConvNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, dropout=0.5): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + + self.cv0 = Conv(in_channels, hidden, 16) + self.bn0 = nn.BatchNorm1d(hidden) + + self.radius = 0.04 * 2.5 + + + if self.segmentation: + + self.resnetb01 = ResidualBlock(hidden, hidden, 16) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16) + self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + self.bn5 = nn.BatchNorm1d(16*hidden) + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = nn.BatchNorm1d(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = nn.BatchNorm1d(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = nn.BatchNorm1d(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + + self.resnetb01 = ResidualBlock(hidden, hidden, 16) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16) + self.fcout = nn.Linear(1024, out_channels) + + self.dropout = nn.Dropout(dropout) + self.activation = nn.ReLU() + + def forward(self, data, spatial_only=False, spectral_only=False, return_all_decoder_features=False): + + pos = data["pos"] + + squeeze_after_computation=False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + squeeze_after_computation = True + pos = pos.transpose(1,2) + + + if not spectral_only: + # compute the support points + support1, ids_supp1 = sampling(pos, 0.25) + support2, ids_supp2 = sampling(support1, 0.25) + support3, ids_supp3 = sampling(support2, 0.25) + support4, ids_supp4 = sampling(support3, 0.25) + + # compute the ids + ids00 = radius_nn(pos, pos, self.radius, 16) + # ids01 = radius_nn(pos, support1, self.radius, 16) + ids11 = radius_nn(support1, support1, 2*self.radius, 16) + # ids12 = radius_nn(support1, support2, 2*self.radius, 16) + ids22 = radius_nn(support2, support2, 4*self.radius, 16) + # ids23 = radius_nn(support2, support3, 4*self.radius, 16) + ids33 = radius_nn(support3, support3, 8*self.radius, 16) + # ids34 = radius_nn(support3, support4, 8*self.radius, 16) + ids44 = radius_nn(support4, support4, 16*self.radius, 16) + + if squeeze_after_computation: + support1 = support1.squeeze(0) + support2 = support2.squeeze(0) + support3 = support3.squeeze(0) + support4 = support4.squeeze(0) + + ids_supp1 = ids_supp1.squeeze(0) + ids_supp2 = ids_supp2.squeeze(0) + ids_supp3 = ids_supp3.squeeze(0) + ids_supp4 = ids_supp4.squeeze(0) + + ids00 = ids00.squeeze(0) + # ids01 = ids01.squeeze(0) + ids11 = ids11.squeeze(0) + # ids12 = ids12.squeeze(0) + ids22 = ids22.squeeze(0) + # ids23 = ids23.squeeze(0) + ids33 = ids33.squeeze(0) + # ids34 = ids34.squeeze(0) + ids44 = ids44.squeeze(0) + + ids01 = ids00[ids_supp1] + ids12 = ids11[ids_supp2] + ids23 = ids22[ids_supp3] + ids34 = ids33[ids_supp4] + + data["support1"] = support1 + data["support2"] = support2 + data["support3"] = support3 + data["support4"] = support4 + + data["ids00"] = ids00 + data["ids01"] = ids01 + data["ids11"] = ids11 + data["ids12"] = ids12 + data["ids22"] = ids22 + data["ids23"] = ids23 + data["ids33"] = ids33 + data["ids34"] = ids34 + data["ids44"] = ids44 + + if self.segmentation: + ids43 = knn(support4, support3, 1) + ids32 = knn(support3, support2, 1) + ids21 = knn(support2, support1, 1) + ids10 = knn(support1, pos, 1) + + if squeeze_after_computation: + ids43 = ids43.squeeze(0) + ids32 = ids32.squeeze(0) + ids21 = ids21.squeeze(0) + ids10 = ids10.squeeze(0) + + data["ids43"] = ids43 + data["ids32"] = ids32 + data["ids21"] = ids21 + data["ids10"] = ids10 + + + if not spatial_only: + x = data["x"].transpose(1,2) + pos = data["pos"].transpose(1,2) + + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"], self.radius))) + x0 = self.resnetb01(x0, pos, pos, data["ids00"], self.radius) + x1 = self.resnetb10(x0, pos, data["support1"], data["ids01"], self.radius) + x1 = self.resnetb11(x1, data["support1"], data["support1"], data["ids11"], 2*self.radius) + x2 = self.resnetb20(x1, data["support1"], data["support2"], data["ids12"], 2*self.radius) + x2 = self.resnetb21(x2, data["support2"], data["support2"], data["ids22"], 4*self.radius) + x3 = self.resnetb30(x2, data["support2"], data["support3"], data["ids23"], 4*self.radius) + x3 = self.resnetb31(x3, data["support3"], data["support3"], data["ids33"], 8*self.radius) + x4 = self.resnetb40(x3, data["support3"], data["support4"], data["ids34"], 8*self.radius) + x4 = self.resnetb41(x4, data["support4"], data["support4"], data["ids44"], 16*self.radius) + + if self.segmentation: + + x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + x4d = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + + x3d = interpolate(x4d, data["ids43"]) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, data["ids32"]) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, data["ids21"]) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, data["ids10"]) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + + else: + + xout = x4 + xout = xout.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + + data["x"] = xout + + return data + + + + if x is not None: + if len(x.shape) == 2: + x = x.unsqueeze(0) + x = x.transpose(1,2) + + + print(pos.shape, support1.shape, support2.shape) + exit() + + + if self.segmentation: + if ("net_indices" in data) and (data["net_indices"] is not None): + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = data["net_indices"] + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = [None for _ in range(13)] + else: + if ("net_indices" in data) and (data["net_indices"] is not None): + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = data["net_indices"] + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = [None for _ in range(9)] + + if ("net_support" in data) and (data["net_support"] is not None): + support1, support2, support3, support4 = data["net_support"] + else: + support1, support2, support3, support4 = [None for _ in range(4)] + + + ids0 = knn(pos, pos, 16, ids0) + x0 = self.cv0(x, pos, pos, ids0) + if x0 is not None: + x0 = self.activation(self.bn0(x0)) + x0, _, _ = self.resnetb01(x0, pos, pos, ids0) + + x1, support1, ids10 = self.resnetb10(x0, pos, support1, ids10) + x1, _, ids11 = self.resnetb11(x1, support1, support1, ids11) + x2, support2, ids20 = self.resnetb20(x1, support1, support2, ids20) + x2, _, ids21 = self.resnetb21(x2, support2, support2, ids21) + x3, support3, ids30 = self.resnetb30(x2, support2, support3, ids30) + x3, _, ids31 = self.resnetb31(x3, support3, support3, ids31) + x4, support4, ids40 = self.resnetb40(x3, support3, support4, ids40) + x4, _, ids41 = self.resnetb41(x4, support4, support4, ids41) + + if self.segmentation: + xout = x4 + ids3u = knn(support4, support3, 1, ids3u) + ids2u = knn(support3, support2, 1, ids2u) + ids1u = knn(support2, support1, 1, ids1u) + ids0u = knn(support1, pos, 1, ids0u) + + if xout is not None: + x5 = xout.max(dim=2, keepdim=True)[0].expand_as(xout) + x4d = self.activation(self.bn5(self.cv5(torch.cat([xout, x5], dim=1)))) + + x3d = interpolate(x4d, ids3u) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, ids2u) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, ids1u) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, ids0u) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + + if return_all_decoder_features: + xout = [x4d, x3d, x2d, x1d, xout] + + output_data = Data(outputs=xout, + net_support=[support1, support2, support3, support4], + net_indices=[ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u] + ) + + if xout is None: + for support_id, support in enumerate(output_data["net_support"]): + output_data["net_support"][support_id] = support.squeeze(0) + for ids_id, ids in enumerate(output_data["net_indices"]): + output_data["net_indices"][ids_id] = ids.squeeze(0) + + return output_data + + else: + xout = x4 + if xout is not None: + xout = xout.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + output_data = Data(outputs=xout, + net_support=[support1, support2, support3, support4], + net_indices=[ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41]) + + if xout is None: + for support_id, support in enumerate(output_data["net_support"]): + output_data["net_support"][support_id] = support.squeeze(0) + for ids_id, ids in enumerate(output_data["net_indices"]): + output_data["net_indices"][ids_id] = ids.squeeze(0) + return output_data \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/fkaconv_network2_radius_various_size.py b/lightconvpoint/networks/deprecated/fkaconv_network2_radius_various_size.py new file mode 100644 index 0000000..922e574 --- /dev/null +++ b/lightconvpoint/networks/deprecated/fkaconv_network2_radius_various_size.py @@ -0,0 +1,361 @@ +import torch +import torch.nn as nn +import torch_geometric +from lightconvpoint import spatial +import lightconvpoint + +from lightconvpoint.nn import Convolution_FKAConv_3 as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import knn, sampling_quantized as sampling +from lightconvpoint.spatial.neighborhood_search.radius import radius_3 as radius_nn +# from lightconvpoint.spatial import radius_nn +from torch_geometric.data import Data +from torch_geometric.transforms import GridSampling + +import torch +import torch.nn as nn +from torch.nn import init + + +class MaskedBatchNorm1d(nn.Module): + """ A masked version of nn.BatchNorm1d. Only tested for 3D inputs. + Args: + num_features: :math:`C` from an expected input of size + :math:`(N, C, L)` + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Can be set to ``None`` for cumulative moving average + (i.e. simple average). Default: 0.1 + affine: a boolean value that when set to ``True``, this module has + learnable affine parameters. Default: ``True`` + track_running_stats: a boolean value that when set to ``True``, this + module tracks the running mean and variance, and when set to ``False``, + this module does not track such statistics and always uses batch + statistics in both training and eval modes. Default: ``True`` + Shape: + - Input: :math:`(N, C, L)` + - input_mask: (N, 1, L) tensor of ones and zeros, where the zeros indicate locations not to use. + - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input) + """ + + def __init__(self, num_features, eps=1e-5, momentum=0.1, + affine=True, track_running_stats=True): + super(MaskedBatchNorm1d, self).__init__() + self.num_features = num_features + self.eps = eps + self.momentum = momentum + self.affine = affine + if affine: + self.weight = nn.Parameter(torch.Tensor(num_features, 1)) + self.bias = nn.Parameter(torch.Tensor(num_features, 1)) + else: + self.register_parameter('weight', None) + self.register_parameter('bias', None) + self.track_running_stats = track_running_stats + if self.track_running_stats: + self.register_buffer('running_mean', torch.zeros(1,num_features, 1)) + self.register_buffer('running_var', torch.ones(1,num_features, 1)) + self.register_buffer('num_batches_tracked', torch.tensor(0, dtype=torch.long)) + else: + self.register_parameter('running_mean', None) + self.register_parameter('running_var', None) + self.register_parameter('num_batches_tracked', None) + self.reset_parameters() + + def reset_running_stats(self): + if self.track_running_stats: + self.running_mean.zero_() + self.running_var.fill_(1) + self.num_batches_tracked.zero_() + + def reset_parameters(self): + self.reset_running_stats() + if self.affine: + init.ones_(self.weight) + init.zeros_(self.bias) + + def forward(self, input): + + input_mask= (~torch.isinf(input[:,:1])) + + # Calculate the masked mean and variance + B, C, L = input.shape + if input_mask is not None and input_mask.shape != (B, 1, L): + raise ValueError('Mask should have shape (B, 1, L).') + if C != self.num_features: + raise ValueError('Expected %d channels but input has %d channels' % (self.num_features, C)) + if input_mask is not None: + masked = input * input_mask + n = input_mask.sum() + else: + masked = input + n = B * L + # Sum + masked_sum = masked.sum(dim=0, keepdim=True).sum(dim=2, keepdim=True) + # Divide by sum of mask + current_mean = masked_sum / n + current_var = ((masked - current_mean) ** 2).sum(dim=0, keepdim=True).sum(dim=2, keepdim=True) / n + # Update running stats + if self.track_running_stats and self.training: + if self.num_batches_tracked == 0: + self.running_mean = current_mean + self.running_var = current_var + else: + self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * current_mean + self.running_var = (1 - self.momentum) * self.running_var + self.momentum * current_var + self.num_batches_tracked += 1 + # Norm the input + + + + if self.track_running_stats and not self.training: + normed = (masked - self.running_mean) / (torch.sqrt(self.running_var + self.eps)) + else: + normed = (masked - current_mean) / (torch.sqrt(current_var + self.eps)) + # Apply affine parameters + if self.affine: + normed = normed * self.weight + self.bias + return normed + + + +class ResidualBlock(torch.nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.cv1 = Conv(in_channels//2, in_channels//2, kernel_size) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + # self.bn0 = nn.BatchNorm1d(in_channels//2) + # self.bn1 = nn.BatchNorm1d(in_channels//2) + # self.bn2 = nn.BatchNorm1d(out_channels) + self.bn0 = MaskedBatchNorm1d(in_channels//2) + self.bn1 = MaskedBatchNorm1d(in_channels//2) + self.bn2 = MaskedBatchNorm1d(out_channels) + self.activation = nn.ReLU(inplace=True) + + self.shortcut = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + # self.bn_shortcut = nn.BatchNorm1d(out_channels) if in_channels != out_channels else nn.Identity() + self.bn_shortcut = MaskedBatchNorm1d(out_channels) if in_channels != out_channels else nn.Identity() + + + + def forward(self, x, pos, support_points, neighbors_indices, radius): + + if x is not None: + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, neighbors_indices, radius))) + x = self.bn2(self.cv2(x)) + + x_short = self.bn_shortcut(self.shortcut(x_short)) + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, neighbors_indices) + + x = self.activation(x + x_short) + + return x + + +class FKAConvNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, dropout=0.5, initial_grid_size=0.02): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + + self.radius = initial_grid_size * 2.5 + self.kernel_size = 16 + + self.cv0 = Conv(in_channels, hidden, self.kernel_size) + self.bn0 = MaskedBatchNorm1d(hidden) + self.resnetb01 = ResidualBlock(hidden, hidden, self.kernel_size) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, self.kernel_size) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, self.kernel_size) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, self.kernel_size) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, self.kernel_size) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, self.kernel_size) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, self.kernel_size) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, self.kernel_size) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, self.kernel_size) + + if self.segmentation: + self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + self.bn5 = MaskedBatchNorm1d(16*hidden) + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = MaskedBatchNorm1d(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = MaskedBatchNorm1d(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = MaskedBatchNorm1d(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = MaskedBatchNorm1d(hidden) + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + self.fcout = nn.Linear(1024, out_channels) + + self.dropout = nn.Dropout(dropout) + self.activation = nn.ReLU() + + def forward(self, data, spatial_only=False, spectral_only=False, return_all_decoder_features=False): + + pos = data["pos"] + + squeeze_after_computation=False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + squeeze_after_computation = True + pos = pos.transpose(1,2) + + + if not spectral_only: + # compute the support points + # support1, ids_supp1 = sampling(pos, 0.25) + # support2, ids_supp2 = sampling(support1, 0.25) + # support3, ids_supp3 = sampling(support2, 0.25) + # support4, ids_supp4 = sampling(support3, 0.25) + + def grid_pad(pos, voxel_size, ratio): + p = pos.squeeze(0).transpose(0,1).clone() + + npoints = max(1, int(p.shape[0] * ratio)) + + m_p = (~torch.isinf(p[:,0])).sum() + p = p[:m_p] + p = GridSampling(voxel_size)(Data(pos=p))["pos"] + + if p.shape[0] < npoints: + p = torch.cat([p, torch.full((npoints-p.shape[0], p.shape[1]), float("Inf"), device=pos.device)]) + else: + p = p[torch.randperm(p.shape[0])[:npoints]] + + p = p.unsqueeze(0).transpose(1,2) + return p + + support1 = grid_pad(pos, 0.08, 0.25) + support2 = grid_pad(support1, 0.16, 0.25) + support3 = grid_pad(support2, 0.32, 0.25) + support4 = grid_pad(support3, 0.64, 0.25) + + # compute the ids + ids00 = radius_nn(pos, pos, self.radius, 16) + ids01 = radius_nn(pos, support1, self.radius, 16) + ids11 = radius_nn(support1, support1, 2*self.radius, 16) + ids12 = radius_nn(support1, support2, 2*self.radius, 16) + ids22 = radius_nn(support2, support2, 4*self.radius, 16) + ids23 = radius_nn(support2, support3, 4*self.radius, 16) + ids33 = radius_nn(support3, support3, 8*self.radius, 16) + ids34 = radius_nn(support3, support4, 8*self.radius, 16) + ids44 = radius_nn(support4, support4, 16*self.radius, 16) + + + if self.segmentation: + ids43 = knn(support4, support3, 1) + ids32 = knn(support3, support2, 1) + ids21 = knn(support2, support1, 1) + ids10 = knn(support1, pos, 1) + + if squeeze_after_computation: + support1 = support1.squeeze(0) + support2 = support2.squeeze(0) + support3 = support3.squeeze(0) + support4 = support4.squeeze(0) + + # ids_supp1 = ids_supp1.squeeze(0) + # ids_supp2 = ids_supp2.squeeze(0) + # ids_supp3 = ids_supp3.squeeze(0) + # ids_supp4 = ids_supp4.squeeze(0) + + ids00 = ids00.squeeze(0) + ids01 = ids01.squeeze(0) + ids11 = ids11.squeeze(0) + ids12 = ids12.squeeze(0) + ids22 = ids22.squeeze(0) + ids23 = ids23.squeeze(0) + ids33 = ids33.squeeze(0) + ids34 = ids34.squeeze(0) + ids44 = ids44.squeeze(0) + + # ids01 = ids00[ids_supp1] + # ids12 = ids11[ids_supp2] + # ids23 = ids22[ids_supp3] + # ids34 = ids33[ids_supp4] + + data["support1"] = support1 + data["support2"] = support2 + data["support3"] = support3 + data["support4"] = support4 + + data["ids00"] = ids00 + data["ids01"] = ids01 + data["ids11"] = ids11 + data["ids12"] = ids12 + data["ids22"] = ids22 + data["ids23"] = ids23 + data["ids33"] = ids33 + data["ids34"] = ids34 + data["ids44"] = ids44 + + if self.segmentation: + + if squeeze_after_computation: + ids43 = ids43.squeeze(0) + ids32 = ids32.squeeze(0) + ids21 = ids21.squeeze(0) + ids10 = ids10.squeeze(0) + + data["ids43"] = ids43 + data["ids32"] = ids32 + data["ids21"] = ids21 + data["ids10"] = ids10 + + + if not spatial_only: + x = data["x"].transpose(1,2) + pos = data["pos"].transpose(1,2) + + + # x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"], self.radius))) + x0 = self.cv0(x, pos, pos, data["ids00"], self.radius) + + x0 = self.resnetb01(x0, pos, pos, data["ids00"], self.radius) + x1 = self.resnetb10(x0, pos, data["support1"], data["ids01"], self.radius) + x1 = self.resnetb11(x1, data["support1"], data["support1"], data["ids11"], 2*self.radius) + x2 = self.resnetb20(x1, data["support1"], data["support2"], data["ids12"], 2*self.radius) + x2 = self.resnetb21(x2, data["support2"], data["support2"], data["ids22"], 4*self.radius) + x3 = self.resnetb30(x2, data["support2"], data["support3"], data["ids23"], 4*self.radius) + x3 = self.resnetb31(x3, data["support3"], data["support3"], data["ids33"], 8*self.radius) + x4 = self.resnetb40(x3, data["support3"], data["support4"], data["ids34"], 8*self.radius) + x4 = self.resnetb41(x4, data["support4"], data["support4"], data["ids44"], 16*self.radius) + + if self.segmentation: + + x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + x4d = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + + x3d = interpolate(x4d, data["ids43"]) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, data["ids32"]) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, data["ids21"]) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, data["ids10"]) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + + else: + + xout = x4.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + + return xout + + return data \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/fkaconv_network_radius.py b/lightconvpoint/networks/deprecated/fkaconv_network_radius.py new file mode 100644 index 0000000..df95ea2 --- /dev/null +++ b/lightconvpoint/networks/deprecated/fkaconv_network_radius.py @@ -0,0 +1,222 @@ +import torch +from torch._C import Value +import torch.nn as nn + +from lightconvpoint.nn.conv_fkaconv_radius import Convolution_FKAConv as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import radius_nn, knn, sampling_quantized as sampling +from torch_geometric.data import Data + +class ResidualBlock(torch.nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, neighborhood_size, max_nn=16, ratio=None, n_support=None): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.bn0 = nn.BatchNorm1d(in_channels//2) + self.cv1 = Conv(in_channels//2, in_channels//2, kernel_size) + self.bn1 = nn.BatchNorm1d(in_channels//2) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + self.bn2 = nn.BatchNorm1d(out_channels) + self.activation = nn.ReLU(inplace=True) + + self.shortcut = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + self.bn_shortcut = nn.BatchNorm1d(out_channels) if in_channels != out_channels else nn.Identity() + + self.ratio = ratio + self.n_support = n_support + assert( (self.ratio is None) != (self.n_support is None)) + + self.neighborhood_size = neighborhood_size + self.max_nn = max_nn + + def forward(self, x, pos, support_points, neighbors_indices, mask_indices): + + support_points, _ = sampling(pos, self.ratio, self.n_support, support_points, None) + neighbors_indices, mask_indices = radius_nn(pos, support_points, self.neighborhood_size, self.max_nn, neighbors_indices, mask_indices) + + if x is not None: + + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, neighbors_indices, mask_indices))) + x = self.bn2(self.cv2(x)) + + x_short = self.bn_shortcut(self.shortcut(x_short)) + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, neighbors_indices) + + x = self.activation(x + x_short) + + return x, support_points, neighbors_indices, mask_indices + + +class FKAConvNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, dropout=0.5, max_nn=16): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + + self.cv0 = Conv(in_channels, hidden, 16) + self.bn0 = nn.BatchNorm1d(hidden) + + self.radius = 2.5 * 0.06 + self.kernel_size = 16 + + if isinstance(max_nn, int): + max_nn = [max_nn for _ in range(9)] + self.max_nn = max_nn + + self.resnetb01 = ResidualBlock( hidden, hidden, self.kernel_size, self.radius, max_nn=self.max_nn[0], ratio=1) + self.resnetb10 = ResidualBlock( hidden, 2*hidden, self.kernel_size, self.radius, max_nn=self.max_nn[1], ratio=0.25) + self.resnetb11 = ResidualBlock( 2*hidden, 2*hidden, self.kernel_size, 2*self.radius, max_nn=self.max_nn[2], ratio=1) + self.resnetb20 = ResidualBlock( 2*hidden, 4*hidden, self.kernel_size, 2*self.radius, max_nn=self.max_nn[3], ratio=0.25) + self.resnetb21 = ResidualBlock( 4*hidden, 4*hidden, self.kernel_size, 4*self.radius, max_nn=self.max_nn[4], ratio=1) + self.resnetb30 = ResidualBlock( 4*hidden, 8*hidden, self.kernel_size, 4*self.radius, max_nn=self.max_nn[5], ratio=0.25) + self.resnetb31 = ResidualBlock( 8*hidden, 8*hidden, self.kernel_size, 8*self.radius, max_nn=self.max_nn[6], ratio=1) + self.resnetb40 = ResidualBlock( 8*hidden, 16*hidden, self.kernel_size, 8*self.radius, max_nn=self.max_nn[7], ratio=0.25) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, self.kernel_size, 16*self.radius, max_nn=self.max_nn[8], ratio=1) + + if self.segmentation: + + self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + self.bn5 = nn.BatchNorm1d(16*hidden) + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = nn.BatchNorm1d(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = nn.BatchNorm1d(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = nn.BatchNorm1d(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + + self.fcout = nn.Linear(1024, out_channels) + + self.dropout = nn.Dropout(dropout) + self.activation = nn.ReLU() + + def forward(self, data, spatial_only=False, return_all_decoder_features=False): + + pos = data["pos"] + x = None if (spatial_only or ("x" not in data) or (data["x"] is None)) else data["x"] + + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + pos = pos.transpose(1,2) + + if x is not None: + if len(x.shape) == 2: + x = x.unsqeeze(0) + x = x.transpose(1,2) + + if self.segmentation: + if ("net_indices" in data) and (data["net_indices"] is not None): + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = data["net_indices"] + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = [None for _ in range(13)] + else: + if ("net_indices" in data) and (data["net_indices"] is not None): + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = data["net_indices"] + else: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41 = [None for _ in range(9)] + + if ("net_mask" in data) and (data["net_mask"] is not None): + mask0, mask10, mask11, mask20, mask21, mask30, mask31, mask40, mask41 = data["net_mask"] + else: + mask0, mask10, mask11, mask20, mask21, mask30, mask31, mask40, mask41 = [None for _ in range(9)] + + if ("net_support" in data) and (data["net_support"] is not None): + support1, support2, support3, support4 = data["net_support"] + else: + support1, support2, support3, support4 = [None for _ in range(4)] + + + + ids0, mask0 = radius_nn(pos, pos, self.radius, self.max_nn[0], ids0, mask0) + + if x is not None: + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, ids0, mask0))) + else: + x0 = None + + x0, _, _, _ = self.resnetb01(x0, pos, pos, ids0, mask0) + x1, support1, ids10, mask10 = self.resnetb10(x0, pos, support1, ids10, mask10) + x1, _, ids11, mask11 = self.resnetb11(x1, support1, support1, ids11, mask11) + x2, support2, ids20, mask20 = self.resnetb20(x1, support1, support2, ids20, mask20) + x2, _, ids21, mask21 = self.resnetb21(x2, support2, support2, ids21, mask21) + x3, support3, ids30, mask30 = self.resnetb30(x2, support2, support3, ids30, mask30) + x3, _, ids31, mask31 = self.resnetb31(x3, support3, support3, ids31, mask31) + x4, support4, ids40, mask40 = self.resnetb40(x3, support3, support4, ids40, mask40) + x4, _, ids41, mask41 = self.resnetb41(x4, support4, support4, ids41, mask41) + + if self.segmentation: + ids3u = knn(support4, support3, 1, ids3u) + ids2u = knn(support3, support2, 1, ids2u) + ids1u = knn(support2, support1, 1, ids1u) + ids0u = knn(support1, pos, 1, ids0u) + + xout = x4 + + if xout is not None: + + x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + x4d = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + + x3d = interpolate(x4d, ids3u) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, ids2u) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, ids1u) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, ids0u) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + + if return_all_decoder_features: + xout = [x4d, x3d, x2d, x1d, xout] + + output_data = Data(outputs=xout, + net_support=[support1, support2, support3, support4], + net_indices = [ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u], + net_mask = [mask0, mask10, mask11, mask20, mask21, mask30, mask31, mask40, mask41]) + + if xout is None: + for support_id, support in enumerate(output_data["net_support"]): + output_data["net_support"][support_id] = support.squeeze(0) + for ids_id, ids in enumerate(output_data["net_indices"]): + output_data["net_indices"][ids_id] = ids.squeeze(0) + for ids_id, ids in enumerate(output_data["net_mask"]): + output_data["net_mask"][ids_id] = ids.squeeze(0) + + return output_data + + else: + + xout = x4 + if xout is not None: + xout = xout.mean(dim=2) + xout = self.dropout(xout) + xout = self.fcout(xout) + + output_data = Data(outputs=xout, + net_support = [support1, support2, support3, support4], + net_indices = [ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41], + net_mask = [mask0, mask10, mask11, mask20, mask21, mask30, mask31, mask40, mask41]) + + if xout is None: + for support_id, support in enumerate(output_data["net_support"]): + output_data["net_support"][support_id] = support.squeeze(0) + for ids_id, ids in enumerate(output_data["net_indices"]): + output_data["net_indices"][ids_id] = ids.squeeze(0) + for ids_id, ids in enumerate(output_data["net_mask"]): + output_data["net_mask"][ids_id] = ids.squeeze(0) + + return output_data \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/fusion.py b/lightconvpoint/networks/deprecated/fusion.py new file mode 100644 index 0000000..d65e718 --- /dev/null +++ b/lightconvpoint/networks/deprecated/fusion.py @@ -0,0 +1,98 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import lightconvpoint.nn as lcp_nn +import lightconvpoint.networks as lcp_net +import os +from contextlib import nullcontext + +class Fusion(nn.Module): # Segsmall with config option for precomputing in the dataloader + + + def train(self, mode=True): + """ + Override the default train() to freeze the backbones + """ + super(Fusion, self).train(mode) + if self.freeze: # freeze the encoder + self.base_network_noc.eval() + self.base_network_rgb.eval() + + + def __init__(self, in_channels, out_channels, ConvNet, Search, **kwargs): + super().__init__() + self.ConvNet = ConvNet + self.Search = Search + self.in_channels = in_channels + self.out_channels = out_channels + + if 'config' in kwargs: + self.config = kwargs['config'] + else: + raise Exception("Error - config dictionnary needed for fusion") + + # option used only at test time to prevent loading the weights twice + if 'loadSubModelWeights' in kwargs: + loadSubModelWeights = kwargs['loadSubModelWeights'] + else: + loadSubModelWeights = True + + self.base_network_rgb = getattr(lcp_net, self.config["network"]["fusion_submodel"][0])( + in_channels, out_channels, self.ConvNet, self.Search, **kwargs + ) + self.base_network_noc = getattr(lcp_net, self.config["network"]["fusion_submodel"][1])( + in_channels, out_channels, self.ConvNet, self.Search, **kwargs + ) + + if self.config["network"]["fusion_submodeldir"] is not None and loadSubModelWeights: + self.base_network_rgb.load_state_dict( + torch.load( + os.path.join( + self.config["network"]["fusion_submodeldir"][0], "checkpoint.pth"))["state_dict"]) + self.base_network_noc.load_state_dict( + torch.load( + os.path.join( + self.config["network"]["fusion_submodeldir"][1], "checkpoint.pth"))["state_dict"]) + + self.cv1 = lcp_nn.Conv( + self.ConvNet(self.base_network_rgb.features_out_size + self.base_network_noc.features_out_size, 96, 16), + self.Search(K=16) + ) + self.bn1 = nn.BatchNorm1d(96) + self.cv2 = lcp_nn.Conv( + self.ConvNet(96, 48, 16), + self.Search(K=16) + ) + self.bn2 = nn.BatchNorm1d(48) + self.fc = nn.Conv1d(48 + 2*out_channels, out_channels, 1) + self.drop = nn.Dropout(0.5) + + self.freeze=True + if self.freeze: + self.base_network_noc.eval() + self.base_network_rgb.eval() + + def forward( + self, x, input_pts, support_points=None, indices=None): + + if x is None: + _, ids_base, pts_base = self.base_network_rgb(x, input_pts, support_points, indices) + _, _, idsR = self.cv1(None, input_pts, input_pts) + return None, ids_base + [idsR], pts_base + + with torch.no_grad() if self.freeze else nullcontext(): + outputs_rgb, features_rgb = self.base_network_rgb(x, input_pts, support_points, indices, return_features=True) + outputs_noc, features_noc = self.base_network_noc(torch.ones_like(x), input_pts, support_points, indices, return_features=True) + + # compute fusion features + x0 = torch.cat([features_rgb, features_noc], dim=1) + x1, _, ids1 = self.cv1(x0, input_pts, input_pts, indices=indices[-1]) + x1 = F.relu(self.bn1(x1)) + x2, _, _ = self.cv2(x1, input_pts, input_pts, ids1) + x2 = F.relu(self.bn2(x2)) + + # decision layer + outputs_fus = torch.cat([outputs_rgb, outputs_noc, x2], dim=1) + outputs_fus = self.fc(outputs_fus) + + return outputs_fus \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/pointnet.py b/lightconvpoint/networks/deprecated/pointnet.py new file mode 100644 index 0000000..c76edef --- /dev/null +++ b/lightconvpoint/networks/deprecated/pointnet.py @@ -0,0 +1,137 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +class Pointnet(nn.Module): + + def __init__(self, in_channels, + out_channels, + hidden_dim, segmentation=False): + super().__init__() + + self.fc_in = nn.Conv1d(in_channels, 2*hidden_dim, 1) + self.fc_0 = nn.Conv1d(2*hidden_dim, hidden_dim, 1) + self.fc_1 = nn.Conv1d(2*hidden_dim, hidden_dim, 1) + self.fc_2 = nn.Conv1d(2*hidden_dim, hidden_dim, 1) + self.fc_3 = nn.Conv1d(2*hidden_dim, hidden_dim, 1) + + self.segmentation=segmentation + + if segmentation: + self.fc_out = nn.Conv1d(2*hidden_dim, out_channels, 1) + else: + self.fc_out = nn.Linear(hidden_dim, out_channels) + + self.activation = nn.ReLU() + + def forward(self, x): + + x = self.fc_in(x) + + x = self.fc_0(self.activation(x)) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.fc_1(self.activation(x)) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.fc_2(self.activation(x)) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.fc_3(self.activation(x)) + + if self.segmentation: + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + else: + x = torch.max(x, dim=2)[0] + + x = self.fc_out(x) + + return x + + +class ResidualBlock(nn.Module): + + def __init__(self, in_channels, out_channels, hidden_dim): + super().__init__() + + # Submodules + self.fc_0 = nn.Conv1d(in_channels, hidden_dim, 1) + self.fc_1 = nn.Conv1d(hidden_dim, out_channels, 1) + self.activation = nn.ReLU() + + if in_channels != out_channels: + self.shortcut = nn.Conv1d(in_channels, out_channels,1) + else: + self.shortcut = nn.Identity() + + nn.init.zeros_(self.fc_1.weight) + + def forward(self, x): + x_short = self.shortcut(x) + x = self.fc_0(x) + x = self.fc_1(self.activation(x)) + x = self.activation(x + x_short) + return x + + + +class ResidualPointnet(nn.Module): + ''' PointNet-based encoder network with ResNet blocks. + Args: + c_dim (int): dimension of latent code c + dim (int): input points dimension + hidden_dim (int): hidden dimension of the network + ''' + + def __init__(self, in_channels, out_channels, hidden_dim, segmentation=False): + super().__init__() + + self.fc_in = nn.Conv1d(in_channels, 2*hidden_dim, 1) + self.block_0 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_1 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_2 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_3 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_4 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + + self.segmentation = segmentation + if self.segmentation: + self.fc_out = nn.Conv1d(2*hidden_dim, out_channels, 1) + else: + self.fc_out = nn.Linear(hidden_dim, out_channels) + + + def forward(self, x): + + x = self.fc_in(x) + + x = self.block_0(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_1(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_2(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_3(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_4(x) + + if self.segmentation: + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + else: + x = torch.max(x, dim=2)[0] + + x = self.fc_out(x) + + return x \ No newline at end of file diff --git a/lightconvpoint/networks/deprecated/pointnetpp.py b/lightconvpoint/networks/deprecated/pointnetpp.py new file mode 100644 index 0000000..59f499e --- /dev/null +++ b/lightconvpoint/networks/deprecated/pointnetpp.py @@ -0,0 +1,115 @@ +import torch +import torch.nn as nn +from lightconvpoint.nn.module import Module as LCPModule +from lightconvpoint.nn.convolutions import PointNet +from lightconvpoint.spatial import sampling_furthest, knn, upsample_nearest +from lightconvpoint.utils.functional import batch_gather + + + +class PointNetPP(LCPModule): + + def __init__(self, in_channels, out_channels, segmentation=False, conv_layer=PointNet, + sampling=sampling_furthest, neighborhood_search=knn): + super().__init__() + + self.segmentation = segmentation + + self.cv0 = conv_layer(in_channels, mlp=[32,32, 64], sampling=sampling_furthest, neighborhood_search=knn, ratio=1, neighborhood_size=16) + self.cv1 = conv_layer(64, mlp=[64,64,128], sampling=sampling_furthest, neighborhood_search=knn, ratio=0.25, neighborhood_size=16) + self.cv2 = conv_layer(128, mlp=[128, 128, 256], sampling=sampling_furthest, neighborhood_search=knn, ratio=0.25, neighborhood_size=16) + self.cv3 = conv_layer(256, mlp=[256, 256, 512], sampling=sampling_furthest, neighborhood_search=knn, ratio=0.25, neighborhood_size=16) + + + if self.segmentation: + + # self.sa1 = PointNetSetAbstraction(1024, 0.1, 32, 9 + 3, [32, 32, 64], False) + # self.sa2 = PointNetSetAbstraction(256, 0.2, 32, 64 + 3, [64, 64, 128], False) + # self.sa3 = PointNetSetAbstraction(64, 0.4, 32, 128 + 3, [128, 128, 256], False) + # self.sa4 = PointNetSetAbstraction(16, 0.8, 32, 256 + 3, [256, 256, 512], False) + # self.fp4 = PointNetFeaturePropagation(768, [256, 256]) + # self.fp3 = PointNetFeaturePropagation(384, [256, 256]) + # self.fp2 = PointNetFeaturePropagation(320, [256, 128]) + # self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128]) + # self.conv1 = nn.Conv1d(128, 128, 1) + # self.bn1 = nn.BatchNorm1d(128) + # self.drop1 = nn.Dropout(0.5) + # self.conv2 = nn.Conv1d(128, num_classes, 1) + + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = nn.BatchNorm1d(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = nn.BatchNorm1d(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = nn.BatchNorm1d(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = nn.BatchNorm1d(hidden) + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + + self.fc1 = nn.Linear(512, 512) + self.bn1 = nn.BatchNorm1d(512) + self.drop1 = nn.Dropout(0.4) + self.fc2 = nn.Linear(512, 256) + self.bn2 = nn.BatchNorm1d(256) + self.drop2 = nn.Dropout(0.4) + self.fcout = nn.Linear(256, out_channels) + + self.dropout = nn.Dropout(0.5) + self.activation = nn.ReLU() + + def forward_without_features(self, pos, support_points=None, indices=None): + + _, support0, ids0 = self.cv0(None, pos) + _, support1, ids1 = self.cv1(None, support0[0]) + _, support2, ids2 = self.cv2(None, support1[0]) + _, support3, ids3 = self.cv3(None, support2[0]) + + support_points = support0 + support1 + support2 + support3 + indices = ids0 + ids1 + ids2 + ids3 + + if self.segmentation: + ids3u = upsample_nearest(support4[0], support3[0]) + ids2u = upsample_nearest(support3[0], support2[0]) + ids1u = upsample_nearest(support2[0], support1[0]) + ids0u = upsample_nearest(support1[0], pos) + indices += [ids3u, ids2u, ids1u, ids0u] + + return None, support_points, indices + + + def forward_with_features(self, x, pos, support_points=None, indices=None): + + if (support_points is None) or (indices is None): + _, indices, support_points = self.compute_indices(pos) + + if self.segmentation: + ids0, ids10, ids11, ids20, ids21, ids30, ids31, ids40, ids41, ids3u, ids2u, ids1u, ids0u = indices + else: + ids0, ids1, ids2, ids3 = indices + support0, support1, support2, support3 = support_points + + x0 = self.activation(self.cv0(x, pos, support0, ids0)) + x1 = self.activation(self.cv1(x0, support0, support1, ids1)) + x2 = self.activation(self.cv2(x1, support1, support2, ids2)) + x3 = self.activation(self.cv3(x2, support2, support3, ids3)) + + if self.segmentation: + xout = batch_gather(x4, 2, ids3u) + xout = self.activation(self.bn3d(self.cv3d(torch.cat([xout, x3], dim=1)))) + xout = batch_gather(xout, 2, ids2u) + xout = self.activation(self.bn2d(self.cv2d(torch.cat([xout, x2], dim=1)))) + xout = batch_gather(xout, 2, ids1u) + xout = self.activation(self.bn1d(self.cv1d(torch.cat([xout, x1], dim=1)))) + xout = batch_gather(xout, 2, ids0u) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + xout = self.fcout(xout) + else: + + xout = x3.max(dim=2)[0] + xout = self.drop1(self.activation(self.bn1(self.fc1(xout)))) + xout = self.drop2(self.activation(self.bn2(self.fc2(xout)))) + xout = self.fcout(xout) + + return xout \ No newline at end of file diff --git a/lightconvpoint/networks/fkaconv_network.py b/lightconvpoint/networks/fkaconv_network.py new file mode 100644 index 0000000..a91b38d --- /dev/null +++ b/lightconvpoint/networks/fkaconv_network.py @@ -0,0 +1,226 @@ +import torch +import torch.nn as nn +import torch_geometric + +from lightconvpoint.nn import Convolution_FKAConv as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import knn, sampling_quantized as sampling +# from lightconvpoint.spatial import knn, sampling_random as sampling +from torch_geometric.data import Data + +NormLayer = nn.BatchNorm1d + + +class ResidualBlock(torch.nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.bn0 = NormLayer(in_channels//2) + self.cv1 = Conv(in_channels//2, in_channels//2, kernel_size) + self.bn1 = NormLayer(in_channels//2) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + self.bn2 = NormLayer(out_channels) + self.activation = nn.ReLU(inplace=True) + + self.short = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + self.bn_short = NormLayer(out_channels) if in_channels != out_channels else nn.Identity() + + def forward(self, x, pos, support_points, neighbors_indices): + + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, neighbors_indices))) + x = self.bn2(self.cv2(x)) + + x_short = self.bn_short(self.short(x_short)) + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, neighbors_indices) + + x = self.activation(x + x_short) + + return x + + +class FKAConvNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, dropout=0.5, last_layer_additional_size=None): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + + self.cv0 = Conv(in_channels, hidden, 16) + self.bn0 = NormLayer(hidden) + + + self.resnetb01 = ResidualBlock(hidden, hidden, 16) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16) + if self.segmentation: + + # self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + # self.bn5 = NormLayer(16*hidden) + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = NormLayer(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = NormLayer(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = NormLayer(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = NormLayer(hidden) + + if last_layer_additional_size is not None: + self.fc = nn.Conv1d(hidden+last_layer_additional_size, out_channels, 1) + else: + self.fc = nn.Conv1d(hidden, out_channels, 1) + else: + self.fc = nn.Conv1d(16*hidden, out_channels, 1) + + self.dropout = nn.Dropout(dropout) + self.activation = nn.ReLU() + + + def forward_spatial(self, data): + + pos = data["pos"] + + add_batch_dimension = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension = True + + # compute the support points + # support1, _ = sampling(pos, 0.25) + # support2, _ = sampling(support1, 0.25) + # support3, _ = sampling(support2, 0.25) + # support4, _ = sampling(support3, 0.25) + support1, _ = sampling(pos, n_support=512) + support2, _ = sampling(support1, n_support=128) + support3, _ = sampling(support2, n_support=32) + support4, _ = sampling(support3, n_support=8) + + # compute the ids + ids00 = knn(pos, pos, 16) + ids01 = knn(pos, support1, 16) + ids11 = knn(support1, support1, 16) + ids12 = knn(support1, support2, 16) + ids22 = knn(support2, support2, 16) + ids23 = knn(support2, support3, 16) + ids33 = knn(support3, support3, 16) + ids34 = knn(support3, support4, 16) + ids44 = knn(support4, support4, 16) + if self.segmentation: + ids43 = knn(support4, support3, 1) + ids32 = knn(support3, support2, 1) + ids21 = knn(support2, support1, 1) + ids10 = knn(support1, pos, 1) + + ret_data = {} + if add_batch_dimension: + support1 = support1.squeeze(0) + support2 = support2.squeeze(0) + support3 = support3.squeeze(0) + support4 = support4.squeeze(0) + ids00 = ids00.squeeze(0) + ids01 = ids01.squeeze(0) + ids11 = ids11.squeeze(0) + ids12 = ids12.squeeze(0) + ids22 = ids22.squeeze(0) + ids23 = ids23.squeeze(0) + ids33 = ids33.squeeze(0) + ids34 = ids34.squeeze(0) + ids44 = ids44.squeeze(0) + + ret_data["support1"] = support1 + ret_data["support2"] = support2 + ret_data["support3"] = support3 + ret_data["support4"] = support4 + + ret_data["ids00"] = ids00 + ret_data["ids01"] = ids01 + ret_data["ids11"] = ids11 + ret_data["ids12"] = ids12 + ret_data["ids22"] = ids22 + ret_data["ids23"] = ids23 + ret_data["ids33"] = ids33 + ret_data["ids34"] = ids34 + ret_data["ids44"] = ids44 + + if self.segmentation: + if add_batch_dimension: + ids43 = ids43.squeeze(0) + ids32 = ids32.squeeze(0) + ids21 = ids21.squeeze(0) + ids10 = ids10.squeeze(0) + + ret_data["ids43"] = ids43 + ret_data["ids32"] = ids32 + ret_data["ids21"] = ids21 + ret_data["ids10"] = ids10 + + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False, cat_in_last_layer=None): + + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + # data = {**data, **spatial_data} + + x = data["x"] + pos = data["pos"] + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"]))) + x0 = self.resnetb01(x0, pos, pos, data["ids00"]) + x1 = self.resnetb10(x0, pos, data["support1"], data["ids01"]) + x1 = self.resnetb11(x1, data["support1"], data["support1"], data["ids11"]) + x2 = self.resnetb20(x1, data["support1"], data["support2"], data["ids12"]) + x2 = self.resnetb21(x2, data["support2"], data["support2"], data["ids22"]) + x3 = self.resnetb30(x2, data["support2"], data["support3"], data["ids23"]) + x3 = self.resnetb31(x3, data["support3"], data["support3"], data["ids33"]) + x4 = self.resnetb40(x3, data["support3"], data["support4"], data["ids34"]) + x4 = self.resnetb41(x4, data["support4"], data["support4"], data["ids44"]) + + if self.segmentation: + + # x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + # x4d = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + x4d = x4 + + x3d = interpolate(x4d, data["ids43"]) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, data["ids32"]) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, data["ids21"]) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, data["ids10"]) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + if cat_in_last_layer is not None: + xout = torch.cat([xout, cat_in_last_layer.expand(-1,-1,xout.shape[2])], dim=1) + xout = self.fc(xout) + + else: + + xout = x4 + xout = self.dropout(xout) + xout = self.fc(xout) + xout = xout.mean(dim=2) + + return xout \ No newline at end of file diff --git a/lightconvpoint/nn/__init__.py b/lightconvpoint/nn/__init__.py new file mode 100755 index 0000000..6b0cc78 --- /dev/null +++ b/lightconvpoint/nn/__init__.py @@ -0,0 +1,4 @@ +from .conv_fkaconv import Convolution_FKAConv +from .conv_convpoint import Convolution_ConvPoint +from .max_pooling import max_pool +from .interpolation import interpolate \ No newline at end of file diff --git a/lightconvpoint/nn/conv_convpoint.py b/lightconvpoint/nn/conv_convpoint.py new file mode 100644 index 0000000..cae0551 --- /dev/null +++ b/lightconvpoint/nn/conv_convpoint.py @@ -0,0 +1,119 @@ +import torch +import torch.nn as nn +import numpy as np +from math import ceil +from lightconvpoint.utils.functional import batch_gather + + +class Convolution_ConvPoint(torch.nn.Module): + """ConvPoint convolution layer. + + Provide the convolution layer as defined in ConvPoint paper + (https://github.com/aboulch/ConvPoint). + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, + O the number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same tensor. + """ + + def __init__(self, in_channels, out_channels, kernel_size, bias=True, dim=3, kernel_separation=False, **kwargs): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.has_bias = bias + self.dim = dim + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # centers + center_data = np.zeros((self.dim, self.kernel_size)) + for i in range(self.kernel_size): + coord = np.random.rand(self.dim) * 2 - 1 + while (coord ** 2).sum() > 1: + coord = np.random.rand(self.dim) * 2 - 1 + center_data[:, i] = coord + self.centers = nn.Parameter( + torch.from_numpy(center_data).float(), requires_grad=True + ) + + # MLP + modules = [] + proj_dim = self.dim * self.kernel_size + for i in range(3): + modules.append(nn.Linear(proj_dim, self.kernel_size)) + modules.append(nn.ReLU()) + proj_dim = self.kernel_size + self.projector = nn.Sequential(*modules) + + def normalize_points(self, pts, radius=None): + maxi = torch.sqrt((pts.detach() ** 2).sum(1).max(2)[0]) + maxi = maxi + (maxi == 0) + return pts / maxi.view(maxi.size(0), 1, maxi.size(1), 1) + + def forward(self, x, pos, support_points, neighbors_indices): + """Computes the features associated with the support points.""" + + if x is None: + return x + + points = batch_gather(pos, dim=2, index=neighbors_indices).contiguous() + input = batch_gather(x, dim=2, index=neighbors_indices).contiguous() + + + # center the neighborhoods (local coordinates) + pts = points - support_points.unsqueeze(3) + + # normalize points + pts = self.normalize_points(pts) + + # project features on kernel points + pts = (pts.permute(0, 2, 3, 1).unsqueeze(4) - self.centers).contiguous() + pts = pts.view(pts.size(0), pts.size(1), pts.size(2), -1) + mat = self.projector(pts) + + # compute features + features = input.transpose(1, 2) + features = torch.matmul(features, mat).transpose(1,2) + features = self.cv(features).squeeze(3) + + return features diff --git a/lightconvpoint/nn/conv_fkaconv.py b/lightconvpoint/nn/conv_fkaconv.py new file mode 100644 index 0000000..1c2ce24 --- /dev/null +++ b/lightconvpoint/nn/conv_fkaconv.py @@ -0,0 +1,146 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +# from lightconvpoint.spatial import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather +import torch + +class Convolution_FKAConv(torch.nn.Module): + + + def __init__(self, in_channels, out_channels, kernel_size=16, bias=False, dim=3, kernel_separation=False, adaptive_normalization=True,**kwargs): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.bias = bias + self.dim = dim + self.adaptive_normalization = adaptive_normalization + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # normalization radius + if self.adaptive_normalization: + self.norm_radius_momentum = 0.1 + self.norm_radius = nn.Parameter(torch.Tensor(1,), requires_grad=False) + self.alpha = nn.Parameter(torch.Tensor(1,), requires_grad=True) + self.beta = nn.Parameter(torch.Tensor(1,), requires_grad=True) + torch.nn.init.ones_(self.norm_radius.data) + torch.nn.init.ones_(self.alpha.data) + torch.nn.init.ones_(self.beta.data) + + # features to kernel weights + self.fc1 = nn.Conv2d(self.dim, self.kernel_size, 1, bias=False) + self.fc2 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.fc3 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.bn1 = nn.InstanceNorm2d(self.kernel_size, affine=True) + self.bn2 = nn.InstanceNorm2d(self.kernel_size, affine=True) + + + + def fixed_normalization(self, pts, radius=None): + maxi = torch.sqrt((pts.detach() ** 2).sum(1).max(2)[0]) + maxi = maxi + (maxi == 0) + return pts / maxi.view(maxi.size(0), 1, maxi.size(1), 1) + + + + def forward(self, x, pos, support_points, neighbors_indices): + + if x is None: + return None + + pos = batch_gather(pos, dim=2, index=neighbors_indices).contiguous() + x = batch_gather(x, dim=2, index=neighbors_indices).contiguous() + + # center the neighborhoods (local coordinates) + pts = pos - support_points.unsqueeze(3) + + + # normalize points + if self.adaptive_normalization: + + + # compute distances from points to their support point + distances = torch.sqrt((pts.detach() ** 2).sum(1)) + + # update the normalization radius + if self.training: + mean_radius = distances.max(2)[0].mean() + self.norm_radius.data = ( + self.norm_radius.data * (1 - self.norm_radius_momentum) + + mean_radius * self.norm_radius_momentum + ) + + # normalize + pts = pts / self.norm_radius + + # estimate distance weights + distance_weight = torch.sigmoid(-self.alpha * distances + self.beta) + distance_weight_s = distance_weight.sum(2, keepdim=True) + distance_weight_s = distance_weight_s + (distance_weight_s == 0) + 1e-6 + distance_weight = ( + distance_weight / distance_weight_s * distances.shape[2] + ).unsqueeze(1) + + # feature weighting matrix estimation + if pts.shape[3] == 1: + mat = F.relu(self.fc1(pts)) + else: + mat = F.relu(self.bn1(self.fc1(pts))) + mp1 = torch.max(mat * distance_weight, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp1], dim=1) + if pts.shape[3] == 1: + mat = F.relu(self.fc2(mat)) + else: + mat = F.relu(self.bn2(self.fc2(mat))) + mp2 = torch.max(mat * distance_weight, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp2], dim=1) + mat = F.relu(self.fc3(mat)) * distance_weight + # mat = torch.sigmoid(self.fc3(mat)) * distance_weight + else: + pts = self.fixed_normalization(pts) + + # feature weighting matrix estimation + if pts.shape[3] == 1: + mat = F.relu(self.fc1(pts)) + else: + mat = F.relu(self.bn1(self.fc1(pts))) + mp1 = torch.max(mat, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp1], dim=1) + if pts.shape[3] == 1: + mat = F.relu(self.fc2(mat)) + else: + mat = F.relu(self.bn2(self.fc2(mat))) + mp2 = torch.max(mat, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp2], dim=1) + mat = F.relu(self.fc3(mat)) + + # compute features + features = torch.matmul( + x.transpose(1, 2), mat.permute(0, 2, 3, 1) + ).transpose(1, 2) + features = self.cv(features).squeeze(3) + + return features + diff --git a/lightconvpoint/nn/deprecated/__init__.py b/lightconvpoint/nn/deprecated/__init__.py new file mode 100755 index 0000000..21757b0 --- /dev/null +++ b/lightconvpoint/nn/deprecated/__init__.py @@ -0,0 +1,5 @@ +from .module import Module +from .identity import Identity +from .upsample_nearest import UpSampleNearest +from .pooling import * +from .convolutions import * diff --git a/lightconvpoint/nn/deprecated/conv_fkaconv_2.py b/lightconvpoint/nn/deprecated/conv_fkaconv_2.py new file mode 100644 index 0000000..380e85f --- /dev/null +++ b/lightconvpoint/nn/deprecated/conv_fkaconv_2.py @@ -0,0 +1,76 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil + +from torch.nn.modules import distance +# from lightconvpoint.spatial import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather +import torch + +class Convolution_FKAConv(torch.nn.Module): + + + def __init__(self, in_channels, out_channels, kernel_size=16, bias=False, dim=3, kernel_separation=False, **kwargs): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.bias = bias + self.dim = dim + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # features to kernel weights + self.fc1 = nn.Conv2d(self.dim, self.kernel_size, 1, bias=False) + self.fc2 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.fc3 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + + def forward(self, x, pos, support_points, neighbors_indices, radius): + + # get the mask + mask = (neighbors_indices > -1) + neighbors_indices[~mask] = 0 + + pos = batch_gather(pos, dim=2, index=neighbors_indices).contiguous() + x = batch_gather(x, dim=2, index=neighbors_indices).contiguous() + + # center the neighborhoods (local coordinates) + pts = pos - support_points.unsqueeze(3) + + # normalize + pts = pts / radius + + # estimate distance weights + distance_weight = mask.float() + distance_weight = F.normalize(distance_weight, dim=2) + distance_weight = distance_weight.unsqueeze(1) + + # feature weighting matrix estimation + mat = F.relu(self.fc1(pts)) * distance_weight + mp1 = torch.max(mat, dim=3, keepdim=True)[0].expand((-1, -1, -1, mat.shape[3])) + mat = torch.cat([mat, mp1], dim=1) + mat = F.relu(self.fc2(mat)) * distance_weight + mp2 = torch.max(mat, dim=3, keepdim=True)[0].expand((-1, -1, -1, mat.shape[3])) + mat = torch.cat([mat, mp2], dim=1) + mat = F.relu(self.fc3(mat)) * distance_weight + + # compute features + features = torch.matmul( + x.transpose(1, 2), mat.permute(0, 2, 3, 1) + ).transpose(1, 2) + features = self.cv(features).squeeze(3) + + return features + diff --git a/lightconvpoint/nn/deprecated/conv_fkaconv_3.py b/lightconvpoint/nn/deprecated/conv_fkaconv_3.py new file mode 100644 index 0000000..4d2b6c5 --- /dev/null +++ b/lightconvpoint/nn/deprecated/conv_fkaconv_3.py @@ -0,0 +1,92 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil + +from torch.nn.modules import distance +# from lightconvpoint.spatial import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather +import torch + +class Convolution_FKAConv(torch.nn.Module): + + + def __init__(self, in_channels, out_channels, kernel_size=16, bias=False, dim=3, kernel_separation=False, **kwargs): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.bias = bias + self.dim = dim + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # features to kernel weights + self.fc1 = nn.Conv2d(self.dim, self.kernel_size, 1, bias=False) + self.fc2 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.fc3 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + + def forward(self, x, pos, support_points, neighbors_indices, radius): + + + + + # get the mask + mask = (neighbors_indices > -1) + neighbors_indices[~mask] = 0 + + pos = batch_gather(pos, dim=2, index=neighbors_indices).contiguous() + x = batch_gather(x, dim=2, index=neighbors_indices).contiguous() + + # center the neighborhoods (local coordinates) + pts = pos - support_points.unsqueeze(3) + + mask_pts = ~torch.isinf(pts[:,:1]) + pts = torch.nan_to_num(pts, 0.0, 0.0, 0.0) + + # normalize + pts = pts / radius + + # estimate distance weights + distance_weight = mask.float() + distance_weight = F.normalize(distance_weight, dim=2) + distance_weight = distance_weight.unsqueeze(1) + + distance_weight = distance_weight * mask_pts + + # feature weighting matrix estimation + mat = F.relu(self.fc1(pts)) * distance_weight + mp1 = torch.max(mat, dim=3, keepdim=True)[0].expand((-1, -1, -1, mat.shape[3])) + mat = torch.cat([mat, mp1], dim=1) + mat = F.relu(self.fc2(mat)) * distance_weight + mp2 = torch.max(mat, dim=3, keepdim=True)[0].expand((-1, -1, -1, mat.shape[3])) + mat = torch.cat([mat, mp2], dim=1) + mat = F.relu(self.fc3(mat)) * distance_weight + + # compute features + features = torch.matmul( + x.transpose(1, 2), mat.permute(0, 2, 3, 1) + ).transpose(1, 2) + features = self.cv(features).squeeze(3) + + + mask_support = (torch.isinf(support_points[:,:1])).expand_as(features) + features[mask_support] = float("Inf") + + print(features) + + # print(support_points.shape, features.shape) + + return features + diff --git a/lightconvpoint/nn/deprecated/conv_fkaconv_radius.py b/lightconvpoint/nn/deprecated/conv_fkaconv_radius.py new file mode 100644 index 0000000..866ee84 --- /dev/null +++ b/lightconvpoint/nn/deprecated/conv_fkaconv_radius.py @@ -0,0 +1,110 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +from lightconvpoint.spatial import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather +import torch + +class Convolution_FKAConv(torch.nn.Module): + + + def __init__(self, in_channels, out_channels, kernel_size=16, bias=False, dim=3, kernel_separation=False, **kwargs): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.bias = bias + self.dim = dim + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # normalization radius + self.norm_radius_momentum = 0.1 + self.norm_radius = nn.Parameter(torch.Tensor(1,), requires_grad=False) + self.alpha = nn.Parameter(torch.Tensor(1,), requires_grad=True) + self.beta = nn.Parameter(torch.Tensor(1,), requires_grad=True) + torch.nn.init.ones_(self.norm_radius.data) + torch.nn.init.ones_(self.alpha.data) + torch.nn.init.ones_(self.beta.data) + + # features to kernel weights + self.fc1 = nn.Conv2d(self.dim, self.kernel_size, 1, bias=False) + self.fc2 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.fc3 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.bn1 = nn.InstanceNorm2d(self.kernel_size, affine=True) + self.bn2 = nn.InstanceNorm2d(self.kernel_size, affine=True) + + def forward(self, x, pos, support_points, neighbors_indices, mask): + + if x is None: + return None + + pos = batch_gather(pos, dim=2, index=neighbors_indices).contiguous() + x = batch_gather(x, dim=2, index=neighbors_indices).contiguous() + + + # center the neighborhoods (local coordinates) + pts = pos - support_points.unsqueeze(3) + + + # compute distances from points to their support point + distances = torch.sqrt((pts.detach() ** 2).sum(1)) + + distances = distances * mask.float() + + + # update the normalization radius + if self.training: + mean_radius = distances.max(2)[0].mean() + self.norm_radius.data = ( + self.norm_radius.data * (1 - self.norm_radius_momentum) + + mean_radius * self.norm_radius_momentum + ) + + # normalize + pts = pts / self.norm_radius + + + # estimate distance weights + distance_weight = torch.sigmoid(-self.alpha * distances + self.beta) + distance_weight_s = distance_weight.sum(2, keepdim=True) + distance_weight_s = distance_weight_s + (distance_weight_s == 0) + 1e-6 + distance_weight = ( + distance_weight / distance_weight_s * distances.shape[2] + ).unsqueeze(1) + + # feature weighting matrix estimation + mat = F.relu(self.bn1(self.fc1(pts))) + mp1 = torch.max(mat * distance_weight, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp1], dim=1) + mat = F.relu(self.bn2(self.fc2(mat))) + mp2 = torch.max(mat * distance_weight, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp2], dim=1) + mat = F.relu(self.fc3(mat)) * distance_weight * mask.float().unsqueeze(1) + + x = x * mask.float().unsqueeze(1) + + # compute features + features = torch.matmul( + x.transpose(1, 2), mat.permute(0, 2, 3, 1) + ).transpose(1, 2) + features = self.cv(features).squeeze(3) + + return features + diff --git a/lightconvpoint/nn/deprecated/convolutions/__init__.py b/lightconvpoint/nn/deprecated/convolutions/__init__.py new file mode 100644 index 0000000..834700a --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions/__init__.py @@ -0,0 +1,3 @@ +from .conv_fkaconv import FKAConv +from .conv_pointnet import PointNet +from .conv_convpoint import ConvPoint \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/convolutions/conv_pccn_old.py b/lightconvpoint/nn/deprecated/convolutions/conv_pccn_old.py new file mode 100755 index 0000000..a71489f --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions/conv_pccn_old.py @@ -0,0 +1,104 @@ +import torch +import torch.nn as nn + + +class PCCN(nn.Module): + """PCCN convolution layer. + + Implementation from the paper Deep Parametric Convtinuous Convolutional Neural Network + (http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Deep_Parametric_Continuous_CVPR_2018_paper.pdf) + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, O the + number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same + tensor. + """ + + def __init__(self, in_channels, out_channels, kernel_size, bias=True, dim=3): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.use_bias = bias + self.dim = dim + + # weight matrix + self.weight = nn.Parameter( + torch.Tensor(in_channels, out_channels), requires_grad=True + ) + torch.nn.init.xavier_uniform_(self.weight.data) + + # bias + if self.use_bias: + self.bias = nn.Parameter(torch.Tensor(out_channels, 1), requires_grad=True) + torch.nn.init.zeros_(self.bias.data) + + # MLP + modules = [] + proj_dim = self.dim + modules.append(nn.Linear(proj_dim, 16)) + modules.append(nn.ReLU()) + modules.append(nn.Linear(16, 32)) + modules.append(nn.ReLU()) + modules.append(nn.Linear(32, out_channels)) + self.projector = nn.Sequential(*modules) + + def normalize_points(self, pts, radius=None): + maxi = torch.sqrt((pts.detach() ** 2).sum(1).max(2)[0]) + maxi = maxi + (maxi == 0) + return pts / maxi.view(maxi.size(0), 1, maxi.size(1), 1) + + def forward(self, input, points, support_points): + """Computes the features associated with the support points.""" + + # center the neighborhoods (local coordinates) + pts = points - support_points.unsqueeze(3) + + # normalize points + pts = self.normalize_points(pts) + + # create the projector + mat = self.projector(pts.permute(0, 2, 3, 1)) + + mat = mat.transpose(2, 3).unsqueeze(4) + features = torch.matmul(input.permute(0, 2, 3, 1), self.weight) + features = features.transpose(2, 3).unsqueeze(3) + features = torch.matmul(features, mat) + features = features.view(features.shape[:3]) + features = features.transpose(1, 2) + + # add a bias + if self.use_bias: + features = features + self.bias + + return features, support_points diff --git a/lightconvpoint/nn/deprecated/convolutions/conv_pointnet.py b/lightconvpoint/nn/deprecated/convolutions/conv_pointnet.py new file mode 100644 index 0000000..adc18f8 --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions/conv_pointnet.py @@ -0,0 +1,60 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +from lightconvpoint.nn import Module +from lightconvpoint.spatial import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather + +class PointNet(Module): + + def __init__(self, in_channels, mlp=None, + sampling=sampling_quantized, neighborhood_search=knn, ratio=1, neighborhood_size=16, + **kwargs): + super().__init__() + + + # parameters + self.out_channels = mlp[-1] + mlp = mlp[:-1] + self.in_channels = in_channels + + layers = [] + channels = in_channels + 3 + for s in mlp: + layers.append(nn.Conv2d(channels, s, 1)) + layers.append(nn.ReLU()) + channels = s + layers.append(nn.Conv2d(s, self.out_channels, 1)) + + self.net = nn.Sequential(*layers) + + # spatial part of the module + self.sampling = sampling + self.neighborhood_search = neighborhood_search + self.neighborhood_size = neighborhood_size + self.ratio = ratio + + def forward_without_features(self, pos, support_points=None, indices=None): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + if support_points is None: + _, support_points = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support_points, self.neighborhood_size) + return None, [support_points], [ids] + + def forward_with_features(self, x, pos, support_points, indices): + """Computes the features associated with the support points.""" + + input = batch_gather(x, dim=2, index=indices).contiguous() + + points = batch_gather(pos, dim=2, index=indices).contiguous() + points = points - support_points.unsqueeze(3) + + features = self.net(torch.cat([input,points], dim=1)) + features = features.max(dim=3)[0] + + return features + diff --git a/lightconvpoint/nn/deprecated/convolutions/convolution.py b/lightconvpoint/nn/deprecated/convolutions/convolution.py new file mode 100644 index 0000000..d442171 --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions/convolution.py @@ -0,0 +1,77 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +from lightconvpoint.nn import Module +from lightconvpoint.spatial import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather + +class ConvBase(Module): + """FKAConv convolution layer. + + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, + O the number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same + tensor. + """ + + def __init__(self, sampling=sampling_quantized, neighborhood_search=knn, ratio=1, neighborhood_size=16, **kwargs): + super().__init__() + + + # spatial part of the module + self.sampling = sampling + self.neighborhood_search = neighborhood_search + self.neighborhood_size = neighborhood_size + self.ratio = ratio + + + + def forward_without_features(self, pos, support_points=None, indices=None): + if support_points is not None: + assert(isinstance(support_points, list)) + ids = self.neighborhood_search(pos, support_points[0], self.neighborhood_size) + return None, support_points, [ids] + else: + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + _, support_points = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support_points, self.neighborhood_size) + return None, [support_points], [ids] + + def forward_with_features(self, x: torch.Tensor, pos: torch.Tensor, support_points: list, indices:list): + """Computes the features associated with the support points.""" + + raise NotImplementedError + diff --git a/lightconvpoint/nn/deprecated/convolutions_old/__init__.py b/lightconvpoint/nn/deprecated/convolutions_old/__init__.py new file mode 100644 index 0000000..834700a --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions_old/__init__.py @@ -0,0 +1,3 @@ +from .conv_fkaconv import FKAConv +from .conv_pointnet import PointNet +from .conv_convpoint import ConvPoint \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/convolutions_old/conv_convpoint.py b/lightconvpoint/nn/deprecated/convolutions_old/conv_convpoint.py new file mode 100644 index 0000000..5f1fc8e --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions_old/conv_convpoint.py @@ -0,0 +1,135 @@ +import torch +import torch.nn as nn +import numpy as np +from math import ceil +from lightconvpoint.spatial.deprecated import sampling_convpoint, knn +from lightconvpoint.utils.functional import batch_gather +from lightconvpoint.nn.deprecated import Module + + +class ConvPoint(Module): + """ConvPoint convolution layer. + + Provide the convolution layer as defined in ConvPoint paper + (https://github.com/aboulch/ConvPoint). + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, + O the number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same tensor. + """ + + def __init__(self, in_channels, out_channels, kernel_size, bias=True, dim=3, kernel_separation=False, + sampling=sampling_convpoint, neighborhood_search=knn, ratio=1, neighborhood_size=16, **kwargs): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.has_bias = bias + self.dim = dim + + # spatial part of the module + self.sampling = sampling + self.neighborhood_search = neighborhood_search + self.neighborhood_size = neighborhood_size + self.ratio = ratio + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # centers + center_data = np.zeros((self.dim, self.kernel_size)) + for i in range(self.kernel_size): + coord = np.random.rand(self.dim) * 2 - 1 + while (coord ** 2).sum() > 1: + coord = np.random.rand(self.dim) * 2 - 1 + center_data[:, i] = coord + self.centers = nn.Parameter( + torch.from_numpy(center_data).float(), requires_grad=True + ) + + # MLP + modules = [] + proj_dim = self.dim * self.kernel_size + for i in range(3): + modules.append(nn.Linear(proj_dim, self.kernel_size)) + modules.append(nn.ReLU()) + proj_dim = self.kernel_size + self.projector = nn.Sequential(*modules) + + def forward_without_features(self, pos, support_points=None, indices=None): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + if support_points is None: + _, support_points = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support_points, self.neighborhood_size) + return None, [support_points], [ids] + + def normalize_points(self, pts, radius=None): + maxi = torch.sqrt((pts.detach() ** 2).sum(1).max(2)[0]) + maxi = maxi + (maxi == 0) + return pts / maxi.view(maxi.size(0), 1, maxi.size(1), 1) + + def forward_with_features(self, x, pos, support_points, indices): + """Computes the features associated with the support points.""" + + points = batch_gather(pos, dim=2, index=indices).contiguous() + input = batch_gather(x, dim=2, index=indices).contiguous() + + + # center the neighborhoods (local coordinates) + pts = points - support_points.unsqueeze(3) + + # normalize points + pts = self.normalize_points(pts) + + # project features on kernel points + pts = (pts.permute(0, 2, 3, 1).unsqueeze(4) - self.centers).contiguous() + pts = pts.view(pts.size(0), pts.size(1), pts.size(2), -1) + mat = self.projector(pts) + + # compute features + features = input.transpose(1, 2) + features = torch.matmul(features, mat).transpose(1,2) + features = self.cv(features).squeeze(3) + + return features diff --git a/lightconvpoint/nn/deprecated/convolutions_old/conv_fkaconv.py b/lightconvpoint/nn/deprecated/convolutions_old/conv_fkaconv.py new file mode 100644 index 0000000..3823494 --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions_old/conv_fkaconv.py @@ -0,0 +1,145 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +from lightconvpoint.nn.deprecated import Module +from lightconvpoint.spatial.deprecated import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather +from .convolution import ConvBase + +class FKAConv(ConvBase): + """FKAConv convolution layer. + + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, + O the number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same + tensor. + """ + + def __init__(self, in_channels, out_channels, kernel_size=16, bias=False, dim=3, kernel_separation=False, + sampling=sampling_quantized, neighborhood_search=knn, ratio=1, neighborhood_size=16, + **kwargs): + super().__init__(sampling=sampling, neighborhood_search=neighborhood_search, ratio=ratio, neighborhood_size=neighborhood_size, **kwargs) + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.bias = bias + self.dim = dim + + # convolution kernel + if kernel_separation: + # equivalent to two kernels K1 * K2 + dm = int(ceil(self.out_channels / self.in_channels)) + self.cv = nn.Sequential( + nn.Conv2d(in_channels, dm*in_channels, (1, kernel_size), bias=bias, groups=self.in_channels), + nn.Conv2d(in_channels*dm, out_channels, (1, 1), bias=bias) + ) + else: + self.cv = nn.Conv2d(in_channels, out_channels, (1, kernel_size), bias=bias) + + # normalization radius + self.norm_radius_momentum = 0.1 + self.norm_radius = nn.Parameter(torch.Tensor(1,), requires_grad=False) + self.alpha = nn.Parameter(torch.Tensor(1,), requires_grad=True) + self.beta = nn.Parameter(torch.Tensor(1,), requires_grad=True) + torch.nn.init.ones_(self.norm_radius.data) + torch.nn.init.ones_(self.alpha.data) + torch.nn.init.ones_(self.beta.data) + + # features to kernel weights + self.fc1 = nn.Conv2d(self.dim, self.kernel_size, 1, bias=False) + self.fc2 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.fc3 = nn.Conv2d(2 * self.kernel_size, self.kernel_size, 1, bias=False) + self.bn1 = nn.InstanceNorm2d(self.kernel_size, affine=True) + self.bn2 = nn.InstanceNorm2d(self.kernel_size, affine=True) + + + def forward_with_features(self, x: torch.Tensor, pos: torch.Tensor, support_points: list, indices:list): + """Computes the features associated with the support points.""" + + assert(isinstance(support_points, list)) + assert(isinstance(indices, list)) + + indices = indices[0] + support_points = support_points[0] + + points = batch_gather(pos, dim=2, index=indices).contiguous() + input = batch_gather(x, dim=2, index=indices).contiguous() + + # center the neighborhoods (local coordinates) + pts = points - support_points.unsqueeze(3) + + # compute distances from points to their support point + distances = torch.sqrt((pts.detach() ** 2).sum(1)) + + # update the normalization radius + if self.training: + mean_radius = distances.max(2)[0].mean() + self.norm_radius.data = ( + self.norm_radius.data * (1 - self.norm_radius_momentum) + + mean_radius * self.norm_radius_momentum + ) + + # normalize + pts = pts / self.norm_radius + + # estimate distance weights + distance_weight = torch.sigmoid(-self.alpha * distances + self.beta) + distance_weight_s = distance_weight.sum(2, keepdim=True) + distance_weight_s = distance_weight_s + (distance_weight_s == 0) + 1e-6 + distance_weight = ( + distance_weight / distance_weight_s * distances.shape[2] + ).unsqueeze(1) + + # feature weighting matrix estimation + mat = F.relu(self.bn1(self.fc1(pts))) + mp1 = torch.max(mat * distance_weight, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp1], dim=1) + mat = F.relu(self.bn2(self.fc2(mat))) + mp2 = torch.max(mat * distance_weight, dim=3, keepdim=True)[0].expand( + (-1, -1, -1, mat.shape[3]) + ) + mat = torch.cat([mat, mp2], dim=1) + mat = F.relu(self.fc3(mat)) * distance_weight + + # compute features + features = torch.matmul( + input.transpose(1, 2), mat.permute(0, 2, 3, 1) + ).transpose(1, 2) + features = self.cv(features).squeeze(3) + + return features + diff --git a/lightconvpoint/nn/deprecated/convolutions_old/conv_pccn_old.py b/lightconvpoint/nn/deprecated/convolutions_old/conv_pccn_old.py new file mode 100755 index 0000000..a71489f --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions_old/conv_pccn_old.py @@ -0,0 +1,104 @@ +import torch +import torch.nn as nn + + +class PCCN(nn.Module): + """PCCN convolution layer. + + Implementation from the paper Deep Parametric Convtinuous Convolutional Neural Network + (http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Deep_Parametric_Continuous_CVPR_2018_paper.pdf) + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, O the + number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same + tensor. + """ + + def __init__(self, in_channels, out_channels, kernel_size, bias=True, dim=3): + super().__init__() + + # parameters + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.use_bias = bias + self.dim = dim + + # weight matrix + self.weight = nn.Parameter( + torch.Tensor(in_channels, out_channels), requires_grad=True + ) + torch.nn.init.xavier_uniform_(self.weight.data) + + # bias + if self.use_bias: + self.bias = nn.Parameter(torch.Tensor(out_channels, 1), requires_grad=True) + torch.nn.init.zeros_(self.bias.data) + + # MLP + modules = [] + proj_dim = self.dim + modules.append(nn.Linear(proj_dim, 16)) + modules.append(nn.ReLU()) + modules.append(nn.Linear(16, 32)) + modules.append(nn.ReLU()) + modules.append(nn.Linear(32, out_channels)) + self.projector = nn.Sequential(*modules) + + def normalize_points(self, pts, radius=None): + maxi = torch.sqrt((pts.detach() ** 2).sum(1).max(2)[0]) + maxi = maxi + (maxi == 0) + return pts / maxi.view(maxi.size(0), 1, maxi.size(1), 1) + + def forward(self, input, points, support_points): + """Computes the features associated with the support points.""" + + # center the neighborhoods (local coordinates) + pts = points - support_points.unsqueeze(3) + + # normalize points + pts = self.normalize_points(pts) + + # create the projector + mat = self.projector(pts.permute(0, 2, 3, 1)) + + mat = mat.transpose(2, 3).unsqueeze(4) + features = torch.matmul(input.permute(0, 2, 3, 1), self.weight) + features = features.transpose(2, 3).unsqueeze(3) + features = torch.matmul(features, mat) + features = features.view(features.shape[:3]) + features = features.transpose(1, 2) + + # add a bias + if self.use_bias: + features = features + self.bias + + return features, support_points diff --git a/lightconvpoint/nn/deprecated/convolutions_old/conv_pointnet.py b/lightconvpoint/nn/deprecated/convolutions_old/conv_pointnet.py new file mode 100644 index 0000000..8eb35ae --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions_old/conv_pointnet.py @@ -0,0 +1,60 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +from lightconvpoint.nn.deprecated import Module +from lightconvpoint.spatial.deprecated import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather + +class PointNet(Module): + + def __init__(self, in_channels, mlp=None, + sampling=sampling_quantized, neighborhood_search=knn, ratio=1, neighborhood_size=16, + **kwargs): + super().__init__() + + + # parameters + self.out_channels = mlp[-1] + mlp = mlp[:-1] + self.in_channels = in_channels + + layers = [] + channels = in_channels + 3 + for s in mlp: + layers.append(nn.Conv2d(channels, s, 1)) + layers.append(nn.ReLU()) + channels = s + layers.append(nn.Conv2d(s, self.out_channels, 1)) + + self.net = nn.Sequential(*layers) + + # spatial part of the module + self.sampling = sampling + self.neighborhood_search = neighborhood_search + self.neighborhood_size = neighborhood_size + self.ratio = ratio + + def forward_without_features(self, pos, support_points=None, indices=None): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + if support_points is None: + _, support_points = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support_points, self.neighborhood_size) + return None, [support_points], [ids] + + def forward_with_features(self, x, pos, support_points, indices): + """Computes the features associated with the support points.""" + + input = batch_gather(x, dim=2, index=indices).contiguous() + + points = batch_gather(pos, dim=2, index=indices).contiguous() + points = points - support_points.unsqueeze(3) + + features = self.net(torch.cat([input,points], dim=1)) + features = features.max(dim=3)[0] + + return features + diff --git a/lightconvpoint/nn/deprecated/convolutions_old/convolution.py b/lightconvpoint/nn/deprecated/convolutions_old/convolution.py new file mode 100644 index 0000000..3945718 --- /dev/null +++ b/lightconvpoint/nn/deprecated/convolutions_old/convolution.py @@ -0,0 +1,77 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from math import ceil +from lightconvpoint.nn.deprecated import Module +from lightconvpoint.spatial.deprecated import knn, sampling_quantized +from lightconvpoint.utils.functional import batch_gather + +class ConvBase(Module): + """FKAConv convolution layer. + + To be used with a `lightconvpoint.nn.Conv` instance. + + # Arguments + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + kernel_size: int. + The size of the kernel. + bias: Boolean. + Defaults to `False`. Add an optimizable bias. + dim: int. + Defaults to `3`. Spatial dimension. + + # Forward arguments + input: 3-D torch tensor. + The input features. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. Dimensions are (B, O, N) with B + the batch size, O the number of output channels and N the number of input + points. + + # Returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, + O the number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same + tensor. + """ + + def __init__(self, sampling=sampling_quantized, neighborhood_search=knn, ratio=1, neighborhood_size=16, **kwargs): + super().__init__() + + + # spatial part of the module + self.sampling = sampling + self.neighborhood_search = neighborhood_search + self.neighborhood_size = neighborhood_size + self.ratio = ratio + + + + def forward_without_features(self, pos, support_points=None, indices=None): + if support_points is not None: + assert(isinstance(support_points, list)) + ids = self.neighborhood_search(pos, support_points[0], self.neighborhood_size) + return None, support_points, [ids] + else: + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + _, support_points = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support_points, self.neighborhood_size) + return None, [support_points], [ids] + + def forward_with_features(self, x: torch.Tensor, pos: torch.Tensor, support_points: list, indices:list): + """Computes the features associated with the support points.""" + + raise NotImplementedError + diff --git a/lightconvpoint/nn/deprecated/identity.py b/lightconvpoint/nn/deprecated/identity.py new file mode 100644 index 0000000..deb1fa9 --- /dev/null +++ b/lightconvpoint/nn/deprecated/identity.py @@ -0,0 +1,35 @@ +import torch.nn as nn +from lightconvpoint.nn.deprecated import Module + + +class Identity(Module): + """Indentity module compatible with LightConvPoint. + + # Forward arguments + input: 3-D torch tensor. + Input feature tensor. Dimensions are (B, I, N) with B the batch size, + I the number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: (optional) 3-D torch tensor. + The support points to project features on. If not provided, use the `search` + object of the layer to compute them. + Dimensions are (B, D, N) with B the batch size, D the dimenstion of the + spatial space and N the number of input points. + indices: (optional) 3-D torch tensor. + The indices of the neighboring points with respect to the support points. + If not provided, use the `search` object of the layer to compute them. + + # Returns + (input, support_points, indices) + """ + + def __init__(self): + super().__init__() + + def forward_without_features(self, pos): + raise NotImplementedError + + def forward_with_features(self, x, pos, support_points, indices): + return x diff --git a/lightconvpoint/nn/deprecated/module.py b/lightconvpoint/nn/deprecated/module.py new file mode 100644 index 0000000..b99d150 --- /dev/null +++ b/lightconvpoint/nn/deprecated/module.py @@ -0,0 +1,25 @@ +import torch +import torch.nn as nn + +class Module(nn.Module): + + def __init__(self): + super().__init__() + + def forward_without_features(self, pos, support_points=None, indices=None): + raise NotImplementedError + + def forward_with_features(self, x, pos, support_points, indices): + raise NotImplementedError + + def forward(self, x, pos, support_points=None, indices=None): + if x is None: + return self.forward_without_features(pos, support_points, indices) + else: + if (support_points is None) or (indices is None): + _, support_points, indices = self.forward_without_features(pos, support_points, indices) + if isinstance(support_points, torch.Tensor): + support_points = [support_points] + if isinstance(indices, torch.Tensor): + indices = [indices] + return self.forward_with_features(x, pos, support_points, indices) diff --git a/lightconvpoint/nn/deprecated/pooling/__init__.py b/lightconvpoint/nn/deprecated/pooling/__init__.py new file mode 100644 index 0000000..1feaf64 --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling/__init__.py @@ -0,0 +1,6 @@ +# from .pool import min_pool +# from .pool import max_pool +# from .pool import mean_pool + +from .max_pooling import max_pool, MaxPooling +from .average_pooling import average_pool, AveragePooling \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling/average_pooling.py b/lightconvpoint/nn/deprecated/pooling/average_pooling.py new file mode 100644 index 0000000..d00ec47 --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling/average_pooling.py @@ -0,0 +1,30 @@ +import torch +from lightconvpoint.nn import Module +from lightconvpoint.utils.functional import batch_gather + +def average_pool(input, indices): + features = batch_gather(input, dim=2, index=indices).contiguous() + features = features.mean(dim=3) + return features + +class AveragePooling(Module): + + def __init__(self, sampling, neighborhood_search, ratio=1, neighborhood_size=16): + super().__init__() + + self.sampling = sampling + self.neighborhood_size = neighborhood_size + self.neighborhood_search = neighborhood_search + self.ratio = 1 + + def forward_without_features(self, pos): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + _, support = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support) + return None, [support], [ids] + + def forward_with_features(self, x, pos, support_points, indices): + return average_pool(x, indices[0]) \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling/max_pooling.py b/lightconvpoint/nn/deprecated/pooling/max_pooling.py new file mode 100644 index 0000000..28bc055 --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling/max_pooling.py @@ -0,0 +1,30 @@ +import torch +from lightconvpoint.nn import Module +from lightconvpoint.utils.functional import batch_gather + +def max_pool(input: torch.Tensor, indices: list) -> torch.Tensor: + features = batch_gather(input, dim=2, index=indices[0]).contiguous() + features = features.max(dim=3)[0] + return features + +class MaxPooling(Module): + + def __init__(self, sampling, neighborhood_search, ratio=1, neighborhood_size=16): + super().__init__() + + self.sampling = sampling + self.neighborhood_size = neighborhood_size + self.neighborhood_search = neighborhood_search + self.ratio = 1 + + def forward_without_features(self, pos): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + _, support = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support) + return None, [support], [ids] + + def forward_with_features(self, x: torch.Tensor, pos: torch.Tensor, support_points: list, indices: list) -> torch.Tensor: + return max_pool(x, indices) \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling/pool.py b/lightconvpoint/nn/deprecated/pooling/pool.py new file mode 100644 index 0000000..cef55fb --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling/pool.py @@ -0,0 +1,34 @@ +import torch + +def batched_index_select(input, dim, index): + """Gather input with respect to the index tensor.""" + index_shape = index.shape + views = [input.shape[0]] + [ + 1 if i != dim else -1 for i in range(1, len(input.shape)) + ] + expanse = list(input.shape) + expanse[0] = -1 + expanse[dim] = -1 + index = index.view(views).expand(expanse) + return torch.gather(input, dim, index).view( + input.size(0), -1, index_shape[1], index_shape[2] + ) + + +def max_pool(input, indices): + """Forward function of the layer.""" + features = batched_index_select(input, dim=2, index=indices).contiguous() + features = features.max(dim=3)[0] + return features + +def mean_pool(input, indices): + """Forward function of the layer.""" + features = batched_index_select(input, dim=2, index=indices).contiguous() + features = features.mean(dim=3) + return features + +def min_pool(input, indices): + """Forward function of the layer.""" + features = batched_index_select(input, dim=2, index=indices).contiguous() + features = features.min(dim=3)[0] + return features \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling_old/__init__.py b/lightconvpoint/nn/deprecated/pooling_old/__init__.py new file mode 100644 index 0000000..1feaf64 --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling_old/__init__.py @@ -0,0 +1,6 @@ +# from .pool import min_pool +# from .pool import max_pool +# from .pool import mean_pool + +from .max_pooling import max_pool, MaxPooling +from .average_pooling import average_pool, AveragePooling \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling_old/average_pooling.py b/lightconvpoint/nn/deprecated/pooling_old/average_pooling.py new file mode 100644 index 0000000..b56d688 --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling_old/average_pooling.py @@ -0,0 +1,30 @@ +import torch +from lightconvpoint.nn.deprecated import Module +from lightconvpoint.utils.functional import batch_gather + +def average_pool(input, indices): + features = batch_gather(input, dim=2, index=indices).contiguous() + features = features.mean(dim=3) + return features + +class AveragePooling(Module): + + def __init__(self, sampling, neighborhood_search, ratio=1, neighborhood_size=16): + super().__init__() + + self.sampling = sampling + self.neighborhood_size = neighborhood_size + self.neighborhood_search = neighborhood_search + self.ratio = 1 + + def forward_without_features(self, pos): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + _, support = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support) + return None, [support], [ids] + + def forward_with_features(self, x, pos, support_points, indices): + return average_pool(x, indices[0]) \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling_old/max_pooling.py b/lightconvpoint/nn/deprecated/pooling_old/max_pooling.py new file mode 100644 index 0000000..1ba0d42 --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling_old/max_pooling.py @@ -0,0 +1,30 @@ +import torch +from lightconvpoint.nn.deprecated import Module +from lightconvpoint.utils.functional import batch_gather + +def max_pool(input: torch.Tensor, indices: list) -> torch.Tensor: + features = batch_gather(input, dim=2, index=indices[0]).contiguous() + features = features.max(dim=3)[0] + return features + +class MaxPooling(Module): + + def __init__(self, sampling, neighborhood_search, ratio=1, neighborhood_size=16): + super().__init__() + + self.sampling = sampling + self.neighborhood_size = neighborhood_size + self.neighborhood_search = neighborhood_search + self.ratio = 1 + + def forward_without_features(self, pos): + if self.ratio == 1: + ids = self.neighborhood_search(pos, pos, self.neighborhood_size) + return None, [pos], [ids] + else: + _, support = self.sampling(pos, ratio=self.ratio, return_support_points=True) + ids = self.neighborhood_search(pos, support) + return None, [support], [ids] + + def forward_with_features(self, x: torch.Tensor, pos: torch.Tensor, support_points: list, indices: list) -> torch.Tensor: + return max_pool(x, indices) \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/pooling_old/pool.py b/lightconvpoint/nn/deprecated/pooling_old/pool.py new file mode 100644 index 0000000..cef55fb --- /dev/null +++ b/lightconvpoint/nn/deprecated/pooling_old/pool.py @@ -0,0 +1,34 @@ +import torch + +def batched_index_select(input, dim, index): + """Gather input with respect to the index tensor.""" + index_shape = index.shape + views = [input.shape[0]] + [ + 1 if i != dim else -1 for i in range(1, len(input.shape)) + ] + expanse = list(input.shape) + expanse[0] = -1 + expanse[dim] = -1 + index = index.view(views).expand(expanse) + return torch.gather(input, dim, index).view( + input.size(0), -1, index_shape[1], index_shape[2] + ) + + +def max_pool(input, indices): + """Forward function of the layer.""" + features = batched_index_select(input, dim=2, index=indices).contiguous() + features = features.max(dim=3)[0] + return features + +def mean_pool(input, indices): + """Forward function of the layer.""" + features = batched_index_select(input, dim=2, index=indices).contiguous() + features = features.mean(dim=3) + return features + +def min_pool(input, indices): + """Forward function of the layer.""" + features = batched_index_select(input, dim=2, index=indices).contiguous() + features = features.min(dim=3)[0] + return features \ No newline at end of file diff --git a/lightconvpoint/nn/deprecated/upsample_nearest.py b/lightconvpoint/nn/deprecated/upsample_nearest.py new file mode 100644 index 0000000..9ca8ad1 --- /dev/null +++ b/lightconvpoint/nn/deprecated/upsample_nearest.py @@ -0,0 +1,78 @@ +import torch +import torch.nn as nn +import lightconvpoint.knn as nearest_neighbors + + +class UpSampleNearest(nn.Module): + """Nearest neighbor interpolation. + + # Forward arguments + input: 3-D torch tensor. + Input feature tensor. Dimensions are (B, I, N) with B the batch size, I the + number of input channels and N the number of input points. + points: 3-D torch tensor. + The input points. Dimensions are (B, D, N) with B the batch size, D the + dimension of the spatial space and N the number of input points. + support_points: 3-D torch tensor. + The support points to project features on. + Dimensions are (B, D, N) with B the batch size, D the dimenstion of the + spatial space and N the number of input points. + indices: (optional) 3-D torch tensor. + The indices of the neighboring points with respect to the support points. + + # Forward returns + features: 3-D torch tensor. + The computed features. Dimensions are (B, O, N) with B the batch size, O the + number of output channels and N the number of input points. + support_points: 3-D torch tensor. + The support points. If they were provided as an input, return the same + tensor. + indices: 3-D torch tensor. + The indices of the neighboring points with respect to the support points. + If they were provided as an input, return the same tensor. + + """ + + def __init__(self): + super().__init__() + + def batched_index_select(self, input, dim, index): + """ + Slicing of input with respect to the index tensor + """ + index_shape = index.shape + views = [input.shape[0]] + [ + 1 if i != dim else -1 for i in range(1, len(input.shape)) + ] + expanse = list(input.shape) + expanse[0] = -1 + expanse[dim] = -1 + index = index.view(views).expand(expanse) + return torch.gather(input, dim, index).view( + input.size(0), -1, index_shape[1], index_shape[2] + ) + + def forward(self, input, points, support_points, indices=None): + """Forward function of the layer.""" + + # support points are known, only compute the knn + if indices is None: + indices = nearest_neighbors.knn( + points.cpu().detach(), support_points.cpu().detach(), 1 + ) + if points.is_cuda: + indices = indices.cuda() + + if input is None: + # inpuy is None: do not compute features + return None, support_points, indices + else: + # compute the features + indices = indices.clone() + + # get the features and point coordinates associated with the indices + features = self.batched_index_select( + input, dim=2, index=indices + ).contiguous() + + return features.squeeze(3), support_points, indices diff --git a/lightconvpoint/nn/interpolation.py b/lightconvpoint/nn/interpolation.py new file mode 100644 index 0000000..fc4e884 --- /dev/null +++ b/lightconvpoint/nn/interpolation.py @@ -0,0 +1,35 @@ +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather + +# def interpolate(x, pos, support_points, neighbors_indices=None, K=1): +# if neighbors_indices is None: +# neighbors_indices = knn(pos, support_points, K) +# if x is None: +# return None, support_points, neighbors_indices +# else: +# x = batch_gather(x, 2, neighbors_indices) +# if neighbors_indices.shape[-1] > 1: +# return x.mean(-1), support_points, neighbors_indices +# else: +# return x.squeeze(-1), support_points, neighbors_indices + +def interpolate(x, neighbors_indices, method="mean"): + + + mask = (neighbors_indices > -1) + neighbors_indices[~mask] = 0 + + x = batch_gather(x, 2, neighbors_indices) + + + # m = (neighbors_indices[:,:,0] > -1).float().unsqueeze(1).unsqueeze(3) + # m[m==0] = float("Inf") + # x = x * m + + if neighbors_indices.shape[-1] > 1: + if method=="mean": + return x.mean(-1) + elif method=="max": + return x.mean(-1)[0] + else: + return x.squeeze(-1) \ No newline at end of file diff --git a/lightconvpoint/nn/max_pooling.py b/lightconvpoint/nn/max_pooling.py new file mode 100644 index 0000000..6af0b97 --- /dev/null +++ b/lightconvpoint/nn/max_pooling.py @@ -0,0 +1,29 @@ +import torch +from lightconvpoint.utils.functional import batch_gather + +def max_pool(input: torch.Tensor, indices: list) -> torch.Tensor: + features = batch_gather(input, dim=2, index=indices).contiguous() + features = features.max(dim=3)[0] + return features + +# class MaxPooling(Module): + +# def __init__(self, sampling, neighborhood_search, ratio=1, neighborhood_size=16): +# super().__init__() + +# self.sampling = sampling +# self.neighborhood_size = neighborhood_size +# self.neighborhood_search = neighborhood_search +# self.ratio = 1 + +# def forward_without_features(self, pos): +# if self.ratio == 1: +# ids = self.neighborhood_search(pos, pos, self.neighborhood_size) +# return None, [pos], [ids] +# else: +# _, support = self.sampling(pos, ratio=self.ratio, return_support_points=True) +# ids = self.neighborhood_search(pos, support) +# return None, [support], [ids] + +# def forward_with_features(self, x: torch.Tensor, pos: torch.Tensor, support_points: list, indices: list) -> torch.Tensor: +# return max_pool(x, indices) \ No newline at end of file diff --git a/lightconvpoint/spatial/__init__.py b/lightconvpoint/spatial/__init__.py new file mode 100644 index 0000000..8508fc4 --- /dev/null +++ b/lightconvpoint/spatial/__init__.py @@ -0,0 +1,6 @@ +from .neighborhood_search.knn import knn +from .neighborhood_search.radius_knn import radius_knn +from .neighborhood_search.radius import radius +from .sampling.sampling_quantized import sampling_quantized +from .sampling.sampling_convpoint import sampling_convpoint +from .sampling.sampling_random import sampling_random \ No newline at end of file diff --git a/lightconvpoint/spatial/neighborhood_search/__init__.py b/lightconvpoint/spatial/neighborhood_search/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/lightconvpoint/spatial/neighborhood_search/knn.py b/lightconvpoint/spatial/neighborhood_search/knn.py new file mode 100644 index 0000000..ef518e8 --- /dev/null +++ b/lightconvpoint/spatial/neighborhood_search/knn.py @@ -0,0 +1,22 @@ +import torch +from scipy.spatial import KDTree + +def knn(points, support_points, K, neighbors_indices=None): + + if neighbors_indices is not None: + return neighbors_indices + + if K > points.shape[2]: + K = points.shape[2] + pts = points.cpu().detach().transpose(1,2).numpy().copy() + s_pts = support_points.cpu().detach().transpose(1,2).numpy().copy() + n = pts.shape[1] + indices = [] + for i in range(pts.shape[0]): + tree = KDTree(pts[i]) + _, indices_ = tree.query(s_pts[i], k=K) + indices.append(torch.tensor(indices_, dtype=torch.long)) + indices = torch.stack(indices, dim=0) + if K==1: + indices = indices.unsqueeze(2) + return indices.to(points.device) \ No newline at end of file diff --git a/lightconvpoint/spatial/neighborhood_search/radius.py b/lightconvpoint/spatial/neighborhood_search/radius.py new file mode 100644 index 0000000..0e07243 --- /dev/null +++ b/lightconvpoint/spatial/neighborhood_search/radius.py @@ -0,0 +1,51 @@ +from operator import index +from scipy.spatial import KDTree +import torch +import numpy as np + +def radius(points, support_points, radius, max_num_neighbors, neighbors_indices=None): + + # if max num_neighbors defines the maximum number of neighbors + # and the size of the out vector + + if neighbors_indices is not None: + return neighbors_indices + + # move to cpu numpy + pts = points.cpu().detach().transpose(1,2).numpy().copy() + s_pts = support_points.cpu().detach().transpose(1,2).numpy().copy() + n = pts.shape[1] + indices = [] + + # iterate in the batch dimenstion + for i in range(pts.shape[0]): + + # build the KDTree + tree_pts = KDTree(pts[i]) + tree_support = KDTree(s_pts[i]) + + indices_query = tree_support.query_ball_tree(tree_pts, r=radius) + + # create the indices matrix + indices_ = torch.full((s_pts.shape[1], max_num_neighbors), -1, dtype=torch.long) + + for i in range(len(indices_query)): + + ids = torch.tensor(indices_query[i], dtype=torch.long) + + if ids.shape[0]==0: # no neighbors + continue + + if ids.shape[0] > max_num_neighbors: # use all neighbors + ids = ids[torch.randperm(ids.shape[0])][:max_num_neighbors] + + indices_[i, :ids.shape[0]] = ids + + indices.append(indices_) + + indices = torch.stack(indices, dim=0) + + if max_num_neighbors == 1: + indices = indices.unsqueeze(2) + + return indices.to(points.device) \ No newline at end of file diff --git a/lightconvpoint/spatial/neighborhood_search/radius_knn.py b/lightconvpoint/spatial/neighborhood_search/radius_knn.py new file mode 100644 index 0000000..06cb4e4 --- /dev/null +++ b/lightconvpoint/spatial/neighborhood_search/radius_knn.py @@ -0,0 +1,35 @@ +import torch +import numpy as np +from scipy.spatial import KDTree + +def radius_knn(points, support_points, radius, K, neighbors_indices=None): + + if neighbors_indices is not None: + return neighbors_indices + + if K > points.shape[2]: + K = points.shape[2] + pts = points.cpu().detach().transpose(1,2).numpy().copy() + s_pts = support_points.cpu().detach().transpose(1,2).numpy().copy() + n = pts.shape[1] + indices = [] + for i in range(pts.shape[0]): + tree = KDTree(pts[i]) + + indices_batch = [] + for results in tree.query_ball_point(s_pts[i], r=radius): + results = torch.tensor(results, dtype=torch.long) + if results.shape[0] > K: + results = results[torch.randperm(results.shape[0])[:K]] + else: + ids = torch.arange(results.shape[0], dtype=torch.long) + ids = ids.repeat(K//ids.shape[0]+1) + ids = ids[torch.randperm(ids.shape[0])[:K]] + results = results[ids] + indices_batch.append(results) + indices_batch = torch.stack(indices_batch, dim=0) + indices.append(indices_batch) + indices = torch.stack(indices, dim=0) + if K==1: + indices = indices.unsqueeze(2) + return indices.to(points.device) \ No newline at end of file diff --git a/lightconvpoint/spatial/sampling/sampling_convpoint.py b/lightconvpoint/spatial/sampling/sampling_convpoint.py new file mode 100644 index 0000000..3e98df8 --- /dev/null +++ b/lightconvpoint/spatial/sampling/sampling_convpoint.py @@ -0,0 +1,20 @@ +import torch +import logging +from lightconvpoint.utils.functional import batch_gather + +def sampling_convpoint(pos, ratio=1, support_points=None, support_points_ids=None, K=16): + + if ratio == 1: + support_points_ids = torch.arange(pos.shape[2], dtype=torch.long, device=pos.device) + support_points_ids = support_points_ids.unsqueeze(0).expand(pos.shape[0], pos.shape[2]) + return pos, support_points_ids + elif ratio>0 and ratio<1: + + raise NotImplementedError + + support_points_ids = support_points_ids.to(pos.device) + support_points = batch_gather(pos, dim=2, index=support_points_ids) + return support_points, support_points_ids + + else: + raise ValueError(f"Search ConvPoint - ratio value error {ratio} should be in ]0,1]") \ No newline at end of file diff --git a/lightconvpoint/spatial/sampling/sampling_futhest.py b/lightconvpoint/spatial/sampling/sampling_futhest.py new file mode 100644 index 0000000..16485cb --- /dev/null +++ b/lightconvpoint/spatial/sampling/sampling_futhest.py @@ -0,0 +1,22 @@ +import torch +import logging +from lightconvpoint.utils.functional import batch_gather + +def sampling_furthest(points, ratio=1, return_support_points=False): + if ratio==1: + support_points_ids = torch.arange(points.shape[2], dtype=torch.long, device=points.device) + support_points_ids = support_points_ids.unsqueeze(0).expand(points.shape[0], points.shape[2]) + if return_support_points: + return support_points_ids, points + elif ratio>0 and ratio<1: + + raise NotImplementedError + + support_points_ids = support_points_ids.to(points.device) + if return_support_points: + support_points = batch_gather(points, dim=2, index=support_points_ids) + return support_points_ids, support_points + else: + return support_points_ids + else: + raise ValueError(f"Search FPS - ratio value error {ratio} should be in ]0,1]") \ No newline at end of file diff --git a/lightconvpoint/spatial/sampling/sampling_quantized.py b/lightconvpoint/spatial/sampling/sampling_quantized.py new file mode 100644 index 0000000..83268cf --- /dev/null +++ b/lightconvpoint/spatial/sampling/sampling_quantized.py @@ -0,0 +1,80 @@ +import torch +import math +from torch_geometric.data import Data +from torch_geometric.nn import voxel_grid +from torch_geometric.nn.pool.consecutive import consecutive_cluster +from lightconvpoint.utils.functional import batch_gather +import logging +from torch_geometric.transforms import RandomRotate + +def sampling_quantized(pos, ratio=None, n_support=None, support_points=None, support_points_ids=None): + + + if support_points is not None: + return support_points, support_points_ids + + assert((ratio is None) != (n_support is None)) + + if ratio is not None: + support_point_number = max(1,int(pos.shape[2] * ratio)) + else: + support_point_number = n_support + + if support_point_number == pos.shape[2]: + support_points_ids = torch.arange(pos.shape[2], dtype=torch.long, device=pos.device) + support_points_ids = support_points_ids.unsqueeze(0).expand(pos.shape[0], pos.shape[2]) + return pos, support_points_ids + elif support_point_number>0 and support_point_number 0) + pts = pts[tmp] + ids = ids[tmp] + vox = vox / 2 + # pts = pts[perm] + # ids = ids[perm] + else: + n_to_select = support_point_number - sampled_count + perm = perm[torch.randperm(perm.shape[0])[:n_to_select]] + sampled.append(ids[perm]) + break + sampled = torch.cat(sampled) + support_points_ids.append(sampled) + + support_points_ids = torch.stack(support_points_ids, dim=0) + + + support_points_ids = support_points_ids.to(pos.device) + + support_points = batch_gather(pos, dim=2, index=support_points_ids) + return support_points, support_points_ids + else: + raise ValueError(f"Search Quantized - ratio value error {ratio} should be in ]0,1]") \ No newline at end of file diff --git a/lightconvpoint/spatial/sampling/sampling_random.py b/lightconvpoint/spatial/sampling/sampling_random.py new file mode 100644 index 0000000..5bcc891 --- /dev/null +++ b/lightconvpoint/spatial/sampling/sampling_random.py @@ -0,0 +1,37 @@ +import torch +from lightconvpoint.utils.functional import batch_gather + +def sampling_random(pos, ratio=None, n_support=None, support_points=None, support_points_ids=None): + + if support_points is not None: + return support_points, support_points_ids + + assert((ratio is None) != (n_support is None)) + + + if ratio is not None: + support_point_number = max(1,int(pos.shape[2] * ratio)) + else: + support_point_number = n_support + + if support_point_number == pos.shape[2]: + support_points_ids = torch.arange(pos.shape[2], dtype=torch.long, device=pos.device) + support_points_ids = support_points_ids.unsqueeze(0).expand(pos.shape[0], pos.shape[2]) + return pos, support_points_ids + elif support_point_number>0 and support_point_number + +// ===== This example shows how to use nanoflann with these types of containers: ======= +//typedef std::vector > my_vector_of_vectors_t; +//typedef std::vector my_vector_of_vectors_t; // This requires #include +// ===================================================================================== + + +/** A simple vector-of-vectors adaptor for nanoflann, without duplicating the storage. + * The i'th vector represents a point in the state space. + * + * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations. + * \tparam num_t The type of the point coordinates (typically, double or float). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + * \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int) + */ +// template +// struct KDTreeVectorAdaptor +// { +// typedef KDTreeVectorAdaptor self_t; +// typedef typename Distance::template traits::distance_t metric_t; +// typedef nanoflann::KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t; + +// index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. +// size_t dims; + +// /// Constructor: takes a const ref to the vector of vectors object with the data points +// KDTreeVectorAdaptor(const size_t dims /* dimensionality */, const VectorType &mat, const int leaf_max_size = 10) : m_data(mat) +// { +// assert(mat.size() != 0); +// this->dims= dims; +// index = new index_t( static_cast(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) ); +// index->buildIndex(); +// } + +// ~KDTreeVectorAdaptor() { +// delete index; +// } + +// const VectorType &m_data; + +// /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). +// * Note that this is a short-cut method for index->findNeighbors(). +// * The user can also call index->... methods as desired. +// * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. +// */ +// inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const +// { +// nanoflann::KNNResultSet resultSet(num_closest); +// resultSet.init(out_indices, out_distances_sq); +// index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); +// } + +// /** @name Interface expected by KDTreeSingleIndexAdaptor +// * @{ */ + +// const self_t & derived() const { +// return *this; +// } +// self_t & derived() { +// return *this; +// } + +// // Must return the number of data points +// inline size_t kdtree_get_point_count() const { +// return m_data.size()/this->dims; +// } + +// // Returns the dim'th component of the idx'th point in the class: +// inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const { +// return m_data[idx*this->dims + dim]; +// } + +// // Optional bounding-box computation: return false to default to a standard bbox computation loop. +// // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. +// // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) +// template +// bool kdtree_get_bbox(BBOX & /*bb*/) const { +// return false; +// } + +// /** @} */ + +// }; // end of KDTreeVectorOfVectorsAdaptor + + + + +template +struct KDTreeTableAdaptor +{ + typedef KDTreeTableAdaptor self_t; + typedef typename Distance::template traits::distance_t metric_t; + typedef nanoflann::KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t; + + index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. + size_t dim; + size_t npts; + const TableType* m_data; + + /// Constructor: takes a const ref to the vector of vectors object with the data points + KDTreeTableAdaptor(const size_t npts, const size_t dim, const TableType* mat, const int leaf_max_size = 10) : dim(dim), npts(npts), m_data(mat) + { + assert(npts != 0); + index = new index_t( static_cast(dim), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) ); + index->buildIndex(); + } + + ~KDTreeTableAdaptor() { + delete index; + } + + + /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). + * Note that this is a short-cut method for index->findNeighbors(). + * The user can also call index->... methods as desired. + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + */ + inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + + /** @name Interface expected by KDTreeSingleIndexAdaptor + * @{ */ + + const self_t & derived() const { + return *this; + } + self_t & derived() { + return *this; + } + + // Must return the number of data points + inline size_t kdtree_get_point_count() const { + return this->npts; + } + + // Returns the dim'th component of the idx'th point in the class: + inline num_t kdtree_get_pt(const size_t pts_id, const size_t coord_id) const { + return m_data[pts_id*this->dim + coord_id]; + } + + // Optional bounding-box computation: return false to default to a standard bbox computation loop. + // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. + // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) + template + bool kdtree_get_bbox(BBOX & /*bb*/) const { + return false; + } + + /** @} */ + +}; // end of KDTreeVectorOfVectorsAdaptor + diff --git a/lightconvpoint/src/functions.h b/lightconvpoint/src/functions.h new file mode 100755 index 0000000..442cd53 --- /dev/null +++ b/lightconvpoint/src/functions.h @@ -0,0 +1,26 @@ +# pragma once +#include + +// KNN computation +torch::Tensor knn(const torch::Tensor points, const torch::Tensor queries, const size_t K); + +torch::Tensor radius(const torch::Tensor points, const torch::Tensor queries, const float radius, const size_t max_K); + +// sampling +torch::Tensor sampling_quantized(const torch::Tensor points, const size_t nqueries); + +torch::Tensor sampling_fps(const torch::Tensor points, const size_t nqueries); + +torch::Tensor sampling_random(const torch::Tensor points, const size_t nqueries); + +// sampling convpoint would not be efficient as it requires computing knn, use sampling_knn_convpoint instead + +// sampling + KNN +std::vector sampling_knn_random(const torch::Tensor points, const size_t nqueries, const size_t K); + +std::vector sampling_knn_fps(const torch::Tensor points, const size_t nqueries, const size_t K); + +std::vector sampling_knn_quantized(const torch::Tensor points, const size_t nqueries, const size_t K); + +std::vector sampling_knn_convpoint(const torch::Tensor points, const size_t nqueries, const size_t K); + diff --git a/lightconvpoint/src/functions_bind.cxx b/lightconvpoint/src/functions_bind.cxx new file mode 100755 index 0000000..bd64531 --- /dev/null +++ b/lightconvpoint/src/functions_bind.cxx @@ -0,0 +1,13 @@ +#include "functions.h" + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("knn", &knn, "knn computation"); + m.def("radius", &radius, "radius nn computation"); + m.def("sampling_quantized", &sampling_quantized, "sampling computation with voxels"); + m.def("sampling_fps", &sampling_fps, "sampling computation with farthest point sampling"); + m.def("sampling_random", &sampling_random, "sampling computation with random sampling"); + m.def("sampling_knn_random", &sampling_knn_random, "knn computation with random sampling"); + m.def("sampling_knn_convpoint", &sampling_knn_random, "knn computation with convpoint sampling"); + m.def("sampling_knn_quantized", &sampling_knn_random, "knn computation with quantized sampling"); + m.def("sampling_knn_fps", &sampling_knn_random, "knn computation with farthest point sampling"); +} \ No newline at end of file diff --git a/lightconvpoint/src/knn.cxx b/lightconvpoint/src/knn.cxx new file mode 100755 index 0000000..a2f4867 --- /dev/null +++ b/lightconvpoint/src/knn.cxx @@ -0,0 +1,116 @@ + +// KDTree +#include "functions.h" +#include "nanoflann.hpp" +#include "KDTreeTableAdaptor.h" +using namespace nanoflann; + + +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + +torch::Tensor knn(const torch::Tensor points, const torch::Tensor queries, const size_t K){ + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + // get the points + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + // queries are points + if(queries.dtype() == torch::kFloat32){ + size_t Q = queries.size(2); + auto qrs = queries.transpose(1,2).contiguous(); + const float* qrs_data = qrs.data_ptr(); + + // create the tensor for indices + auto indices = torch::zeros({long(B), long(Q), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + const float* qrs_b = &qrs_data[b*Q*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the containers for the queries + std::vector out_dists_sqr(K); + std::vector out_ids(K); + + // iterate over the queries + for(size_t q=0; q resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &qrs_b[q*D], nanoflann::SearchParams(10)); + // fill the queries and neighborhoods + for(size_t j=0; j(); + auto queries_a = queries.accessor(); + + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the containers for the queries + std::vector out_dists_sqr(K); + std::vector out_ids(K); + + // iterate over the queries + for(size_t q=0; q resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &pts_b[queries_a[b][q]*D], nanoflann::SearchParams(10)); + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + + + +std::vector convpoint_pick_knn(const torch::Tensor points, const size_t nqueries, + const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + if(nqueries >= N){ + return random_pick_knn(points, nqueries, K); + } + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the memory vector for used points + vector used(N, 0); + + // iterate over points + int current_id = 0; + // iterate over the queries + for(size_t q=0; q possible_ids; + while(possible_ids.size() == 0){ + for(size_t i=0; i query_pt(3); + for(size_t j=0; j out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j convpoint_pick_knn_dev(const torch::Tensor points, const size_t nqueries, + const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + if(nqueries >= N){ + return random_pick_knn(points, nqueries, K); + } + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the memory vector for used points + vector used(N, 0); + + size_t q=0; + size_t i=0; + size_t current_point_level = 0; + while(q query_pt(3); + for(size_t j=0; j out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + + + +std::vector farthest_pick_knn(const torch::Tensor points, const size_t nqueries, + const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + if(nqueries >= N){ + return random_pick_knn(points, nqueries, K); + } + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the memory vector for used points + vector distances(N, 1e7); + + // iterate over points + int current_id = 0; + // iterate over the queries + for(size_t q=0; qmax_dist){ + max_dist = distances[i]; + index = i; + } + } + } + + // create the query + vector query_pt(3); + for(size_t j=0; j out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include +#include +#include +#include + +using namespace std; + +#include +#include +#include + + +typedef KDTreeTableAdaptor< float, float> KDTree; + +struct VectorComp { + bool operator() (const vector& lhs, const vector& rhs) const + { + if(lhs[0]= mini.x and v.x <= maxi.x) and (v.y >= mini.y and v.y <= maxi.y) and (v.z >= mini.z and v.z <= maxi.z); +} + +struct VectComp { + bool operator() (const Vect& lhs, const Vect& rhs) const + { + if(lhs.x quantized_pick_knn(const torch::Tensor points, const size_t nqueries, const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // create the vectors for selected points + + // get min and max + float min_x=1e7, min_y=1e7, min_z=1e7; + float max_x=-1e7, max_y=-1e7, max_z=-1e7; + for(size_t ptid=0; ptidmax_x) max_x = pts_b[ptid*D+0]; + if(pts_b[ptid*D+1]max_y) max_y = pts_b[ptid*D+1]; + if(pts_b[ptid*D+2]max_z) max_z = pts_b[ptid*D+2]; + } + + // float div_min = 1; + // float div_max = 1024; + // float div_tmp = 512; + // float diag = std::sqrt((max_x-min_x)*(max_x-min_x)+(max_y-min_y)*(max_y-min_y)+(max_z-min_z)*(max_z-min_z)); + // int size_prev=-1; + // for(size_t i=0; i<10; i++){ + // float vox_size = diag / div_tmp; + // std::set discrete_set; + // for(auto ptid : rand_indices){ + // Vect v = { int(pts_b[ptid*D+0]/vox_size), int(pts_b[ptid*D+1]/vox_size), int(pts_b[ptid*D+2]/vox_size)}; + // discrete_set.insert(v); + // } + // if(discrete_set.size() == nqueries) break; + // if(discrete_set.size() < nqueries){ + // div_min = div_tmp; + // }else{ + // div_max = div_tmp; + // } + // div_tmp = (div_max+div_min)/2; + // size_prev = discrete_set.size(); + // } + // // cout << nqueries << " - " < selected_points; + while(selected_points.size() < nqueries){ + std::set discrete_set; + std::vector next_rand_indices; + for(auto ptid : rand_indices){ + Vect v = { int(pts_b[ptid*D+0]/vox_size), int(pts_b[ptid*D+1]/vox_size), int(pts_b[ptid*D+2]/vox_size)}; + if(discrete_set.insert(v).second){ // has been inserted + selected_points.push_back(ptid); + if(selected_points.size() >= nqueries) break; + }else{ + next_rand_indices.push_back(ptid); + } + } + rand_indices = next_rand_indices; + vox_size /=2; + if(discrete_set.size()==0) break; + } + + // create the kdtree for + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // iterate over the queries + for(size_t q=0; q out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + // create the query + vector query_pt(D); + for(size_t j=0; jfindNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + +std::vector random_pick_knn(const torch::Tensor points, const size_t nqueries, + const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // iterate over the queries + for(size_t q=0; q out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + vector query_pt(3); + for(size_t j=0; jfindNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j in your code. + * + * See: + * - C++ API organized by modules + * - Online README + * - Doxygen documentation + */ + +#ifndef NANOFLANN_HPP_ +#define NANOFLANN_HPP_ + +#include +#include +#include +#include +#include // for fwrite() +#define _USE_MATH_DEFINES // Required by MSVC to define M_PI,etc. in +#include // for abs() +#include // for abs() +#include + +// Avoid conflicting declaration of min/max macros in windows headers +#if !defined(NOMINMAX) && (defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64)) +# define NOMINMAX +# ifdef max +# undef max +# undef min +# endif +#endif + +namespace nanoflann +{ +/** @addtogroup nanoflann_grp nanoflann C++ library for ANN + * @{ */ + + /** Library version: 0xMmP (M=Major,m=minor,P=patch) */ + #define NANOFLANN_VERSION 0x123 + + /** @addtogroup result_sets_grp Result set classes + * @{ */ + template + class KNNResultSet + { + IndexType * indices; + DistanceType* dists; + CountType capacity; + CountType count; + + public: + inline KNNResultSet(CountType capacity_) : indices(0), dists(0), capacity(capacity_), count(0) + { + } + + inline void init(IndexType* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + if (capacity) + dists[capacity-1] = (std::numeric_limits::max)(); + } + + inline CountType size() const + { + return count; + } + + inline bool full() const + { + return count == capacity; + } + + + /** + * Called during search to add an element matching the criteria. + * @return true if the search should be continued, false if the results are sufficient + */ + inline bool addPoint(DistanceType dist, IndexType index) + { + CountType i; + for (i = count; i > 0; --i) { +#ifdef NANOFLANN_FIRST_MATCH // If defined and two points have the same distance, the one with the lowest-index will be returned first. + if ( (dists[i-1] > dist) || ((dist == dists[i-1]) && (indices[i-1] > index)) ) { +#else + if (dists[i-1] > dist) { +#endif + if (i < capacity) { + dists[i] = dists[i-1]; + indices[i] = indices[i-1]; + } + } + else break; + } + if (i < capacity) { + dists[i] = dist; + indices[i] = index; + } + if (count < capacity) count++; + + // tell caller that the search shall continue + return true; + } + + inline DistanceType worstDist() const + { + return dists[capacity-1]; + } + }; + + /** operator "<" for std::sort() */ + struct IndexDist_Sorter + { + /** PairType will be typically: std::pair */ + template + inline bool operator()(const PairType &p1, const PairType &p2) const { + return p1.second < p2.second; + } + }; + + /** + * A result-set class used when performing a radius based search. + */ + template + class RadiusResultSet + { + public: + const DistanceType radius; + + std::vector > &m_indices_dists; + + inline RadiusResultSet(DistanceType radius_, std::vector > &indices_dists) : radius(radius_), m_indices_dists(indices_dists) + { + init(); + } + + inline void init() { clear(); } + inline void clear() { m_indices_dists.clear(); } + + inline size_t size() const { return m_indices_dists.size(); } + + inline bool full() const { return true; } + + /** + * Called during search to add an element matching the criteria. + * @return true if the search should be continued, false if the results are sufficient + */ + inline bool addPoint(DistanceType dist, IndexType index) + { + if (dist < radius) + m_indices_dists.push_back(std::make_pair(index, dist)); + return true; + } + + inline DistanceType worstDist() const { return radius; } + + /** + * Find the worst result (furtherest neighbor) without copying or sorting + * Pre-conditions: size() > 0 + */ + std::pair worst_item() const + { + if (m_indices_dists.empty()) throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on an empty list of results."); + typedef typename std::vector >::const_iterator DistIt; + DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end(), IndexDist_Sorter()); + return *it; + } + }; + + + /** @} */ + + + /** @addtogroup loadsave_grp Load/save auxiliary functions + * @{ */ + template + void save_value(FILE* stream, const T& value, size_t count = 1) + { + fwrite(&value, sizeof(value), count, stream); + } + + template + void save_value(FILE* stream, const std::vector& value) + { + size_t size = value.size(); + fwrite(&size, sizeof(size_t), 1, stream); + fwrite(&value[0], sizeof(T), size, stream); + } + + template + void load_value(FILE* stream, T& value, size_t count = 1) + { + size_t read_cnt = fread(&value, sizeof(value), count, stream); + if (read_cnt != count) { + throw std::runtime_error("Cannot read from file"); + } + } + + + template + void load_value(FILE* stream, std::vector& value) + { + size_t size; + size_t read_cnt = fread(&size, sizeof(size_t), 1, stream); + if (read_cnt != 1) { + throw std::runtime_error("Cannot read from file"); + } + value.resize(size); + read_cnt = fread(&value[0], sizeof(T), size, stream); + if (read_cnt != size) { + throw std::runtime_error("Cannot read from file"); + } + } + /** @} */ + + + /** @addtogroup metric_grp Metric (distance) classes + * @{ */ + + struct Metric + { + }; + + /** Manhattan distance functor (generic version, optimized for high-dimensionality data sets). + * Corresponding distance traits: nanoflann::metric_L1 + * \tparam T Type of the elements (e.g. double, float, uint8_t) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) + */ + template + struct L1_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const + { + DistanceType result = DistanceType(); + const T* last = a + size; + const T* lastgroup = last - 3; + size_t d = 0; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + const DistanceType diff0 = std::abs(a[0] - data_source.kdtree_get_pt(b_idx,d++)); + const DistanceType diff1 = std::abs(a[1] - data_source.kdtree_get_pt(b_idx,d++)); + const DistanceType diff2 = std::abs(a[2] - data_source.kdtree_get_pt(b_idx,d++)); + const DistanceType diff3 = std::abs(a[3] - data_source.kdtree_get_pt(b_idx,d++)); + result += diff0 + diff1 + diff2 + diff3; + a += 4; + if ((worst_dist > 0) && (result > worst_dist)) { + return result; + } + } + /* Process last 0-3 components. Not needed for standard vector lengths. */ + while (a < last) { + result += std::abs( *a++ - data_source.kdtree_get_pt(b_idx, d++) ); + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, int ) const + { + return std::abs(a-b); + } + }; + + /** Squared Euclidean distance functor (generic version, optimized for high-dimensionality data sets). + * Corresponding distance traits: nanoflann::metric_L2 + * \tparam T Type of the elements (e.g. double, float, uint8_t) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) + */ + template + struct L2_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const + { + DistanceType result = DistanceType(); + const T* last = a + size; + const T* lastgroup = last - 3; + size_t d = 0; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx,d++); + const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx,d++); + const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx,d++); + const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx,d++); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + if ((worst_dist > 0) && (result > worst_dist)) { + return result; + } + } + /* Process last 0-3 components. Not needed for standard vector lengths. */ + while (a < last) { + const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx, d++); + result += diff0 * diff0; + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, int ) const + { + return (a - b) * (a - b); + } + }; + + /** Squared Euclidean (L2) distance functor (suitable for low-dimensionality datasets, like 2D or 3D point clouds) + * Corresponding distance traits: nanoflann::metric_L2_Simple + * \tparam T Type of the elements (e.g. double, float, uint8_t) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) + */ + template + struct L2_Simple_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L2_Simple_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size) const { + DistanceType result = DistanceType(); + for (size_t i = 0; i < size; ++i) { + const DistanceType diff = a[i] - data_source.kdtree_get_pt(b_idx, i); + result += diff * diff; + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, int ) const + { + return (a - b) * (a - b); + } + }; + + /** SO2 distance functor + * Corresponding distance traits: nanoflann::metric_SO2 + * \tparam T Type of the elements (e.g. double, float) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double) + * orientation is constrained to be in [-pi, pi] + */ + template + struct SO2_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + SO2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size) const { + return accum_dist(a[size-1], data_source.kdtree_get_pt(b_idx, size - 1) , size - 1); + } + + template + inline DistanceType accum_dist(const U a, const V b, int ) const + { + DistanceType result = DistanceType(); + result = b - a; + if (result > M_PI) + result -= 2. * M_PI; + else if (result < -M_PI) + result += 2. * M_PI; + return result; + } + }; + + /** SO3 distance functor (Uses L2_Simple) + * Corresponding distance traits: nanoflann::metric_SO3 + * \tparam T Type of the elements (e.g. double, float) + * \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double) + */ + template + struct SO3_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + L2_Simple_Adaptor distance_L2_Simple; + + SO3_Adaptor(const DataSource &_data_source) : distance_L2_Simple(_data_source) { } + + inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size) const { + return distance_L2_Simple.evalMetric(a, b_idx, size); + } + + template + inline DistanceType accum_dist(const U a, const V b, int idx) const + { + return distance_L2_Simple.accum_dist(a, b, idx); + } + }; + + /** Metaprogramming helper traits class for the L1 (Manhattan) metric */ + struct metric_L1 : public Metric + { + template + struct traits { + typedef L1_Adaptor distance_t; + }; + }; + /** Metaprogramming helper traits class for the L2 (Euclidean) metric */ + struct metric_L2 : public Metric + { + template + struct traits { + typedef L2_Adaptor distance_t; + }; + }; + /** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */ + struct metric_L2_Simple : public Metric + { + template + struct traits { + typedef L2_Simple_Adaptor distance_t; + }; + }; + /** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */ + struct metric_SO2 : public Metric + { + template + struct traits { + typedef SO2_Adaptor distance_t; + }; + }; + /** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */ + struct metric_SO3 : public Metric + { + template + struct traits { + typedef SO3_Adaptor distance_t; + }; + }; + + /** @} */ + + /** @addtogroup param_grp Parameter structs + * @{ */ + + /** Parameters (see README.md) */ + struct KDTreeSingleIndexAdaptorParams + { + KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10) : + leaf_max_size(_leaf_max_size) + {} + + size_t leaf_max_size; + }; + + /** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */ + struct SearchParams + { + /** Note: The first argument (checks_IGNORED_) is ignored, but kept for compatibility with the FLANN interface */ + SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true ) : + checks(checks_IGNORED_), eps(eps_), sorted(sorted_) {} + + int checks; //!< Ignored parameter (Kept for compatibility with the FLANN interface). + float eps; //!< search for eps-approximate neighbours (default: 0) + bool sorted; //!< only for radius search, require neighbours sorted by distance (default: true) + }; + /** @} */ + + + /** @addtogroup memalloc_grp Memory allocation + * @{ */ + + /** + * Allocates (using C's malloc) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template + inline T* allocate(size_t count = 1) + { + T* mem = static_cast( ::malloc(sizeof(T)*count)); + return mem; + } + + + /** + * Pooled storage allocator + * + * The following routines allow for the efficient allocation of storage in + * small chunks from a specified pool. Rather than allowing each structure + * to be freed individually, an entire pool of storage is freed at once. + * This method has two advantages over just using malloc() and free(). First, + * it is far more efficient for allocating small objects, as there is + * no overhead for remembering all the information needed to free each + * object or consolidating fragmented memory. Second, the decision about + * how long to keep an object is made at the time of allocation, and there + * is no need to track down all the objects to free them. + * + */ + + const size_t WORDSIZE = 16; + const size_t BLOCKSIZE = 8192; + + class PooledAllocator + { + /* We maintain memory alignment to word boundaries by requiring that all + allocations be in multiples of the machine wordsize. */ + /* Size of machine word in bytes. Must be power of 2. */ + /* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */ + + + size_t remaining; /* Number of bytes left in current block of storage. */ + void* base; /* Pointer to base of current block of storage. */ + void* loc; /* Current location in block to next allocate memory. */ + + void internal_init() + { + remaining = 0; + base = NULL; + usedMemory = 0; + wastedMemory = 0; + } + + public: + size_t usedMemory; + size_t wastedMemory; + + /** + Default constructor. Initializes a new pool. + */ + PooledAllocator() { + internal_init(); + } + + /** + * Destructor. Frees all the memory allocated in this pool. + */ + ~PooledAllocator() { + free_all(); + } + + /** Frees all allocated memory chunks */ + void free_all() + { + while (base != NULL) { + void *prev = *(static_cast( base)); /* Get pointer to prev block. */ + ::free(base); + base = prev; + } + internal_init(); + } + + /** + * Returns a pointer to a piece of new memory of the given size in bytes + * allocated from the pool. + */ + void* malloc(const size_t req_size) + { + /* Round size up to a multiple of wordsize. The following expression + only works for WORDSIZE that is a power of 2, by masking last bits of + incremented size to zero. + */ + const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1); + + /* Check whether a new block must be allocated. Note that the first word + of a block is reserved for a pointer to the previous block. + */ + if (size > remaining) { + + wastedMemory += remaining; + + /* Allocate new storage. */ + const size_t blocksize = (size + sizeof(void*) + (WORDSIZE - 1) > BLOCKSIZE) ? + size + sizeof(void*) + (WORDSIZE - 1) : BLOCKSIZE; + + // use the standard C malloc to allocate memory + void* m = ::malloc(blocksize); + if (!m) { + fprintf(stderr, "Failed to allocate memory.\n"); + return NULL; + } + + /* Fill first word of new block with pointer to previous block. */ + static_cast(m)[0] = base; + base = m; + + size_t shift = 0; + //int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1); + + remaining = blocksize - sizeof(void*) - shift; + loc = (static_cast(m) + sizeof(void*) + shift); + } + void* rloc = loc; + loc = static_cast(loc) + size; + remaining -= size; + + usedMemory += size; + + return rloc; + } + + /** + * Allocates (using this pool) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template + T* allocate(const size_t count = 1) + { + T* mem = static_cast(this->malloc(sizeof(T)*count)); + return mem; + } + + }; + /** @} */ + + /** @addtogroup nanoflann_metaprog_grp Auxiliary metaprogramming stuff + * @{ */ + + // ---------------- CArray ------------------------- + /** A STL container (as wrapper) for arrays of constant size defined at compile time (class imported from the MRPT project) + * This code is an adapted version from Boost, modifed for its integration + * within MRPT (JLBC, Dec/2009) (Renamed array -> CArray to avoid possible potential conflicts). + * See + * http://www.josuttis.com/cppcode + * for details and the latest version. + * See + * http://www.boost.org/libs/array for Documentation. + * for documentation. + * + * (C) Copyright Nicolai M. Josuttis 2001. + * Permission to copy, use, modify, sell and distribute this software + * is granted provided this copyright notice appears in all copies. + * This software is provided "as is" without express or implied + * warranty, and with no claim as to its suitability for any purpose. + * + * 29 Jan 2004 - minor fixes (Nico Josuttis) + * 04 Dec 2003 - update to synch with library TR1 (Alisdair Meredith) + * 23 Aug 2002 - fix for Non-MSVC compilers combined with MSVC libraries. + * 05 Aug 2001 - minor update (Nico Josuttis) + * 20 Jan 2001 - STLport fix (Beman Dawes) + * 29 Sep 2000 - Initial Revision (Nico Josuttis) + * + * Jan 30, 2004 + */ + template + class CArray { + public: + T elems[N]; // fixed-size array of elements of type T + + public: + // type definitions + typedef T value_type; + typedef T* iterator; + typedef const T* const_iterator; + typedef T& reference; + typedef const T& const_reference; + typedef std::size_t size_type; + typedef std::ptrdiff_t difference_type; + + // iterator support + inline iterator begin() { return elems; } + inline const_iterator begin() const { return elems; } + inline iterator end() { return elems+N; } + inline const_iterator end() const { return elems+N; } + + // reverse iterator support +#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS) + typedef std::reverse_iterator reverse_iterator; + typedef std::reverse_iterator const_reverse_iterator; +#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310) + // workaround for broken reverse_iterator in VC7 + typedef std::reverse_iterator > reverse_iterator; + typedef std::reverse_iterator > const_reverse_iterator; +#else + // workaround for broken reverse_iterator implementations + typedef std::reverse_iterator reverse_iterator; + typedef std::reverse_iterator const_reverse_iterator; +#endif + + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } + // operator[] + inline reference operator[](size_type i) { return elems[i]; } + inline const_reference operator[](size_type i) const { return elems[i]; } + // at() with range check + reference at(size_type i) { rangecheck(i); return elems[i]; } + const_reference at(size_type i) const { rangecheck(i); return elems[i]; } + // front() and back() + reference front() { return elems[0]; } + const_reference front() const { return elems[0]; } + reference back() { return elems[N-1]; } + const_reference back() const { return elems[N-1]; } + // size is constant + static inline size_type size() { return N; } + static bool empty() { return false; } + static size_type max_size() { return N; } + enum { static_size = N }; + /** This method has no effects in this class, but raises an exception if the expected size does not match */ + inline void resize(const size_t nElements) { if (nElements!=N) throw std::logic_error("Try to change the size of a CArray."); } + // swap (note: linear complexity in N, constant for given instantiation) + void swap (CArray& y) { std::swap_ranges(begin(),end(),y.begin()); } + // direct access to data (read-only) + const T* data() const { return elems; } + // use array as C array (direct read/write access to data) + T* data() { return elems; } + // assignment with type conversion + template CArray& operator= (const CArray& rhs) { + std::copy(rhs.begin(),rhs.end(), begin()); + return *this; + } + // assign one value to all elements + inline void assign (const T& value) { for (size_t i=0;i= size()) { throw std::out_of_range("CArray<>: index out of range"); } } + }; // end of CArray + + /** Used to declare fixed-size arrays when DIM>0, dynamically-allocated vectors when DIM=-1. + * Fixed size version for a generic DIM: + */ + template + struct array_or_vector_selector + { + typedef CArray container_t; + }; + /** Dynamic size version */ + template + struct array_or_vector_selector<-1, T> { + typedef std::vector container_t; + }; + + /** @} */ + + /** kd-tree base-class + * + * Contains the member functions common to the classes KDTreeSingleIndexAdaptor and KDTreeSingleIndexDynamicAdaptor_. + * + * \tparam Derived The name of the class which inherits this class. + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use, these are all classes derived from nanoflann::Metric + * \tparam DIM Dimensionality of data points (e.g. 3 for 3D points) + * \tparam IndexType Will be typically size_t or int + */ + + template + class KDTreeBaseClass + { + + public: + /** Frees the previously-built index. Automatically called within buildIndex(). */ + void freeIndex(Derived &obj) + { + obj.pool.free_all(); + obj.root_node = NULL; + obj.m_size_at_index_build = 0; + } + + typedef typename Distance::ElementType ElementType; + typedef typename Distance::DistanceType DistanceType; + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + /** Union used because a node can be either a LEAF node or a non-leaf node, so both data fields are never used simultaneously */ + union { + struct leaf + { + IndexType left, right; //!< Indices of points in leaf node + } lr; + struct nonleaf + { + int divfeat; //!< Dimension used for subdivision. + DistanceType divlow, divhigh; //!< The values used for subdivision. + } sub; + } node_type; + Node *child1, *child2; //!< Child nodes (both=NULL mean its a leaf node) + }; + + typedef Node* NodePtr; + + struct Interval + { + ElementType low, high; + }; + + /** + * Array of indices to vectors in the dataset. + */ + std::vector vind; + + NodePtr root_node; + + size_t m_leaf_max_size; + + size_t m_size; //!< Number of current points in the dataset + size_t m_size_at_index_build; //!< Number of points in the dataset when the index was built + int dim; //!< Dimensionality of each data point + + /** Define "BoundingBox" as a fixed-size or variable-size container depending on "DIM" */ + typedef typename array_or_vector_selector::container_t BoundingBox; + + /** Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM" */ + typedef typename array_or_vector_selector::container_t distance_vector_t; + + /** The KD-tree used to find neighbours */ + + BoundingBox root_bbox; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool; + + /** Returns number of points in dataset */ + size_t size(const Derived &obj) const { return obj.m_size; } + + /** Returns the length of each point in the dataset */ + size_t veclen(const Derived &obj) { + return static_cast(DIM>0 ? DIM : obj.dim); + } + + /// Helper accessor to the dataset points: + inline ElementType dataset_get(const Derived &obj, size_t idx, int component) const{ + return obj.dataset.kdtree_get_pt(idx, component); + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + size_t usedMemory(Derived &obj) + { + return obj.pool.usedMemory + obj.pool.wastedMemory + obj.dataset.kdtree_get_point_count() * sizeof(IndexType); // pool memory and vind array memory + } + + void computeMinMax(const Derived &obj, IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem) + { + min_elem = dataset_get(obj, ind[0],element); + max_elem = dataset_get(obj, ind[0],element); + for (IndexType i = 1; i < count; ++i) { + ElementType val = dataset_get(obj, ind[i], element); + if (val < min_elem) min_elem = val; + if (val > max_elem) max_elem = val; + } + } + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * + * @param left index of the first vector + * @param right index of the last vector + */ + NodePtr divideTree(Derived &obj, const IndexType left, const IndexType right, BoundingBox& bbox) + { + NodePtr node = obj.pool.template allocate(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( (right - left) <= static_cast(obj.m_leaf_max_size) ) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->node_type.lr.left = left; + node->node_type.lr.right = right; + + // compute bounding-box of leaf points + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + bbox[i].low = dataset_get(obj, obj.vind[left], i); + bbox[i].high = dataset_get(obj, obj.vind[left], i); + } + for (IndexType k = left + 1; k < right; ++k) { + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + if (bbox[i].low > dataset_get(obj, obj.vind[k], i)) bbox[i].low = dataset_get(obj, obj.vind[k], i); + if (bbox[i].high < dataset_get(obj, obj.vind[k], i)) bbox[i].high = dataset_get(obj, obj.vind[k], i); + } + } + } + else { + IndexType idx; + int cutfeat; + DistanceType cutval; + middleSplit_(obj, &obj.vind[0] + left, right - left, idx, cutfeat, cutval, bbox); + + node->node_type.sub.divfeat = cutfeat; + + BoundingBox left_bbox(bbox); + left_bbox[cutfeat].high = cutval; + node->child1 = divideTree(obj, left, left + idx, left_bbox); + + BoundingBox right_bbox(bbox); + right_bbox[cutfeat].low = cutval; + node->child2 = divideTree(obj, left + idx, right, right_bbox); + + node->node_type.sub.divlow = left_bbox[cutfeat].high; + node->node_type.sub.divhigh = right_bbox[cutfeat].low; + + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low); + bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high); + } + } + + return node; + } + + void middleSplit_(Derived &obj, IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) + { + const DistanceType EPS = static_cast(0.00001); + ElementType max_span = bbox[0].high-bbox[0].low; + for (int i = 1; i < (DIM > 0 ? DIM : obj.dim); ++i) { + ElementType span = bbox[i].high - bbox[i].low; + if (span > max_span) { + max_span = span; + } + } + ElementType max_spread = -1; + cutfeat = 0; + for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) { + ElementType span = bbox[i].high-bbox[i].low; + if (span > (1 - EPS) * max_span) { + ElementType min_elem, max_elem; + computeMinMax(obj, ind, count, i, min_elem, max_elem); + ElementType spread = max_elem - min_elem;; + if (spread > max_spread) { + cutfeat = i; + max_spread = spread; + } + } + } + // split in the middle + DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2; + ElementType min_elem, max_elem; + computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem); + + if (split_val < min_elem) cutval = min_elem; + else if (split_val > max_elem) cutval = max_elem; + else cutval = split_val; + + IndexType lim1, lim2; + planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1 > count / 2) index = lim1; + else if (lim2 < count / 2) index = lim2; + else index = count/2; + } + + /** + * Subdivide the list of points by a plane perpendicular on axe corresponding + * to the 'cutfeat' dimension at 'cutval' position. + * + * On return: + * dataset[ind[0..lim1-1]][cutfeat]cutval + */ + void planeSplit(Derived &obj, IndexType* ind, const IndexType count, int cutfeat, DistanceType &cutval, IndexType& lim1, IndexType& lim2) + { + /* Move vector indices for left subtree to front of list. */ + IndexType left = 0; + IndexType right = count-1; + for (;; ) { + while (left <= right && dataset_get(obj, ind[left], cutfeat) < cutval) ++left; + while (right && left <= right && dataset_get(obj, ind[right], cutfeat) >= cutval) --right; + if (left > right || !right) break; // "!right" was added to support unsigned Index types + std::swap(ind[left], ind[right]); + ++left; + --right; + } + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + lim1 = left; + right = count-1; + for (;; ) { + while (left <= right && dataset_get(obj, ind[left], cutfeat) <= cutval) ++left; + while (right && left <= right && dataset_get(obj, ind[right], cutfeat) > cutval) --right; + if (left > right || !right) break; // "!right" was added to support unsigned Index types + std::swap(ind[left], ind[right]); + ++left; + --right; + } + lim2 = left; + } + + DistanceType computeInitialDistances(const Derived &obj, const ElementType* vec, distance_vector_t& dists) const + { + assert(vec); + DistanceType distsq = DistanceType(); + + for (int i = 0; i < (DIM>0 ? DIM : obj.dim); ++i) { + if (vec[i] < obj.root_bbox[i].low) { + dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].low, i); + distsq += dists[i]; + } + if (vec[i] > obj.root_bbox[i].high) { + dists[i] = obj.distance.accum_dist(vec[i], obj.root_bbox[i].high, i); + distsq += dists[i]; + } + } + return distsq; + } + + void save_tree(Derived &obj, FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1 != NULL) { + save_tree(obj, stream, tree->child1); + } + if (tree->child2 != NULL) { + save_tree(obj, stream, tree->child2); + } + } + + + void load_tree(Derived &obj, FILE* stream, NodePtr& tree) + { + tree = obj.pool.template allocate(); + load_value(stream, *tree); + if (tree->child1 != NULL) { + load_tree(obj, stream, tree->child1); + } + if (tree->child2 != NULL) { + load_tree(obj, stream, tree->child2); + } + } + + /** Stores the index in a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so when loading the index object it must be constructed associated to the same source of data points used while building it. + * See the example: examples/saveload_example.cpp + * \sa loadIndex */ + void saveIndex_(Derived &obj, FILE* stream) + { + save_value(stream, obj.m_size); + save_value(stream, obj.dim); + save_value(stream, obj.root_bbox); + save_value(stream, obj.m_leaf_max_size); + save_value(stream, obj.vind); + save_tree(obj, stream, obj.root_node); + } + + /** Loads a previous index from a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so the index object must be constructed associated to the same source of data points used while building the index. + * See the example: examples/saveload_example.cpp + * \sa loadIndex */ + void loadIndex_(Derived &obj, FILE* stream) + { + load_value(stream, obj.m_size); + load_value(stream, obj.dim); + load_value(stream, obj.root_bbox); + load_value(stream, obj.m_leaf_max_size); + load_value(stream, obj.vind); + load_tree(obj, stream, obj.root_node); + } + + }; + + + /** @addtogroup kdtrees_grp KD-tree classes and adaptors + * @{ */ + + /** kd-tree static index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + * + * The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods): + * + * \code + * // Must return the number of data poins + * inline size_t kdtree_get_point_count() const { ... } + * + * + * // Must return the dim'th component of the idx'th point in the class: + * inline T kdtree_get_pt(const size_t idx, int dim) const { ... } + * + * // Optional bounding-box computation: return false to default to a standard bbox computation loop. + * // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. + * // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) + * template + * bool kdtree_get_bbox(BBOX &bb) const + * { + * bb[0].low = ...; bb[0].high = ...; // 0th dimension limits + * bb[1].low = ...; bb[1].high = ...; // 1st dimension limits + * ... + * return true; + * } + * + * \endcode + * + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + * \tparam DIM Dimensionality of data points (e.g. 3 for 3D points) + * \tparam IndexType Will be typically size_t or int + */ + template + class KDTreeSingleIndexAdaptor : public KDTreeBaseClass, Distance, DatasetAdaptor, DIM, IndexType> + { + public: + /** Deleted copy constructor*/ + KDTreeSingleIndexAdaptor(const KDTreeSingleIndexAdaptor&) = delete; + + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + const KDTreeSingleIndexAdaptorParams index_params; + + Distance distance; + + typedef typename nanoflann::KDTreeBaseClass, Distance, DatasetAdaptor, DIM, IndexType> BaseClassRef; + + typedef typename BaseClassRef::ElementType ElementType; + typedef typename BaseClassRef::DistanceType DistanceType; + + typedef typename BaseClassRef::Node Node; + typedef Node* NodePtr; + + typedef typename BaseClassRef::Interval Interval; + /** Define "BoundingBox" as a fixed-size or variable-size container depending on "DIM" */ + typedef typename BaseClassRef::BoundingBox BoundingBox; + + /** Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM" */ + typedef typename BaseClassRef::distance_vector_t distance_vector_t; + + /** + * KDTree constructor + * + * Refer to docs in README.md or online in https://github.com/jlblancoc/nanoflann + * + * The KD-Tree point dimension (the length of each point in the datase, e.g. 3 for 3D points) + * is determined by means of: + * - The \a DIM template parameter if >0 (highest priority) + * - Otherwise, the \a dimensionality parameter of this constructor. + * + * @param inputData Dataset with the input features + * @param params Basically, the maximum leaf node size + */ + KDTreeSingleIndexAdaptor(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams() ) : + dataset(inputData), index_params(params), distance(inputData) + { + BaseClassRef::root_node = NULL; + BaseClassRef::m_size = dataset.kdtree_get_point_count(); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + BaseClassRef::dim = dimensionality; + if (DIM>0) BaseClassRef::dim = DIM; + BaseClassRef::m_leaf_max_size = params.leaf_max_size; + + // Create a permutable array of indices to the input vectors. + init_vind(); + } + + /** + * Builds the index + */ + void buildIndex() + { + BaseClassRef::m_size = dataset.kdtree_get_point_count(); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + init_vind(); + this->freeIndex(*this); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + if(BaseClassRef::m_size == 0) return; + computeBoundingBox(BaseClassRef::root_bbox); + BaseClassRef::root_node = this->divideTree(*this, 0, BaseClassRef::m_size, BaseClassRef::root_bbox ); // construct the tree + } + + /** \name Query methods + * @{ */ + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \return True if the requested neighbors could be found. + * \sa knnSearch, radiusSearch + */ + template + bool findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const + { + assert(vec); + if (this->size(*this) == 0) + return false; + if (!BaseClassRef::root_node) + throw std::runtime_error("[nanoflann] findNeighbors() called before building the index."); + float epsError = 1 + searchParams.eps; + + distance_vector_t dists; // fixed or variable-sized container (depending on DIM) + dists.assign((DIM > 0 ? DIM : BaseClassRef::dim), 0); // Fill it with zeros. + DistanceType distsq = this->computeInitialDistances(*this, vec, dists); + searchLevel(result, vec, BaseClassRef::root_node, distsq, dists, epsError); // "count_leaf" parameter removed since was neither used nor returned to the user. + return result.full(); + } + + /** + * Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. Their indices are stored inside + * the result object. + * \sa radiusSearch, findNeighbors + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + * \return Number `N` of valid points in the result set. Only the first `N` entries in `out_indices` and `out_distances_sq` will be valid. + * Return may be less than `num_closest` only if the number of elements in the tree is less than `num_closest`. + */ + size_t knnSearch(const ElementType *query_point, const size_t num_closest, IndexType *out_indices, DistanceType *out_distances_sq, const int /* nChecks_IGNORED */ = 10) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + this->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + return resultSet.size(); + } + + /** + * Find all the neighbors to \a query_point[0:dim-1] within a maximum radius. + * The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. + * Previous contents of \a IndicesDists are cleared. + * + * If searchParams.sorted==true, the output list is sorted by ascending distances. + * + * For a better performance, it is advisable to do a .reserve() on the vector if you have any wild guess about the number of expected matches. + * + * \sa knnSearch, findNeighbors, radiusSearchCustomCallback + * \return The number of points within the given radius (i.e. indices.size() or dists.size() ) + */ + size_t radiusSearch(const ElementType *query_point, const DistanceType &radius, std::vector >& IndicesDists, const SearchParams& searchParams) const + { + RadiusResultSet resultSet(radius, IndicesDists); + const size_t nFound = radiusSearchCustomCallback(query_point, resultSet, searchParams); + if (searchParams.sorted) + std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter() ); + return nFound; + } + + /** + * Just like radiusSearch() but with a custom callback class for each point found in the radius of the query. + * See the source of RadiusResultSet<> as a start point for your own classes. + * \sa radiusSearch + */ + template + size_t radiusSearchCustomCallback(const ElementType *query_point, SEARCH_CALLBACK &resultSet, const SearchParams& searchParams = SearchParams() ) const + { + this->findNeighbors(resultSet, query_point, searchParams); + return resultSet.size(); + } + + /** @} */ + + public: + /** Make sure the auxiliary list \a vind has the same size than the current dataset, and re-generate if size has changed. */ + void init_vind() + { + // Create a permutable array of indices to the input vectors. + BaseClassRef::m_size = dataset.kdtree_get_point_count(); + if (BaseClassRef::vind.size() != BaseClassRef::m_size) BaseClassRef::vind.resize(BaseClassRef::m_size); + for (size_t i = 0; i < BaseClassRef::m_size; i++) BaseClassRef::vind[i] = i; + } + + void computeBoundingBox(BoundingBox& bbox) + { + bbox.resize((DIM > 0 ? DIM : BaseClassRef::dim)); + if (dataset.kdtree_get_bbox(bbox)) + { + // Done! It was implemented in derived class + } + else + { + const size_t N = dataset.kdtree_get_point_count(); + if (!N) throw std::runtime_error("[nanoflann] computeBoundingBox() called but no data points found."); + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + bbox[i].low = + bbox[i].high = this->dataset_get(*this, 0, i); + } + for (size_t k = 1; k < N; ++k) { + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + if (this->dataset_get(*this, k, i) < bbox[i].low) bbox[i].low = this->dataset_get(*this, k, i); + if (this->dataset_get(*this, k, i) > bbox[i].high) bbox[i].high = this->dataset_get(*this, k, i); + } + } + } + } + + /** + * Performs an exact search in the tree starting from a node. + * \tparam RESULTSET Should be any ResultSet + * \return true if the search should be continued, false if the results are sufficient + */ + template + bool searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, + distance_vector_t& dists, const float epsError) const + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL) && (node->child2 == NULL)) { + //count_leaf += (node->lr.right-node->lr.left); // Removed since was neither used nor returned to the user. + DistanceType worst_dist = result_set.worstDist(); + for (IndexType i = node->node_type.lr.left; inode_type.lr.right; ++i) { + const IndexType index = BaseClassRef::vind[i];// reorder... : i; + DistanceType dist = distance.evalMetric(vec, index, (DIM > 0 ? DIM : BaseClassRef::dim)); + if (dist < worst_dist) { + if(!result_set.addPoint(dist, BaseClassRef::vind[i])) { + // the resultset doesn't want to receive any more points, we're done searching! + return false; + } + } + } + return true; + } + + /* Which child branch should be taken first? */ + int idx = node->node_type.sub.divfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->node_type.sub.divlow; + DistanceType diff2 = val - node->node_type.sub.divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1 + diff2) < 0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx); + } + else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance.accum_dist( val, node->node_type.sub.divlow, idx); + } + + /* Call recursively to search next level down. */ + if(!searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError)) { + // the resultset doesn't want to receive any more points, we're done searching! + return false; + } + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq*epsError <= result_set.worstDist()) { + if(!searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError)) { + // the resultset doesn't want to receive any more points, we're done searching! + return false; + } + } + dists[idx] = dst; + return true; + } + + public: + /** Stores the index in a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so when loading the index object it must be constructed associated to the same source of data points used while building it. + * See the example: examples/saveload_example.cpp + * \sa loadIndex */ + void saveIndex(FILE* stream) + { + this->saveIndex_(*this, stream); + } + + /** Loads a previous index from a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so the index object must be constructed associated to the same source of data points used while building the index. + * See the example: examples/saveload_example.cpp + * \sa loadIndex */ + void loadIndex(FILE* stream) + { + this->loadIndex_(*this, stream); + } + + }; // class KDTree + + + /** kd-tree dynamic index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + * + * The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods): + * + * \code + * // Must return the number of data poins + * inline size_t kdtree_get_point_count() const { ... } + * + * // Must return the dim'th component of the idx'th point in the class: + * inline T kdtree_get_pt(const size_t idx, int dim) const { ... } + * + * // Optional bounding-box computation: return false to default to a standard bbox computation loop. + * // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. + * // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) + * template + * bool kdtree_get_bbox(BBOX &bb) const + * { + * bb[0].low = ...; bb[0].high = ...; // 0th dimension limits + * bb[1].low = ...; bb[1].high = ...; // 1st dimension limits + * ... + * return true; + * } + * + * \endcode + * + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + * \tparam DIM Dimensionality of data points (e.g. 3 for 3D points) + * \tparam IndexType Will be typically size_t or int + */ + template + class KDTreeSingleIndexDynamicAdaptor_ : public KDTreeBaseClass, Distance, DatasetAdaptor, DIM, IndexType> + { + public: + + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + KDTreeSingleIndexAdaptorParams index_params; + + std::vector &treeIndex; + + Distance distance; + + typedef typename nanoflann::KDTreeBaseClass, Distance, DatasetAdaptor, DIM, IndexType> BaseClassRef; + + typedef typename BaseClassRef::ElementType ElementType; + typedef typename BaseClassRef::DistanceType DistanceType; + + typedef typename BaseClassRef::Node Node; + typedef Node* NodePtr; + + typedef typename BaseClassRef::Interval Interval; + /** Define "BoundingBox" as a fixed-size or variable-size container depending on "DIM" */ + typedef typename BaseClassRef::BoundingBox BoundingBox; + + /** Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM" */ + typedef typename BaseClassRef::distance_vector_t distance_vector_t; + + /** + * KDTree constructor + * + * Refer to docs in README.md or online in https://github.com/jlblancoc/nanoflann + * + * The KD-Tree point dimension (the length of each point in the datase, e.g. 3 for 3D points) + * is determined by means of: + * - The \a DIM template parameter if >0 (highest priority) + * - Otherwise, the \a dimensionality parameter of this constructor. + * + * @param inputData Dataset with the input features + * @param params Basically, the maximum leaf node size + */ + KDTreeSingleIndexDynamicAdaptor_(const int dimensionality, const DatasetAdaptor& inputData, std::vector& treeIndex_, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams()) : + dataset(inputData), index_params(params), treeIndex(treeIndex_), distance(inputData) + { + BaseClassRef::root_node = NULL; + BaseClassRef::m_size = 0; + BaseClassRef::m_size_at_index_build = 0; + BaseClassRef::dim = dimensionality; + if (DIM>0) BaseClassRef::dim = DIM; + BaseClassRef::m_leaf_max_size = params.leaf_max_size; + } + + + /** Assignment operator definiton */ + KDTreeSingleIndexDynamicAdaptor_ operator=( const KDTreeSingleIndexDynamicAdaptor_& rhs ) { + KDTreeSingleIndexDynamicAdaptor_ tmp( rhs ); + std::swap( BaseClassRef::vind, tmp.BaseClassRef::vind ); + std::swap( BaseClassRef::m_leaf_max_size, tmp.BaseClassRef::m_leaf_max_size ); + std::swap( index_params, tmp.index_params ); + std::swap( treeIndex, tmp.treeIndex ); + std::swap( BaseClassRef::m_size, tmp.BaseClassRef::m_size ); + std::swap( BaseClassRef::m_size_at_index_build, tmp.BaseClassRef::m_size_at_index_build ); + std::swap( BaseClassRef::root_node, tmp.BaseClassRef::root_node ); + std::swap( BaseClassRef::root_bbox, tmp.BaseClassRef::root_bbox ); + std::swap( BaseClassRef::pool, tmp.BaseClassRef::pool ); + return *this; + } + + /** + * Builds the index + */ + void buildIndex() + { + BaseClassRef::m_size = BaseClassRef::vind.size(); + this->freeIndex(*this); + BaseClassRef::m_size_at_index_build = BaseClassRef::m_size; + if(BaseClassRef::m_size == 0) return; + computeBoundingBox(BaseClassRef::root_bbox); + BaseClassRef::root_node = this->divideTree(*this, 0, BaseClassRef::m_size, BaseClassRef::root_bbox ); // construct the tree + } + + /** \name Query methods + * @{ */ + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \return True if the requested neighbors could be found. + * \sa knnSearch, radiusSearch + */ + template + bool findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const + { + assert(vec); + if (this->size(*this) == 0) + return false; + if (!BaseClassRef::root_node) + return false; + float epsError = 1 + searchParams.eps; + + distance_vector_t dists; // fixed or variable-sized container (depending on DIM) + dists.assign((DIM > 0 ? DIM : BaseClassRef::dim) , 0); // Fill it with zeros. + DistanceType distsq = this->computeInitialDistances(*this, vec, dists); + searchLevel(result, vec, BaseClassRef::root_node, distsq, dists, epsError); // "count_leaf" parameter removed since was neither used nor returned to the user. + return result.full(); + } + + /** + * Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. Their indices are stored inside + * the result object. + * \sa radiusSearch, findNeighbors + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + * \return Number `N` of valid points in the result set. Only the first `N` entries in `out_indices` and `out_distances_sq` will be valid. + * Return may be less than `num_closest` only if the number of elements in the tree is less than `num_closest`. + */ + size_t knnSearch(const ElementType *query_point, const size_t num_closest, IndexType *out_indices, DistanceType *out_distances_sq, const int /* nChecks_IGNORED */ = 10) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + this->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + return resultSet.size(); + } + + /** + * Find all the neighbors to \a query_point[0:dim-1] within a maximum radius. + * The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. + * Previous contents of \a IndicesDists are cleared. + * + * If searchParams.sorted==true, the output list is sorted by ascending distances. + * + * For a better performance, it is advisable to do a .reserve() on the vector if you have any wild guess about the number of expected matches. + * + * \sa knnSearch, findNeighbors, radiusSearchCustomCallback + * \return The number of points within the given radius (i.e. indices.size() or dists.size() ) + */ + size_t radiusSearch(const ElementType *query_point, const DistanceType &radius, std::vector >& IndicesDists, const SearchParams& searchParams) const + { + RadiusResultSet resultSet(radius, IndicesDists); + const size_t nFound = radiusSearchCustomCallback(query_point, resultSet, searchParams); + if (searchParams.sorted) + std::sort(IndicesDists.begin(), IndicesDists.end(), IndexDist_Sorter() ); + return nFound; + } + + /** + * Just like radiusSearch() but with a custom callback class for each point found in the radius of the query. + * See the source of RadiusResultSet<> as a start point for your own classes. + * \sa radiusSearch + */ + template + size_t radiusSearchCustomCallback(const ElementType *query_point, SEARCH_CALLBACK &resultSet, const SearchParams& searchParams = SearchParams() ) const + { + this->findNeighbors(resultSet, query_point, searchParams); + return resultSet.size(); + } + + /** @} */ + + public: + + + void computeBoundingBox(BoundingBox& bbox) + { + bbox.resize((DIM > 0 ? DIM : BaseClassRef::dim)); + if (dataset.kdtree_get_bbox(bbox)) + { + // Done! It was implemented in derived class + } + else + { + const size_t N = BaseClassRef::m_size; + if (!N) throw std::runtime_error("[nanoflann] computeBoundingBox() called but no data points found."); + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + bbox[i].low = + bbox[i].high = this->dataset_get(*this, BaseClassRef::vind[0], i); + } + for (size_t k = 1; k < N; ++k) { + for (int i = 0; i < (DIM > 0 ? DIM : BaseClassRef::dim); ++i) { + if (this->dataset_get(*this, BaseClassRef::vind[k], i) < bbox[i].low) bbox[i].low = this->dataset_get(*this, BaseClassRef::vind[k], i); + if (this->dataset_get(*this, BaseClassRef::vind[k], i) > bbox[i].high) bbox[i].high = this->dataset_get(*this, BaseClassRef::vind[k], i); + } + } + } + } + + /** + * Performs an exact search in the tree starting from a node. + * \tparam RESULTSET Should be any ResultSet + */ + template + void searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, + distance_vector_t& dists, const float epsError) const + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL) && (node->child2 == NULL)) { + //count_leaf += (node->lr.right-node->lr.left); // Removed since was neither used nor returned to the user. + DistanceType worst_dist = result_set.worstDist(); + for (IndexType i = node->node_type.lr.left; i < node->node_type.lr.right; ++i) { + const IndexType index = BaseClassRef::vind[i];// reorder... : i; + if(treeIndex[index] == -1) + continue; + DistanceType dist = distance.evalMetric(vec, index, (DIM > 0 ? DIM : BaseClassRef::dim)); + if (distnode_type.sub.divfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->node_type.sub.divlow; + DistanceType diff2 = val - node->node_type.sub.divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1 + diff2) < 0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance.accum_dist(val, node->node_type.sub.divhigh, idx); + } + else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance.accum_dist( val, node->node_type.sub.divlow, idx); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq*epsError <= result_set.worstDist()) { + searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); + } + dists[idx] = dst; + } + + public: + /** Stores the index in a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so when loading the index object it must be constructed associated to the same source of data points used while building it. + * See the example: examples/saveload_example.cpp + * \sa loadIndex */ + void saveIndex(FILE* stream) + { + this->saveIndex_(*this, stream); + } + + /** Loads a previous index from a binary file. + * IMPORTANT NOTE: The set of data points is NOT stored in the file, so the index object must be constructed associated to the same source of data points used while building the index. + * See the example: examples/saveload_example.cpp + * \sa loadIndex */ + void loadIndex(FILE* stream) + { + this->loadIndex_(*this, stream); + } + + }; + + + /** kd-tree dynaimic index + * + * class to create multiple static index and merge their results to behave as single dynamic index as proposed in Logarithmic Approach. + * + * Example of usage: + * examples/dynamic_pointcloud_example.cpp + * + * \tparam DatasetAdaptor The user-provided adaptor (see comments above). + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + * \tparam DIM Dimensionality of data points (e.g. 3 for 3D points) + * \tparam IndexType Will be typically size_t or int + */ + template + class KDTreeSingleIndexDynamicAdaptor + { + public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::DistanceType DistanceType; + protected: + + size_t m_leaf_max_size; + size_t treeCount; + size_t pointCount; + + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + std::vector treeIndex; //!< treeIndex[idx] is the index of tree in which point at idx is stored. treeIndex[idx]=-1 means that point has been removed. + + KDTreeSingleIndexAdaptorParams index_params; + + int dim; //!< Dimensionality of each data point + + typedef KDTreeSingleIndexDynamicAdaptor_ index_container_t; + std::vector index; + + public: + /** Get a const ref to the internal list of indices; the number of indices is adapted dynamically as + * the dataset grows in size. */ + const std::vector & getAllIndices() const { + return index; + } + + private: + /** finds position of least significant unset bit */ + int First0Bit(IndexType num) + { + int pos = 0; + while(num&1) + { + num = num>>1; + pos++; + } + return pos; + } + + /** Creates multiple empty trees to handle dynamic support */ + void init() + { + typedef KDTreeSingleIndexDynamicAdaptor_ my_kd_tree_t; + std::vector index_(treeCount, my_kd_tree_t(dim /*dim*/, dataset, treeIndex, index_params)); + index=index_; + } + + public: + + Distance distance; + + /** + * KDTree constructor + * + * Refer to docs in README.md or online in https://github.com/jlblancoc/nanoflann + * + * The KD-Tree point dimension (the length of each point in the datase, e.g. 3 for 3D points) + * is determined by means of: + * - The \a DIM template parameter if >0 (highest priority) + * - Otherwise, the \a dimensionality parameter of this constructor. + * + * @param inputData Dataset with the input features + * @param params Basically, the maximum leaf node size + */ + KDTreeSingleIndexDynamicAdaptor(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams() , const size_t maximumPointCount = 1000000000U) : + dataset(inputData), index_params(params), distance(inputData) + { + treeCount = std::log2(maximumPointCount); + pointCount = 0U; + dim = dimensionality; + treeIndex.clear(); + if (DIM > 0) dim = DIM; + m_leaf_max_size = params.leaf_max_size; + init(); + int num_initial_points = dataset.kdtree_get_point_count(); + if (num_initial_points > 0) { + addPoints(0, num_initial_points - 1); + } + } + + /** Deleted copy constructor*/ + KDTreeSingleIndexDynamicAdaptor(const KDTreeSingleIndexDynamicAdaptor&) = delete; + + + /** Add points to the set, Inserts all points from [start, end] */ + void addPoints(IndexType start, IndexType end) + { + int count = end - start + 1; + treeIndex.resize(treeIndex.size() + count); + for(IndexType idx = start; idx <= end; idx++) { + int pos = First0Bit(pointCount); + index[pos].vind.clear(); + treeIndex[pointCount]=pos; + for(int i = 0; i < pos; i++) { + for(int j = 0; j < static_cast(index[i].vind.size()); j++) { + index[pos].vind.push_back(index[i].vind[j]); + treeIndex[index[i].vind[j]] = pos; + } + index[i].vind.clear(); + index[i].freeIndex(index[i]); + } + index[pos].vind.push_back(idx); + index[pos].buildIndex(); + pointCount++; + } + } + + /** Remove a point from the set (Lazy Deletion) */ + void removePoint(size_t idx) + { + if(idx >= pointCount) + return; + treeIndex[idx] = -1; + } + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \return True if the requested neighbors could be found. + * \sa knnSearch, radiusSearch + */ + template + bool findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const + { + for(size_t i = 0; i < treeCount; i++) + { + index[i].findNeighbors(result, &vec[0], searchParams); + } + return result.full(); + } + + }; + + /** An L2-metric KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage. + * Each row in the matrix represents a point in the state space. + * + * Example of usage: + * \code + * Eigen::Matrix mat; + * // Fill out "mat"... + * + * typedef KDTreeEigenMatrixAdaptor< Eigen::Matrix > my_kd_tree_t; + * const int max_leaf = 10; + * my_kd_tree_t mat_index(mat, max_leaf ); + * mat_index.index->buildIndex(); + * mat_index.index->... + * \endcode + * + * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations. + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + */ + template + struct KDTreeEigenMatrixAdaptor + { + typedef KDTreeEigenMatrixAdaptor self_t; + typedef typename MatrixType::Scalar num_t; + typedef typename MatrixType::Index IndexType; + typedef typename Distance::template traits::distance_t metric_t; + typedef KDTreeSingleIndexAdaptor< metric_t,self_t, MatrixType::ColsAtCompileTime,IndexType> index_t; + + index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. + + /// Constructor: takes a const ref to the matrix object with the data points + KDTreeEigenMatrixAdaptor(const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat) + { + const IndexType dims = mat.cols(); + index = new index_t( dims, *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) ); + index->buildIndex(); + } + public: + /** Deleted copy constructor */ + KDTreeEigenMatrixAdaptor(const self_t&) = delete; + + ~KDTreeEigenMatrixAdaptor() { + delete index; + } + + const MatrixType &m_data_matrix; + + /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). + * Note that this is a short-cut method for index->findNeighbors(). + * The user can also call index->... methods as desired. + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + */ + inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int /* nChecks_IGNORED */ = 10) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + + /** @name Interface expected by KDTreeSingleIndexAdaptor + * @{ */ + + const self_t & derived() const { + return *this; + } + self_t & derived() { + return *this; + } + + // Must return the number of data points + inline size_t kdtree_get_point_count() const { + return m_data_matrix.rows(); + } + + // Returns the dim'th component of the idx'th point in the class: + inline num_t kdtree_get_pt(const IndexType idx, int dim) const { + return m_data_matrix.coeff(idx, IndexType(dim)); + } + + // Optional bounding-box computation: return false to default to a standard bbox computation loop. + // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. + // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) + template + bool kdtree_get_bbox(BBOX& /*bb*/) const { + return false; + } + + /** @} */ + + }; // end of KDTreeEigenMatrixAdaptor + /** @} */ + +/** @} */ // end of grouping +} // end of NS + + +#endif /* NANOFLANN_HPP_ */ diff --git a/lightconvpoint/src/radius.cxx b/lightconvpoint/src/radius.cxx new file mode 100755 index 0000000..59dff56 --- /dev/null +++ b/lightconvpoint/src/radius.cxx @@ -0,0 +1,119 @@ + +// KDTree +#include "functions.h" +#include "nanoflann.hpp" +#include "KDTreeTableAdaptor.h" +using namespace nanoflann; + + +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + +torch::Tensor radius(const torch::Tensor points, const torch::Tensor queries, const float radius, const size_t max_K){ + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + // get the points + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + // queries are points + if(queries.dtype() == torch::kFloat32){ + size_t Q = queries.size(2); + auto qrs = queries.transpose(1,2).contiguous(); + const float* qrs_data = qrs.data_ptr(); + + // create the tensor for indices + auto indices = torch::full({long(B), long(Q), long(max_K)}, -1, torch::kLong); + auto indices_a = indices.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + const float* qrs_b = &qrs_data[b*Q*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + for (size_t q=0; q > ret_matches; + nanoflann::SearchParams params; + const size_t nMatches = mat_index.index->radiusSearch(&qrs_b[q*D], radius, ret_matches, params); + + if(nMatches > max_K){ + std::random_shuffle ( ret_matches.begin(), ret_matches.end() ); + } + + size_t num_ret = std::min(nMatches, max_K); + for(size_t j=0; j(); + auto queries_a = queries.accessor(); + + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // iterate over the queries + for(size_t q=0; q > ret_matches; + nanoflann::SearchParams params; + const size_t nMatches = mat_index.index->radiusSearch(&pts_b[queries_a[b][q]*D], radius, ret_matches, params); + + if(nMatches > max_K){ + std::random_shuffle ( ret_matches.begin(), ret_matches.end() ); + } + + size_t num_ret = std::min(nMatches, max_K); + for(size_t j=0; j +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + + +std::vector sampling_knn_convpoint(const torch::Tensor points, const size_t nqueries, const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + if(nqueries >= N){ + return sampling_knn_random(points, nqueries, K); + } + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the memory vector for used points + vector used(N, 0); + + size_t q=0; + size_t i=0; + size_t current_point_level = 0; + while(q query_pt(3); + for(size_t j=0; j out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + +torch::Tensor sampling_fps(const torch::Tensor points, const size_t nqueries){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + if(nqueries >= N){ + return sampling_random(points, nqueries); + } + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the memory vector for used points + vector distances(N, 1e7); + + // iterate over points + int current_id = 0; + // iterate over the queries + for(size_t q=0; qmax_dist){ + max_dist = distances[i]; + index = i; + } + } + } + + indices_queries_a[b][q] = index; + + // update distances + for(size_t i=0; i sampling_knn_fps(const torch::Tensor points, const size_t nqueries, + const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + if(nqueries >= N){ + return sampling_knn_random(points, nqueries, K); + } + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // create the memory vector for used points + vector distances(N, 1e7); + + // iterate over points + int current_id = 0; + // iterate over the queries + for(size_t q=0; qmax_dist){ + max_dist = distances[i]; + index = i; + } + } + } + + // create the query + vector query_pt(3); + for(size_t j=0; j out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + mat_index.index->findNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include +#include +#include +#include + +using namespace std; + +#include +#include +#include + + +typedef KDTreeTableAdaptor< float, float> KDTree; + +struct VectorComp { + bool operator() (const vector& lhs, const vector& rhs) const + { + if(lhs[0]= mini.x and v.x <= maxi.x) and (v.y >= mini.y and v.y <= maxi.y) and (v.z >= mini.z and v.z <= maxi.z); +} + +struct VectComp { + bool operator() (const Vect& lhs, const Vect& rhs) const + { + if(lhs.x(); + + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // get min and max + float min_x=1e7, min_y=1e7, min_z=1e7; + float max_x=-1e7, max_y=-1e7, max_z=-1e7; + for(size_t ptid=0; ptidmax_x) max_x = pts_b[ptid*D+0]; + if(pts_b[ptid*D+1]max_y) max_y = pts_b[ptid*D+1]; + if(pts_b[ptid*D+2]max_z) max_z = pts_b[ptid*D+2]; + } + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // compute the expected size of the voxel + float vox_size = std::sqrt((max_x-min_x)*(max_x-min_x)+(max_y-min_y)*(max_y-min_y)+(max_z-min_z)*(max_z-min_z)) / std::sqrt(nqueries); + vector selected_points; + while(selected_points.size() < nqueries){ + std::set discrete_set; + std::vector next_rand_indices; + for(auto ptid : rand_indices){ + Vect v = { int(pts_b[ptid*D+0]/vox_size), int(pts_b[ptid*D+1]/vox_size), int(pts_b[ptid*D+2]/vox_size)}; + if(discrete_set.insert(v).second){ // has been inserted + selected_points.push_back(ptid); + if(selected_points.size() >= nqueries) break; + }else{ + next_rand_indices.push_back(ptid); + } + } + rand_indices = next_rand_indices; + vox_size /=2; + if(discrete_set.size()==0) break; + } + + // iterate over the queries + for(size_t q=0; q sampling_knn_quantized(const torch::Tensor points, const size_t nqueries, const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // create the vectors for selected points + + // get min and max + float min_x=1e7, min_y=1e7, min_z=1e7; + float max_x=-1e7, max_y=-1e7, max_z=-1e7; + for(size_t ptid=0; ptidmax_x) max_x = pts_b[ptid*D+0]; + if(pts_b[ptid*D+1]max_y) max_y = pts_b[ptid*D+1]; + if(pts_b[ptid*D+2]max_z) max_z = pts_b[ptid*D+2]; + } + + // compute the expected size of the voxel + float vox_size = std::sqrt((max_x-min_x)*(max_x-min_x)+(max_y-min_y)*(max_y-min_y)+(max_z-min_z)*(max_z-min_z)) / std::sqrt(nqueries); + vector selected_points; + while(selected_points.size() < nqueries){ + std::set discrete_set; + std::vector next_rand_indices; + for(auto ptid : rand_indices){ + Vect v = { int(pts_b[ptid*D+0]/vox_size), int(pts_b[ptid*D+1]/vox_size), int(pts_b[ptid*D+2]/vox_size)}; + if(discrete_set.insert(v).second){ // has been inserted + selected_points.push_back(ptid); + if(selected_points.size() >= nqueries) break; + }else{ + next_rand_indices.push_back(ptid); + } + } + rand_indices = next_rand_indices; + vox_size /=2; + if(discrete_set.size()==0) break; + } + + // create the kdtree for + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // iterate over the queries + for(size_t q=0; q out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + // create the query + vector query_pt(D); + for(size_t j=0; jfindNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j +#include +#include +#include +#include + +using namespace std; + +#include + +#include + +typedef KDTreeTableAdaptor< float, float> KDTree; + +torch::Tensor sampling_random(const torch::Tensor points, const size_t nqueries){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // iterate over the queries + for(size_t q=0; q sampling_knn_random(const torch::Tensor points, const size_t nqueries, + const size_t K){ + + // create the random machine + mt19937 mt_rand(time(0)); + + // get the sizes + size_t B = points.size(0); + size_t D = points.size(1); + size_t N = points.size(2); + + auto pts = points.transpose(1,2).contiguous(); + assert(pts.dtype() == torch::kFloat32); + const float* pts_data = pts.data_ptr(); + + auto indices = torch::zeros({long(B), long(nqueries), long(K)}, torch::kLong); + auto indices_a = indices.accessor(); + auto indices_queries = torch::zeros({long(B), long(nqueries)}, torch::kLong); + auto indices_queries_a = indices_queries.accessor(); + auto query_points = torch::zeros({long(B), long(D), long(nqueries)}, torch::kFloat32); + auto query_points_a = query_points.accessor(); + + // iterate over the batch + #pragma omp parallel for + for(size_t b=0; b < B; b++){ + + // get a float pointer to data + const float* pts_b = &pts_data[b*N*D]; + + // create the index vector + std::vector rand_indices(N); + std::iota(rand_indices.begin(), rand_indices.end(), 0); + std::random_shuffle ( rand_indices.begin(), rand_indices.end() ); + + // create the kdtree + KDTree mat_index(N, D, pts_b, 10); + mat_index.index->buildIndex(); + + // iterate over the queries + for(size_t q=0; q out_dists_sqr(K); + std::vector out_ids(K); + nanoflann::KNNResultSet resultSet(K); + resultSet.init(&out_ids[0], &out_dists_sqr[0] ); + + vector query_pt(3); + for(size_t j=0; jfindNeighbors(resultSet, &query_pt[0], nanoflann::SearchParams(10)); + + // fill the queries and neighborhoods + for(size_t j=0; j 0 + sums[sums == 0] = 1 + pfa_per_class = (cm.sum(axis=0) - np.diag(cm)) / sums + pfa_per_class[np.logical_not(mask)] = -1 + average_pfa = pfa_per_class[mask].mean() + return average_pfa, pfa_per_class + + +def stats_accuracy_per_class(cm): + """Computes the accuracy per class and average accuracy. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + + # Returns + average_accuracy: float. + The average accuracy. + accuracy_per_class: 1-D numpy array. + The accuracy per class. + """ + sums = np.sum(cm, axis=1) + mask = sums > 0 + sums[sums == 0] = 1 + accuracy_per_class = np.diag(cm) / sums # sum over lines + accuracy_per_class[np.logical_not(mask)] = -1 + average_accuracy = accuracy_per_class[mask].mean() + return average_accuracy, accuracy_per_class + + +def stats_iou_per_class(cm): + """Computes the IoU per class and average IoU. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + + # Returns + average_accuracy: float. + The average IoU. + accuracy_per_class: 1-D numpy array. + The IoU per class. + """ + + # compute TP, FN et FP + TP = np.diagonal(cm, axis1=-2, axis2=-1) + TP_plus_FN = np.sum(cm, axis=-1) + TP_plus_FP = np.sum(cm, axis=-2) + + # compute IoU + mask = TP_plus_FN == 0 + IoU = TP / (TP_plus_FN + TP_plus_FP - TP + mask) + + # replace IoU with 0 by the average IoU + aIoU = IoU[np.logical_not(mask)].mean(axis=-1, keepdims=True) + IoU += mask * aIoU + + return IoU.mean(axis=-1), IoU + + +def stats_f1score_per_class(cm): + """Computes the F1 per class and average F1. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + + # Returns + average_accuracy: float. + The average F1. + accuracy_per_class: 1-D numpy array. + The F1 per class. + """ + # defined as 2 * recall * prec / recall + prec + sums = np.sum(cm, axis=1) + np.sum(cm, axis=0) + mask = sums > 0 + sums[sums == 0] = 1 + f1score_per_class = 2 * np.diag(cm) / sums + f1score_per_class[np.logical_not(mask)] = -1 + average_f1_score = f1score_per_class[mask].mean() + return average_f1_score, f1score_per_class diff --git a/lightconvpoint/utils/misc.py b/lightconvpoint/utils/misc.py new file mode 100644 index 0000000..85680aa --- /dev/null +++ b/lightconvpoint/utils/misc.py @@ -0,0 +1,44 @@ +import torch + +class bcolors: + HEADER = '\033[95m' + OKBLUE = '\033[94m' + OKGREEN = '\033[92m' + WARNING = '\033[93m' + FAIL = '\033[91m' + ENDC = '\033[0m' + BOLD = '\033[1m' + UNDERLINE = '\033[4m' + +# wrap blue / green +def wblue(str): + return bcolors.OKBLUE+str+bcolors.ENDC +def wgreen(str): + return bcolors.OKGREEN+str+bcolors.ENDC +def wred(str): + return bcolors.FAIL+str+bcolors.ENDC + + + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + +def list_to_device(data, device): + for key, value in enumerate(data): + if torch.is_tensor(value): + data[key] = value.to(device) + elif isinstance(value, list): + data[key] = list_to_device(value, device) + elif isinstance(value, dict): + data[key] = dict_to_device(value, device) + return data + +def dict_to_device(data, device): + for key, value in data.items(): + if torch.is_tensor(value): + data[key] = value.to(device) + elif isinstance(value, list): + data[key] = list_to_device(value, device) + elif isinstance(value, dict): + data[key] = dict_to_device(value, device) + return data diff --git a/lightconvpoint/utils/network.py b/lightconvpoint/utils/network.py new file mode 100644 index 0000000..5f2d52e --- /dev/null +++ b/lightconvpoint/utils/network.py @@ -0,0 +1,44 @@ +import lightconvpoint.nn as lcp_nn +import lightconvpoint.networks as lcp_net + + +def get_conv(backend_conv): + """Get a convolutional layer by name. + + # Arguments + conv_name: string. + The name of the convolutional layer. + """ + conv = getattr(lcp_nn, backend_conv['layer']) + return lambda in_channels, out_channels, kernel_size: conv(in_channels, out_channels, kernel_size, **backend_conv) + + +def get_search(search_name): + """Get a search algorithm by name. + + # Arguments + search_name: string. + The name of the search algorithm. + """ + return getattr(lcp_nn, search_name) + + +def get_network(model_name, in_channels, out_channels, backend_conv, backend_search, **kwargs): + """Get a network by name. + + # Arguments + model_name: string. + The name of the model. + in_channels: int. + The number of input channels. + out_channels: int. + The number of output channels. + ConvNet_name: string. + The name of the convolutional layer. + Search_name: string. + The name of the search algorithm. + """ + + return getattr(lcp_net, model_name)( + in_channels, out_channels, get_conv(backend_conv), get_search(backend_search), **kwargs + ) diff --git a/lightconvpoint/utils/transformations_deprecated.py b/lightconvpoint/utils/transformations_deprecated.py new file mode 100644 index 0000000..3621688 --- /dev/null +++ b/lightconvpoint/utils/transformations_deprecated.py @@ -0,0 +1,183 @@ +import numpy as np +from torchvision import transforms +from PIL import Image +import random +import logging + +class UnitBallNormalize: + + def __init__(self): + logging.warning("Deprecation of this data augmentation class") + + def __call__(self, points, **kwargs): # from KPConv code + pts = points[:,:3] + pmin = np.min(pts, axis=0) + pmax = np.max(pts, axis=0) + pts -= (pmin + pmax) / 2 + scale = np.max(np.linalg.norm(pts, axis=1)) + pts *= 1.0 / scale + points[:,:3] = pts + return points + + +class NormalPerturbation: + + def __init__(self, sigma): + logging.warning("Deprecation of this data augmentation class") + self.sigma = sigma + + def __call__(self, points, **kwargs): + pts = points[:,:3] + pts = pts + self.sigma * np.random.normal(size=pts.shape) + points[:,:3] = pts + return points + + +class PillarSelection: + + def __init__(self, pillar_size, infinite_pillar_dim=2): + logging.warning("Deprecation of this data augmentation class") + self.pillar_size = pillar_size + self.infinite_pillar_dim = infinite_pillar_dim + + def __call__(self, data, pillar_center=None, **kwargs): + + # data should have shape x,y,z,... + if pillar_center is None: + pillar_center = data[random.randint(0, data.shape[0]-1), :3] + + # compute the mask + mask = None + for i in range(pillar_center.shape[0]): + if self.infinite_pillar_dim != i: + mask_i = np.logical_and(data[:,i]<=pillar_center[i]+self.pillar_size/2, + data[:,i]>=pillar_center[i]-self.pillar_size/2) + if mask is None: + mask = mask_i + else: + mask = np.logical_and(mask, mask_i) + + # apply the mask + return data[mask] + +class BallSelection: + + def __init__(self, radius): + logging.warning("Deprecation of this data augmentation class") + self.radius = radius + + def __call__(self, data, ball_center=None, return_mask=False, **kwargs): + + # data should have shape x,y,z,... + if ball_center is None: + ball_center = data[random.randint(0, data.shape[0]-1), :3] + + distances = np.linalg.norm(data[:,:3] - ball_center[None,:], axis=1) + mask = distances < self.radius + + # apply the mask + if return_mask: + return data[mask], mask + else: + return data[mask] + + +class RandomSubSample: + + def __init__(self, number_of_points): + logging.warning("Deprecation of this data augmentation class") + self.n = number_of_points + + def __call__(self, data, return_choice=False, **kwargs): + choice = np.random.choice(data.shape[0], self.n, replace=(data.shape[0] < self.n)) + if return_choice: + return data[choice], choice + else: + return data[choice] + + +class FixedSubSample: + + # subsample by taking the k first points + # this is no random + + def __init__(self, number_of_points): + logging.warning("Deprecation of this data augmentation class") + self.n = number_of_points + + def __call__(self, data, return_choice=False, **kwargs): + if return_choice: + return data[:self.n], np.arange(self.n) + else: + return data[:self.n] + + +class RandomRotation: + + def __init__(self, rotation_axis=2): + logging.warning("Deprecation of this data augmentation class") + self.rotation_axis=rotation_axis + + def __call__(self, points, **kwargs): + + rotation_angle = np.random.uniform() * 2 * np.pi + cosval = np.cos(rotation_angle) + sinval = np.sin(rotation_angle) + + if self.rotation_axis==2: + rotation_matrix = np.array([[cosval, sinval, 0], + [-sinval, cosval, 0], + [0, 0, 1],]) + elif self.rotation_axis==1: + rotation_matrix = np.array([[cosval, 0, sinval], + [0, 1, 0] + [-sinval, 0, cosval],]) + elif self.rotation_axis==0: + rotation_matrix = np.array([[1, 0, 0], + [0, cosval, sinval], + [0, -sinval, cosval],]) + else: + raise ValueError("Bad rotation axis") + + return points @ rotation_matrix + + +class ColorJittering: + + def __init__(self, jitter_value): + logging.warning("Deprecation of this data augmentation class") + self.transform = transforms.ColorJitter( + brightness=jitter_value, + contrast=jitter_value, + saturation=jitter_value) + + + def __call__(self, features, **kwargs): + + # features are considered to belong in [0,1] + features = features * 255 + features = features.astype(np.uint8) + features = np.array(self.transform( Image.fromarray(np.expand_dims(features, 0)))) + features = np.squeeze(features, 0) + return features.astype(np.float32)/255 + +class ColorDropout: + + def __init__(self, dropout_value): + logging.warning("Deprecation of this data augmentation class") + self.dropout_value = dropout_value + + def __call__(self, features, **kwargs): + + if np.random.rand() < self.dropout_value: + return np.ones_like(features) + return features + + +class NoColor: + + def __init__(self) -> None: + logging.warning("Deprecation of this data augmentation class") + + def __call__(self, features, **kwargs): + return np.ones_like(features) \ No newline at end of file diff --git a/lightconvpoint/utils/transforms.py b/lightconvpoint/utils/transforms.py new file mode 100644 index 0000000..d68145a --- /dev/null +++ b/lightconvpoint/utils/transforms.py @@ -0,0 +1,573 @@ +from os import replace +import numpy as np +from torchvision import transforms +from PIL import Image +import random +import logging +import torch +import re +import math +import numbers +from scipy.spatial import ConvexHull + +class RandomNoiseNormal(object): + + def __init__(self, sigma): + self.sigma = sigma + + def __call__(self, data): + + data["pos"] += self.sigma * torch.randn_like(data["pos"]) + if "normal" in data: + data["normal"] += self.sigma * torch.randn_like(data["normal"]) + data["normal"] /= data["normal"].norm(dim=-1, keepdim=True) + return data + + def __repr__(self): + return '{}({})'.format(self.__class__.__name__, self.sigma) + + +class SubSamplePad(object): + + def __init__(self, npoints) -> None: + super().__init__() + self.npoints = npoints + + def __call__(self, data): + + num_nodes = data["pos"].shape[0] + + if num_nodes > self.npoints: # subsample + choice = torch.randperm(num_nodes)[:self.npoints] + for key, item in data: + if bool(re.search('edge', key)): + continue + if (torch.is_tensor(item) and item.size(0) == num_nodes + and item.size(0) != 1): + data[key] = item[choice] + else: # pad + # print("PAD") + for key, item in data: + if bool(re.search('edge', key)): + continue + if (torch.is_tensor(item) and item.size(0) == num_nodes and item.size(0) != 1): + pad_size = (self.npoints - num_nodes,) + item.shape[1:] + if item.dtype == torch.long: + data[key] = torch.cat([item, torch.full(pad_size, -1, dtype=torch.long)], dim=0) + else: + data[key] = torch.cat([item, torch.full(pad_size, float("Inf") )], dim=0) + + return data + + +class RandomPillarSelection(object): + + def __init__(self, pillar_size, infinite_dim=2): + self.pillar_size = pillar_size + self.infinite_dim = infinite_dim + + def __call__(self, data): + + npoints = data["pos"].shape[0] + + # find a center + pt_id = torch.randint(0,npoints,size=(1,)).item() + pillar_center = data["pos"][pt_id] + pillar_center[2] = 0 + + # compute the mask + mask = None + for i in range(pillar_center.shape[0]): + if self.infinite_dim != i: + mask_i = torch.logical_and( + data["pos"][:,i]<=pillar_center[i]+self.pillar_size/2, + data["pos"][:,i]>=pillar_center[i]-self.pillar_size/2) + if mask is None: + mask = mask_i + else: + mask = torch.logical_and(mask, mask_i) + + # apply the mask + for key, value in data.__dict__.items(): + if isinstance(value, torch.Tensor) and value.shape[0]==npoints: + data[key] = value[mask] + + data["pos"] = data["pos"] - pillar_center + + return data + + def __repr__(self): + return '{}({})'.format(self.__class__.__name__, self.pillar_size, self.infinite_dim) + + +def uniform_point_selector(data): + npoints = data["pos"].shape[0] + pt_id = torch.randint(0, npoints, size=(1,)).item() + return pt_id + +def distance_point_selector(data): + distances = data["pos"].norm(dim=1) + distances /= distances.sum() + distances = torch.cumsum(distances, dim=0) + prob = torch.rand(size=(1,)).item() + pt_id = torch.abs(distances-prob).argmin() + return pt_id + +class RandomBallSelection(object): + + def __init__(self, radius, center_selection_function=distance_point_selector): + self.radius = radius + self.selection_function = center_selection_function + + def __call__(self, data): + + npoints = data["pos"].shape[0] + + if npoints > 1: + # find a center + + count=0 + while count<100: + pt_id = self.selection_function(data) + ball_center = data["pos"][pt_id] + mask = ((data["pos"] - ball_center.unsqueeze(0)).norm(dim=1) < self.radius) + count +=1 + if mask.sum()>1: + break + + if count >= 100: + raise ValueError("Reached number of sample for ball selection") + + # apply the mask + for key, value in data.__dict__.items(): + if isinstance(value, torch.Tensor) and value.shape[0]==npoints: + data[key] = value[mask] + + return data + + def __repr__(self): + return f'{self.__class__.__name__}({self.radius})' + + +class UnitBallNormalize(object): + def __init__(self, item_list=["pos"], multiplier=1): + self.item_list = item_list + self.multiplier = multiplier + + def __call__(self, data): # from KPConv code + + pts = data["pos"].clone() + pmin = pts.min(dim=0)[0] + pmax = pts.max(dim=0)[0] + translation = (pmin + pmax) / 2 + pts -= translation + scale = pts.norm(dim=1).max() + + # print("pts", pts.shape) + # print(translation) + # print(scale) + + for key, item in data: + if key in self.item_list: + if torch.is_tensor(item): + data[key] = data[key] - translation + data[key] = data[key] / scale + data[key] = data[key] * self.multiplier + + + + + data["normalization_translation"] = translation + data["normalization_scale"] = scale + data["normalization_multiplier"] = self.multiplier + + return data + + def __repr__(self): + return '{}({})'.format(self.__class__.__name__) + + +class ColorJittering(object): + + def __init__(self, jitter_value): + self.jiter_value = jitter_value + self.transform = transforms.ColorJitter( + brightness=jitter_value, + contrast=jitter_value, + saturation=jitter_value) + + + def __call__(self, data): + + x = (data["x"] * 255).cpu().numpy().astype(np.uint8) + x = np.array(self.transform( Image.fromarray(np.expand_dims(x, 0)))) + x = np.squeeze(x, 0) + x = torch.tensor(x, device=data["x"].device, dtype=data["x"].dtype)/255 + return data + + def __repr__(self): + return '{}({})'.format(self.__class__.__name__, self.jitter_value) + +class FixedPoints(object): + + # extension of the Fixed points from torch_geometric with a given list of item to sample + + def __init__(self, num, replace=True, allow_duplicates=False, item_list=None): + self.num = num + self.replace = replace + self.allow_duplicates = allow_duplicates + self.item_list = item_list + + def __call__(self, data): + if self.item_list is None: + num_nodes = data.num_nodes + else: + num_nodes = data[self.item_list[0]].shape[0] + + if self.replace: + choice = np.random.choice(num_nodes, self.num, replace=True) + choice = torch.from_numpy(choice).to(torch.long) + elif not self.allow_duplicates: + choice = torch.randperm(num_nodes)[:self.num] + else: + choice = torch.cat([ + torch.randperm(num_nodes) + for _ in range(math.ceil(self.num / num_nodes)) + ], dim=0)[:self.num] + + if self.item_list is None: + for key, item in data: + if bool(re.search('edge', key)): + continue + if (torch.is_tensor(item) and item.size(0) == num_nodes + and item.size(0) != 1): + data[key] = item[choice] + else: + for key, item in data: + if key in self.item_list: + if bool(re.search('edge', key)): + continue + if (torch.is_tensor(item) and item.size(0) != 1): + data[key] = item[choice] + return data + + def __repr__(self): + return '{}({}, replace={})'.format(self.__class__.__name__, self.num, + self.replace) + + +class Permutation(object): + + # extension of the Fixed points from torch_geometric with a given list of item to sample + + def __init__(self, key, permute=None): + self.key = key + self.permute = permute + + def __call__(self, data): + + if self.key in data.keys: + data[self.key] = data[self.key].permute(self.permute) + return data + + def __repr__(self): + return '{}({}, permute={})'.format(self.__class__.__name__, self.key, + self.permute) + + +class ToDict(object): + + def __call__(self, data): + + d = {} + for key in data.keys: + d[key] = data[key] + return d + + def __repr__(self): + return '{}'.format(self.__class__.__name__) + + + +class FixedNormalization(object): + def __init__(self, scale, remove_mean=False, item_list=["pos"]): + self.scale = scale + self.item_list = item_list + self.remove_mean = remove_mean + + def __call__(self, data): + + for key, item in data: + if key in self.item_list: + if torch.is_tensor(item): + data[key] = item * self.scale + if self.remove_mean: + data[key] = data[key] - data[key].mean(0)[None,:] + return data + +class RandomRotate(object): + def __init__(self, degrees, axis=0, item_list=["pos"]): + if isinstance(degrees, numbers.Number): + degrees = (-abs(degrees), abs(degrees)) + assert isinstance(degrees, (tuple, list)) and len(degrees) == 2 + self.degrees = degrees + self.axis = axis + self.item_list = item_list + + def __call__(self, data): + degree = math.pi * random.uniform(*self.degrees) / 180.0 + sin, cos = math.sin(degree), math.cos(degree) + + if data.pos.size(-1) == 2: + matrix = [[cos, sin], [-sin, cos]] + else: + if self.axis == 0: + matrix = [[1, 0, 0], [0, cos, sin], [0, -sin, cos]] + elif self.axis == 1: + matrix = [[cos, 0, -sin], [0, 1, 0], [sin, 0, cos]] + else: + matrix = [[cos, sin, 0], [-sin, cos, 0], [0, 0, 1]] + + matrix = torch.tensor(matrix) + + + for key, item in data: + if key in self.item_list: + if torch.is_tensor(item): + data[key] = torch.matmul(item, matrix.to(item.dtype).to(item.device)) + + return data + + + + return LinearTransformation(torch.tensor(matrix))(data) + + def __repr__(self): + return '{}({}, axis={})'.format(self.__class__.__name__, self.degrees, + self.axis) + + +class TransposeChannels(object): + + # extension of the Fixed points from torch_geometric with a given list of item to sample + + def __init__(self, item_list=["x", "pos"], dimA=0, dimB=1): + self.dimA = dimA + self.dimB = dimB + self.item_list = item_list + + def __call__(self, data): + + for key in self.item_list: + data[key] = data[key].transpose(self.dimA, self.dimB) + + return data + + def __repr__(self): + return '{}'.format(self.__class__.__name__) + +class Unsqueeze(object): + + # extension of the Fixed points from torch_geometric with a given list of item to sample + + def __init__(self, item_list=["x", "pos"], dim=0): + self.dim = dim + self.item_list = item_list + + def __call__(self, data): + + for key in self.item_list: + data[key] = data[key].unsqueeze(self.dim) + + return data + + def __repr__(self): + return '{}'.format(self.__class__.__name__) + +class PartialView(object): + def __init__(self, item_list=None, replace_features_with_dirs=False, view_point_num=1): + self.item_list = item_list + self.replace_features = replace_features_with_dirs + self.view_point_num = view_point_num + + def __call__(self, data): + + + vertex_ids = [] + directions = [] + for i in range(self.view_point_num): + ### from Direct Visibility of Point Sets, Katz et al. + # pick a random view point + angles = torch.rand(size=(2,)) * 2 * math.pi + u = torch.cos(angles[1]) + x_view = torch.sqrt(1-u) * torch.cos(angles[0]) + y_view = torch.sqrt(1-u) * torch.sin(angles[0]) + z_view = u + view_point = torch.tensor([x_view, y_view, z_view]) + view_point = view_point * 2 # view point outside the enclosing ball + + # set the origin to view point + data_shift = data["pos"]-view_point + data_shift_norm = data_shift.norm(2, dim=1).unsqueeze(1) + + # data shift + R_param = 2 + R = data_shift_norm.max(dim=0)[0] * 10**R_param + data_shift_mirror = data_shift + 2*(R - data_shift_norm) * data_shift / data_shift_norm + + # Convex hull + points = np.concatenate([[[0,0,0]], data_shift_mirror.numpy()]) + hull = ConvexHull(points) + v_ids = torch.from_numpy(hull.vertices[hull.vertices>0] -1).long() + + vertex_ids.append(v_ids) + directions.append((- torch.nn.functional.normalize(data["pos"][v_ids]-view_point, dim=1))) + + vertex_ids = torch.cat(vertex_ids, dim=0) + directions = torch.cat(directions, dim=0) + + + for key, item in data: + if key in self.item_list: + if bool(re.search('edge', key)): + continue + if (torch.is_tensor(item) and item.size(0) != 1): + data[key] = item[vertex_ids] + + if self.replace_features: + data["x"] = directions + + return data + + +# class PillarSelection: + +# def __init__(self, pillar_size, infinite_pillar_dim=2): +# logging.warning("Deprecation of this data augmentation class") +# self.pillar_size = pillar_size +# self.infinite_pillar_dim = infinite_pillar_dim + +# def __call__(self, data, pillar_center=None, **kwargs): + +# # data should have shape x,y,z,... +# if pillar_center is None: +# pillar_center = data[random.randint(0, data.shape[0]-1), :3] + +# # compute the mask +# mask = None +# for i in range(pillar_center.shape[0]): +# if self.infinite_pillar_dim != i: +# mask_i = np.logical_and(data[:,i]<=pillar_center[i]+self.pillar_size/2, +# data[:,i]>=pillar_center[i]-self.pillar_size/2) +# if mask is None: +# mask = mask_i +# else: +# mask = np.logical_and(mask, mask_i) + +# # apply the mask +# return data[mask] + +# class BallSelection: + +# def __init__(self, radius): +# logging.warning("Deprecation of this data augmentation class") +# self.radius = radius + +# def __call__(self, data, ball_center=None, return_mask=False, **kwargs): + +# # data should have shape x,y,z,... +# if ball_center is None: +# ball_center = data[random.randint(0, data.shape[0]-1), :3] + +# distances = np.linalg.norm(data[:,:3] - ball_center[None,:], axis=1) +# mask = distances < self.radius + +# # apply the mask +# if return_mask: +# return data[mask], mask +# else: +# return data[mask] + + +# class RandomSubSample: + +# def __init__(self, number_of_points): +# logging.warning("Deprecation of this data augmentation class") +# self.n = number_of_points + +# def __call__(self, data, return_choice=False, **kwargs): +# choice = np.random.choice(data.shape[0], self.n, replace=(data.shape[0] < self.n)) +# if return_choice: +# return data[choice], choice +# else: +# return data[choice] + + +# class FixedSubSample: + +# # subsample by taking the k first points +# # this is no random + +# def __init__(self, number_of_points): +# logging.warning("Deprecation of this data augmentation class") +# self.n = number_of_points + +# def __call__(self, data, return_choice=False, **kwargs): +# if return_choice: +# return data[:self.n], np.arange(self.n) +# else: +# return data[:self.n] + + +# class RandomRotation: + +# def __init__(self, rotation_axis=2): +# logging.warning("Deprecation of this data augmentation class") +# self.rotation_axis=rotation_axis + +# def __call__(self, points, **kwargs): + +# rotation_angle = np.random.uniform() * 2 * np.pi +# cosval = np.cos(rotation_angle) +# sinval = np.sin(rotation_angle) + +# if self.rotation_axis==2: +# rotation_matrix = np.array([[cosval, sinval, 0], +# [-sinval, cosval, 0], +# [0, 0, 1],]) +# elif self.rotation_axis==1: +# rotation_matrix = np.array([[cosval, 0, sinval], +# [0, 1, 0] +# [-sinval, 0, cosval],]) +# elif self.rotation_axis==0: +# rotation_matrix = np.array([[1, 0, 0], +# [0, cosval, sinval], +# [0, -sinval, cosval],]) +# else: +# raise ValueError("Bad rotation axis") + +# return points @ rotation_matrix + + + + +# class ColorDropout: + +# def __init__(self, dropout_value): +# logging.warning("Deprecation of this data augmentation class") +# self.dropout_value = dropout_value + +# def __call__(self, features, **kwargs): + +# if np.random.rand() < self.dropout_value: +# return np.ones_like(features) +# return features + + +# class NoColor: + +# def __init__(self) -> None: +# logging.warning("Deprecation of this data augmentation class") + +# def __call__(self, features, **kwargs): +# return np.ones_like(features) \ No newline at end of file diff --git a/networks/__init__.py b/networks/__init__.py new file mode 100644 index 0000000..26b65fa --- /dev/null +++ b/networks/__init__.py @@ -0,0 +1 @@ +from .network import Network, NetworkMultiScale \ No newline at end of file diff --git a/networks/backbone/__init__.py b/networks/backbone/__init__.py new file mode 100644 index 0000000..eb106df --- /dev/null +++ b/networks/backbone/__init__.py @@ -0,0 +1,3 @@ +from .fkaconv_network import FKAConvNetwork as FKAConv +from .pointnet import PointNet +from .pointnet import ResidualPointNet diff --git a/networks/backbone/fkaconv_network.py b/networks/backbone/fkaconv_network.py new file mode 100644 index 0000000..44d6624 --- /dev/null +++ b/networks/backbone/fkaconv_network.py @@ -0,0 +1,233 @@ +import torch +import torch.nn as nn +import torch_geometric + +from lightconvpoint.nn import Convolution_FKAConv as Conv +from lightconvpoint.nn import max_pool, interpolate +from lightconvpoint.spatial import knn, sampling_quantized as sampling +from torch_geometric.data import Data + +NormLayer = nn.BatchNorm1d + + +class ResidualBlock(torch.nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size,adaptive_normalization=True): + super().__init__() + + self.cv0 = nn.Conv1d(in_channels, in_channels//2, 1) + self.bn0 = NormLayer(in_channels//2) + self.cv1 = Conv(in_channels//2, in_channels//2, kernel_size, adaptive_normalization=adaptive_normalization) + self.bn1 = NormLayer(in_channels//2) + self.cv2 = nn.Conv1d(in_channels//2, out_channels, 1) + self.bn2 = NormLayer(out_channels) + self.activation = nn.ReLU(inplace=True) + + self.shortcut = nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() + self.bn_shortcut = NormLayer(out_channels) if in_channels != out_channels else nn.Identity() + + def forward(self, x, pos, support_points, neighbors_indices): + + x_short = x + x = self.activation(self.bn0(self.cv0(x))) + x = self.activation(self.bn1(self.cv1(x, pos, support_points, neighbors_indices))) + x = self.bn2(self.cv2(x)) + + x_short = self.bn_shortcut(self.shortcut(x_short)) + if x_short.shape[2] != x.shape[2]: + x_short = max_pool(x_short, neighbors_indices) + + x = self.activation(x + x_short) + + return x + + +class FKAConvNetwork(torch.nn.Module): + + def __init__(self, in_channels, out_channels, segmentation=False, hidden=64, dropout=0.5, last_layer_additional_size=None, adaptive_normalization=True, fix_support_number=False): + super().__init__() + + self.lcp_preprocess = True + self.segmentation = segmentation + self.adaptive_normalization = adaptive_normalization + self.fix_support_point_number = fix_support_number + + self.cv0 = Conv(in_channels, hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.bn0 = NormLayer(hidden) + + + self.resnetb01 = ResidualBlock(hidden, hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb10 = ResidualBlock(hidden, 2*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb11 = ResidualBlock(2*hidden, 2*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb20 = ResidualBlock(2*hidden, 4*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb21 = ResidualBlock(4*hidden, 4*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb30 = ResidualBlock(4*hidden, 8*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb31 = ResidualBlock(8*hidden, 8*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb40 = ResidualBlock(8*hidden, 16*hidden, 16, adaptive_normalization=self.adaptive_normalization) + self.resnetb41 = ResidualBlock(16*hidden, 16*hidden, 16, adaptive_normalization=self.adaptive_normalization) + if self.segmentation: + + self.cv5 = nn.Conv1d(32*hidden, 16 * hidden, 1) + self.bn5 = NormLayer(16*hidden) + self.cv3d = nn.Conv1d(24*hidden, 8 * hidden, 1) + self.bn3d = NormLayer(8 * hidden) + self.cv2d = nn.Conv1d(12 * hidden, 4 * hidden, 1) + self.bn2d = NormLayer(4 * hidden) + self.cv1d = nn.Conv1d(6 * hidden, 2 * hidden, 1) + self.bn1d = NormLayer(2 * hidden) + self.cv0d = nn.Conv1d(3 * hidden, hidden, 1) + self.bn0d = NormLayer(hidden) + + if last_layer_additional_size is not None: + self.fcout = nn.Conv1d(hidden+last_layer_additional_size, out_channels, 1) + else: + self.fcout = nn.Conv1d(hidden, out_channels, 1) + else: + self.fcout = nn.Conv1d(16*hidden, out_channels, 1) + + self.dropout = nn.Dropout(dropout) + self.activation = nn.ReLU() + + + def forward_spatial(self, data): + + pos = data["pos"].clone() + + add_batch_dimension = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension = True + + # compute the support points + if self.fix_support_point_number: + support1, _ = sampling(pos, n_support=512) + support2, _ = sampling(support1, n_support=128) + support3, _ = sampling(support2, n_support=32) + support4, _ = sampling(support3, n_support=8) + else: + support1, _ = sampling(pos, 0.25) + support2, _ = sampling(support1, 0.25) + support3, _ = sampling(support2, 0.25) + support4, _ = sampling(support3, 0.25) + + + # compute the ids + ids00 = knn(pos, pos, 16) + ids01 = knn(pos, support1, 16) + ids11 = knn(support1, support1, 16) + ids12 = knn(support1, support2, 16) + ids22 = knn(support2, support2, 16) + ids23 = knn(support2, support3, 16) + ids33 = knn(support3, support3, 16) + ids34 = knn(support3, support4, 16) + ids44 = knn(support4, support4, 16) + if self.segmentation: + ids43 = knn(support4, support3, 1) + ids32 = knn(support3, support2, 1) + ids21 = knn(support2, support1, 1) + ids10 = knn(support1, pos, 1) + + ret_data = {} + if add_batch_dimension: + support1 = support1.squeeze(0) + support2 = support2.squeeze(0) + support3 = support3.squeeze(0) + support4 = support4.squeeze(0) + ids00 = ids00.squeeze(0) + ids01 = ids01.squeeze(0) + ids11 = ids11.squeeze(0) + ids12 = ids12.squeeze(0) + ids22 = ids22.squeeze(0) + ids23 = ids23.squeeze(0) + ids33 = ids33.squeeze(0) + ids34 = ids34.squeeze(0) + ids44 = ids44.squeeze(0) + + ret_data["support1"] = support1 + ret_data["support2"] = support2 + ret_data["support3"] = support3 + ret_data["support4"] = support4 + + ret_data["ids00"] = ids00 + ret_data["ids01"] = ids01 + ret_data["ids11"] = ids11 + ret_data["ids12"] = ids12 + ret_data["ids22"] = ids22 + ret_data["ids23"] = ids23 + ret_data["ids33"] = ids33 + ret_data["ids34"] = ids34 + ret_data["ids44"] = ids44 + + if self.segmentation: + if add_batch_dimension: + ids43 = ids43.squeeze(0) + ids32 = ids32.squeeze(0) + ids21 = ids21.squeeze(0) + ids10 = ids10.squeeze(0) + + ret_data["ids43"] = ids43 + ret_data["ids32"] = ids32 + ret_data["ids21"] = ids21 + ret_data["ids10"] = ids10 + + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False, cat_in_last_layer=None): + + + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + # data = {**data, **spatial_data} + + x = data["x"] + pos = data["pos"] + + x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"]))) + x0 = self.resnetb01(x0, pos, pos, data["ids00"]) + x1 = self.resnetb10(x0, pos, data["support1"], data["ids01"]) + x1 = self.resnetb11(x1, data["support1"], data["support1"], data["ids11"]) + x2 = self.resnetb20(x1, data["support1"], data["support2"], data["ids12"]) + x2 = self.resnetb21(x2, data["support2"], data["support2"], data["ids22"]) + x3 = self.resnetb30(x2, data["support2"], data["support3"], data["ids23"]) + x3 = self.resnetb31(x3, data["support3"], data["support3"], data["ids33"]) + x4 = self.resnetb40(x3, data["support3"], data["support4"], data["ids34"]) + x4 = self.resnetb41(x4, data["support4"], data["support4"], data["ids44"]) + + if self.segmentation: + + x5 = x4.max(dim=2, keepdim=True)[0].expand_as(x4) + x4d = self.activation(self.bn5(self.cv5(torch.cat([x4, x5], dim=1)))) + x4d = x4 + + x3d = interpolate(x4d, data["ids43"]) + x3d = self.activation(self.bn3d(self.cv3d(torch.cat([x3d, x3], dim=1)))) + + x2d = interpolate(x3d, data["ids32"]) + x2d = self.activation(self.bn2d(self.cv2d(torch.cat([x2d, x2], dim=1)))) + + x1d = interpolate(x2d, data["ids21"]) + x1d = self.activation(self.bn1d(self.cv1d(torch.cat([x1d, x1], dim=1)))) + + xout = interpolate(x1d, data["ids10"]) + xout = self.activation(self.bn0d(self.cv0d(torch.cat([xout, x0], dim=1)))) + xout = self.dropout(xout) + if cat_in_last_layer is not None: + xout = torch.cat([xout, cat_in_last_layer.expand(-1,-1,xout.shape[2])], dim=1) + xout = self.fcout(xout) + + else: + + xout = x4 + xout = self.dropout(xout) + xout = self.fcout(xout) + xout = xout.mean(dim=2) + + return xout \ No newline at end of file diff --git a/networks/backbone/pointnet.py b/networks/backbone/pointnet.py new file mode 100644 index 0000000..4278aa2 --- /dev/null +++ b/networks/backbone/pointnet.py @@ -0,0 +1,169 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +class PointNet(nn.Module): + + def __init__(self, in_channels, + out_channels, + hidden_dim=128, segmentation=False, **kwargs): + super().__init__() + + self.fc_in = nn.Conv1d(in_channels+3, 2*hidden_dim, 1) + + mlp_layers = [nn.Conv1d(2*hidden_dim, hidden_dim, 1) for _ in range(3)] + self.mlp_layers = nn.ModuleList(mlp_layers) + + self.fc_3 = nn.Conv1d(2*hidden_dim, hidden_dim, 1) + + self.segmentation=segmentation + + if segmentation: + self.fc_out = nn.Conv1d(2*hidden_dim, out_channels, 1) + else: + self.fc_out = nn.Linear(hidden_dim, out_channels) + + self.activation = nn.ReLU() + + def forward_spatial(self, data): + return {} + + + def forward(self, data, spatial_only=False, spectral_only=False, cat_in_last_layer=None): + + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + # data = {**data, **spatial_data} + + + x = data["x"] + pos = data["pos"] + + x = torch.cat([x, pos], dim=1) + + x = self.fc_in(x) + + for i, l in enumerate(self.mlp_layers): + x = l(self.activation(x)) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.fc_3(self.activation(x)) + + if self.segmentation: + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + else: + x = torch.max(x, dim=2)[0] + + x = self.fc_out(x) + + return x + + +class ResidualBlock(nn.Module): + + def __init__(self, in_channels, out_channels, hidden_dim): + super().__init__() + + # Submodules + self.fc_0 = nn.Conv1d(in_channels, hidden_dim, 1) + self.fc_1 = nn.Conv1d(hidden_dim, out_channels, 1) + self.activation = nn.ReLU() + + if in_channels != out_channels: + self.shortcut = nn.Conv1d(in_channels, out_channels,1) + else: + self.shortcut = nn.Identity() + + nn.init.zeros_(self.fc_1.weight) + + def forward(self, x): + x_short = self.shortcut(x) + x = self.fc_0(x) + x = self.fc_1(self.activation(x)) + x = self.activation(x + x_short) + return x + + + +class ResidualPointNet(nn.Module): + ''' PointNet-based encoder network with ResNet blocks. + Args: + c_dim (int): dimension of latent code c + dim (int): input points dimension + hidden_dim (int): hidden dimension of the network + ''' + + def __init__(self, in_channels, out_channels, hidden_dim=128, segmentation=False, **kwargs): + super().__init__() + + self.fc_in = nn.Conv1d(in_channels+3, 2*hidden_dim, 1) + self.block_0 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_1 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_2 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_3 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + self.block_4 = ResidualBlock(2*hidden_dim, hidden_dim, hidden_dim) + + self.segmentation = segmentation + if self.segmentation: + self.fc_out = nn.Conv1d(2*hidden_dim, out_channels, 1) + else: + self.fc_out = nn.Linear(hidden_dim, out_channels) + + + def forward_spatial(self, data): + return {} + + def forward(self, data, spatial_only=False, spectral_only=False, cat_in_last_layer=None): + + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + # data = {**data, **spatial_data} + + + x = data["x"] + pos = data["pos"] + x = torch.cat([x, pos], dim=1) + + x = self.fc_in(x) + + x = self.block_0(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_1(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_2(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_3(x) + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + + x = self.block_4(x) + + if self.segmentation: + x_pool = torch.max(x, dim=2, keepdim=True)[0].expand_as(x) + x = torch.cat([x, x_pool], dim=1) + else: + x = torch.max(x, dim=2)[0] + + x = self.fc_out(x) + + return x + + diff --git a/networks/decoder/__init__.py b/networks/decoder/__init__.py new file mode 100644 index 0000000..702e33f --- /dev/null +++ b/networks/decoder/__init__.py @@ -0,0 +1,7 @@ +from .interp_mean import InterpMeanNet +from .interp_mean_prefix import InterpMeanPrefixNet +from .interp_inv_dist import InterpInvDistNet +from .interp_inv_dist_prefix import InterpInvDistPrefixNet +from .interp_max import InterpMaxNet +from .interp_attention import InterpAttentionNet +from .interp_attention_Kheads import InterpAttentionKHeadsNet \ No newline at end of file diff --git a/networks/decoder/interp_attention.py b/networks/decoder/interp_attention.py new file mode 100644 index 0000000..96c2ba5 --- /dev/null +++ b/networks/decoder/interp_attention.py @@ -0,0 +1,102 @@ +import torch +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time + +class InterpAttentionNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Simple - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.fc_query = torch.nn.Conv2d(latent_size, 1, 1) + self.fc_value = torch.nn.Conv2d(latent_size, latent_size,1) + + self.k = K + + def forward_spatial(self, data): + + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + x = torch.cat([x,pos], dim=1) + x = self.activation(self.fc1(x)) + x = self.activation(self.fc2(x)) + x = self.activation(self.fc3(x)) + + query = self.fc_query(x).squeeze(dim=1) + attention = torch.nn.functional.softmax(query, dim=-1) + + value = self.fc_value(x) + + x = torch.matmul(attention.unsqueeze(-2), value.permute(0,2,3,1)).squeeze(-2) + x = x.transpose(1,2) + + x = self.fc8(x) + + return x + + + diff --git a/networks/decoder/interp_attention_Kheads.py b/networks/decoder/interp_attention_Kheads.py new file mode 100644 index 0000000..dc62043 --- /dev/null +++ b/networks/decoder/interp_attention_Kheads.py @@ -0,0 +1,107 @@ +import torch +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time + +class InterpAttentionKHeadsNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Simple - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + + self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.fc_query = torch.nn.Conv2d(latent_size, 64, 1) + self.fc_value = torch.nn.Conv2d(latent_size, latent_size,1) + + self.k = K + + def forward_spatial(self, data): + + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False, last_layer=True, return_last_features=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + x = torch.cat([x,pos], dim=1) + x = self.activation(self.fc1(x)) + x = self.activation(self.fc2(x)) + x = self.activation(self.fc3(x)) + + query = self.fc_query(x) + value = self.fc_value(x) + + attention = torch.nn.functional.softmax(query, dim=-1).mean(dim=1) + x = torch.matmul(attention.unsqueeze(-2), value.permute(0,2,3,1)).squeeze(-2) + x = x.transpose(1,2) + + if return_last_features: + xout = self.fc8(x) + return xout, x + + if last_layer: + x = self.fc8(x) + + return x + + + diff --git a/networks/decoder/interp_inv_dist.py b/networks/decoder/interp_inv_dist.py new file mode 100644 index 0000000..c729a3f --- /dev/null +++ b/networks/decoder/interp_inv_dist.py @@ -0,0 +1,100 @@ +import torch +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time +import torch.nn as nn + +class InterpInvDistNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Mean - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + # self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + # self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + # self.activation = torch.nn.ReLU() + + self.fc_in = torch.nn.Conv2d(latent_size+3, latent_size, 1) + mlp_layers = [torch.nn.Conv2d(latent_size, latent_size, 1) for _ in range(2)] + self.mlp_layers = nn.ModuleList(mlp_layers) + self.fc_out = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.k = K + + def forward_spatial(self, data): + + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + x = torch.cat([x,pos], dim=1) + x = self.fc_in(x) + for i, l in enumerate(self.mlp_layers): + x = l(self.activation(x)) + + # compute the distances + distances = torch.clamp(pos.norm(dim=1, keepdim=True), min=1e-7) + distances = 1/distances + x = (x * distances).sum(dim=3) / distances.sum(dim=3) + + x = self.fc_out(x) + + return x \ No newline at end of file diff --git a/networks/decoder/interp_inv_dist_prefix.py b/networks/decoder/interp_inv_dist_prefix.py new file mode 100644 index 0000000..94801cb --- /dev/null +++ b/networks/decoder/interp_inv_dist_prefix.py @@ -0,0 +1,102 @@ +import torch +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time +import torch.nn as nn + +class InterpInvDistPrefixNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Mean - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + # self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + # self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + # self.activation = torch.nn.ReLU() + + self.fc_in = torch.nn.Conv1d(latent_size+3, latent_size, 1) + mlp_layers = [torch.nn.Conv1d(latent_size, latent_size, 1) for _ in range(2)] + self.mlp_layers = nn.ModuleList(mlp_layers) + self.fc_out = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.k = K + + def forward_spatial(self, data): + + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + # compute the distances + distances = torch.clamp(pos.norm(dim=1, keepdim=True), min=1e-7) + distances = 1/distances + + x = (x * distances).sum(dim=3) / distances.sum(dim=3) + pos = (pos * distances).sum(dim=3) / distances.sum(dim=3) + + x = torch.cat([x,pos], dim=1) + x = self.fc_in(x) + for i, l in enumerate(self.mlp_layers): + x = l(self.activation(x)) + + x = self.fc_out(x) + + return x \ No newline at end of file diff --git a/networks/decoder/interp_max.py b/networks/decoder/interp_max.py new file mode 100644 index 0000000..61d18c8 --- /dev/null +++ b/networks/decoder/interp_max.py @@ -0,0 +1,96 @@ +import torch +import torch.nn as nn +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time + +class InterpMaxNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Max - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + # self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + # self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + # self.activation = torch.nn.ReLU() + + self.fc_in = torch.nn.Conv2d(latent_size+3, latent_size, 1) + mlp_layers = [torch.nn.Conv2d(latent_size, latent_size, 1) for _ in range(2)] + self.mlp_layers = nn.ModuleList(mlp_layers) + self.fc_out = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.k = K + + def forward_spatial(self, data): + + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + x = torch.cat([x,pos], dim=1) + x = self.fc_in(x) + for i, l in enumerate(self.mlp_layers): + x = l(self.activation(x)) + + x = x.max(dim=3)[0] + x = self.fc_out(x) + + return x \ No newline at end of file diff --git a/networks/decoder/interp_mean.py b/networks/decoder/interp_mean.py new file mode 100644 index 0000000..f103ed4 --- /dev/null +++ b/networks/decoder/interp_mean.py @@ -0,0 +1,105 @@ +import torch +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time +import torch.nn as nn + +class InterpMeanNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Mean - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + # self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + # self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + # self.activation = torch.nn.ReLU() + + self.fc_in = torch.nn.Conv2d(latent_size+3, latent_size, 1) + mlp_layers = [torch.nn.Conv2d(latent_size, latent_size, 1) for _ in range(2)] + self.mlp_layers = nn.ModuleList(mlp_layers) + self.fc_out = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.k = K + + def forward_spatial(self, data): + + if "output_support" in data: + pos = data["output_support"] + else: + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + + + if "output_support" in data: + pos = data["output_support"] + else: + pos = data["pos"] + + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + x = torch.cat([x,pos], dim=1) + x = self.fc_in(x) + for i, l in enumerate(self.mlp_layers): + x = l(self.activation(x)) + + x = x.mean(dim=3) + x = self.fc_out(x) + + return x \ No newline at end of file diff --git a/networks/decoder/interp_mean_prefix.py b/networks/decoder/interp_mean_prefix.py new file mode 100644 index 0000000..df07095 --- /dev/null +++ b/networks/decoder/interp_mean_prefix.py @@ -0,0 +1,99 @@ +import torch +from lightconvpoint.spatial import knn +from lightconvpoint.utils.functional import batch_gather +from torch_geometric.data import Data +import logging +import time +import torch.nn as nn + +class InterpMeanPrefixNet(torch.nn.Module): + + def __init__(self, latent_size, out_channels, K=16): + super().__init__() + + logging.info(f"InterpNet - Mean - K={K}") + # self.projection_layer = FKAConv(latent_size, latent_size, 16, sampling=None, neighborhood_search=knn, neighborhood_size=16, ratio=1) + # self.fc1 = torch.nn.Conv2d(latent_size+3, latent_size, 1) + # self.fc2 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc3 = torch.nn.Conv2d(latent_size, latent_size, 1) + # self.fc8 = torch.nn.Conv1d(latent_size, out_channels, 1) + # self.activation = torch.nn.ReLU() + + self.fc_in = torch.nn.Conv1d(latent_size+3, latent_size, 1) + mlp_layers = [torch.nn.Conv1d(latent_size, latent_size, 1) for _ in range(2)] + self.mlp_layers = nn.ModuleList(mlp_layers) + self.fc_out = torch.nn.Conv1d(latent_size, out_channels, 1) + self.activation = torch.nn.ReLU() + + self.k = K + + def forward_spatial(self, data): + + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + add_batch_dimension_pos = False + if len(pos.shape) == 2: + pos = pos.unsqueeze(0) + add_batch_dimension_pos = True + + add_batch_dimension_non_manifold = False + if len(pos_non_manifold.shape) == 2: + pos_non_manifold = pos_non_manifold.unsqueeze(0) + add_batch_dimension_non_manifold = True + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + indices = knn(pos, pos_non_manifold, self.k) + + if add_batch_dimension_non_manifold or add_batch_dimension_pos: + indices = indices.squeeze(0) + + ret_data = {} + ret_data["proj_indices"] = indices + + return ret_data + + + def forward(self, data, spatial_only=False, spectral_only=False): + if spatial_only: + return self.forward_spatial(data) + + if not spectral_only: + spatial_data = self.forward_spatial(data) + for key, value in spatial_data.items(): + data[key] = value + + + x = data["latents"] + indices = data["proj_indices"] + pos = data["pos"] + pos_non_manifold = data["pos_non_manifold"] + + + if pos.shape[1] != 3: + pos = pos.transpose(1,2) + + if pos_non_manifold.shape[1] != 3: + pos_non_manifold = pos_non_manifold.transpose(1,2) + + x = batch_gather(x, 2, indices) + pos = batch_gather(pos, 2, indices) + pos = pos_non_manifold.unsqueeze(3) - pos + + x = x.mean(dim=3) + pos = pos.mean(dim=3) + + x = torch.cat([x,pos], dim=1) + x = self.fc_in(x) + for i, l in enumerate(self.mlp_layers): + x = l(self.activation(x)) + + # x = x.mean(dim=3) + x = self.fc_out(x) + + return x \ No newline at end of file diff --git a/networks/network.py b/networks/network.py new file mode 100644 index 0000000..507ed14 --- /dev/null +++ b/networks/network.py @@ -0,0 +1,141 @@ +import torch +from torch_geometric.data import Data +import logging +from .backbone import * +from .decoder import * +from lightconvpoint.spatial import knn, sampling_quantized as sampling +from lightconvpoint.utils.functional import batch_gather +from lightconvpoint.nn import max_pool, interpolate + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + + +class Network(torch.nn.Module): + + def __init__(self, in_channels, latent_size, out_channels, backbone, decoder, **kwargs): + super().__init__() + + self.net = eval(backbone)(in_channels, latent_size, segmentation=True, dropout=0) + self.projection = eval(decoder["name"])(latent_size, out_channels, decoder["k"]) + self.lcp_preprocess = True + + logging.info(f"Network -- backbone -- {count_parameters(self.net)} parameters") + logging.info(f"Network -- projection -- {count_parameters(self.projection)} parameters") + + def forward(self, data, spatial_only=False, spectral_only=False): + + if spatial_only: + net_data = self.net(data, spatial_only=spatial_only) + if "output_support" in net_data: + data["output_support"] = net_data["output_support"] + proj_data = self.projection.forward_spatial(data) + net_data["proj_indices"] = proj_data["proj_indices"] + return net_data + + if not spectral_only: + spatial_data = self.net.forward_spatial(data) + if "output_support" in spatial_data: + data["output_support"] = spatial_data["output_support"] + proj_data = self.projection.forward_spatial(data) + spatial_data["proj_indices"] = proj_data["proj_indices"] + for key, value in spatial_data.items(): + data[key] = value + + latents = self.net(data, spectral_only=True) + data["latents"] = latents + ret_data = self.projection(data, spectral_only=True) + + return ret_data + + + + def get_latent(self, data, with_correction=False, spatial_only=False, spectral_only=False): + + latents = self.net(data, spatial_only=spatial_only, spectral_only=spectral_only) + data["latents"] = latents + + data["proj_correction"] = None + if with_correction: + data_in_proj = {"latents":latents, "pos":data["pos"], "pos_non_manifold":data["pos"].clone(), "proj_correction":None} + data_proj = self.projection(data_in_proj, spectral_only=False) + data["proj_correction"] = data_proj + return data + + def from_latent(self, data): + data_proj = self.projection(data) + return data_proj#["outputs"] + + +class NetworkMultiScale(torch.nn.Module): + + def __init__(self, in_channels, latent_size, out_channels, backbone, decoder, **kwargs): + super().__init__() + + self.net = eval(backbone)(in_channels, latent_size, segmentation=True, dropout=0) + + self.merge_latent = torch.nn.Sequential( + torch.nn.Conv1d(2*latent_size, latent_size,1), + torch.nn.ReLU(), + torch.nn.Conv1d(latent_size, latent_size,1), + torch.nn.ReLU(), + torch.nn.Conv1d(latent_size, latent_size,1) + ) + + if "Radius" in decoder["name"]: + self.projection = eval(decoder["name"])(latent_size, out_channels, decoder["radius"]) + else: + self.projection = eval(decoder["name"])(latent_size, out_channels, decoder["k"]) + self.lcp_preprocess = True + + logging.info(f"Network -- backbone -- {count_parameters(self.net)} parameters") + logging.info(f"Network -- projection -- {count_parameters(self.projection)} parameters") + + def forward(self, data): + + # compute the down sampled latents + # ids_down = torch.rand((data["pos"].shape[0], 3000), device=data["pos"].device) * data["pos"].shape[2] + # ids_down = ids_down.long() + + with torch.no_grad(): + pos_down, idsDown = sampling(data["pos"], n_support=3000) + x_down = batch_gather(data["x"], dim=2, index=idsDown).contiguous() + data_down = {'x':x_down, 'pos':pos_down} + latents_down = self.net(data_down) + idsUp = knn(pos_down, data["pos"], 1) + latents_down = interpolate(latents_down, idsUp) + + latents = self.net(data) + + latents = torch.cat([latents, latents_down], dim=1) + latents = self.merge_latent(latents) + + data["latents"] = latents + ret_data = self.projection(data) + + return ret_data + + def train(self, mode=True): + r"""Sets the module in training mode.""" + self.training = mode + # set only the merge to train + for module in self.children(): + module.train(False) + self.merge_latent.train(mode) + return self + + def get_latent(self, data, with_correction=False, spatial_only=False, spectral_only=False): + + latents = self.net(data, spatial_only=spatial_only, spectral_only=spectral_only) + data["latents"] = latents + + data["proj_correction"] = None + if with_correction: + data_in_proj = {"latents":latents, "pos":data["pos"], "pos_non_manifold":data["pos"].clone(), "proj_correction":None} + data_proj = self.projection(data_in_proj, spectral_only=False) + data["proj_correction"] = data_proj + return data + + def from_latent(self, data): + data_proj = self.projection(data) + return data_proj#["outputs"] diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..b38011d --- /dev/null +++ b/setup.py @@ -0,0 +1,61 @@ +from setuptools import setup +from torch.utils import cpp_extension +import sys +try: + from setuptools import setup +except ImportError: + from distutils.core import setup +from distutils.extension import Extension +from Cython.Build import cythonize +from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension +import numpy + +# print(sys.argv) + +setup( + name="lightconvpoint", + ext_modules=[], + cmdclass={} +) + +# Get the numpy include directory. +numpy_include_dir = numpy.get_include() + +# Extensions +# pykdtree (kd tree) +pykdtree = Extension( + 'eval.src.utils.libkdtree.pykdtree.kdtree', + sources=[ + 'eval/src/utils/libkdtree/pykdtree/kdtree.c', + 'eval/src/utils/libkdtree/pykdtree/_kdtree_core.c' + ], + language='c', + extra_compile_args=['-std=c99', '-O3', '-fopenmp'], + extra_link_args=['-lgomp'], + include_dirs=[numpy_include_dir] +) + + +# triangle hash (efficient mesh intersection) +triangle_hash_module = Extension( + 'eval.src.utils.libmesh.triangle_hash', + sources=[ + 'eval/src/utils/libmesh/triangle_hash.pyx' + ], + libraries=['m'], # Unix-like specific + include_dirs=[numpy_include_dir] +) + + +# Gather all extension modules +ext_modules = [ + pykdtree, + triangle_hash_module, +] + +setup( + ext_modules=cythonize(ext_modules), + cmdclass={ + 'build_ext': BuildExtension + } +) diff --git a/train.py b/train.py new file mode 100644 index 0000000..33ec2c6 --- /dev/null +++ b/train.py @@ -0,0 +1,330 @@ + +import os +import numpy as np +import yaml +from tqdm import tqdm +import logging +import shutil + +from sklearn.metrics import confusion_matrix +import torch_geometric.transforms as T + +# torch imports +import torch +import torch.nn.functional as F + +# lightconvpoint imports +from lightconvpoint.datasets.dataset import get_dataset +import lightconvpoint.utils.transforms as lcp_T +from lightconvpoint.utils.logs import logs_file +from lightconvpoint.utils.misc import dict_to_device + +import utils.argparseFromFile as argparse +from utils.utils import wblue, wgreen +import utils.metrics as metrics +import datasets +import networks + +from torch.utils.tensorboard import SummaryWriter + + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + +def save_config_file(config, filename): + with open(filename, 'w') as outfile: + yaml.dump(config, outfile, default_flow_style=False) + +def main(config): + + + config = eval(str(config)) + disable_log = (config["log_mode"] != "interactive") + device = torch.device(config['device']) + if config["device"] == "cuda": + torch.backends.cudnn.benchmark = True + + savedir_root = os.path.join(config["save_dir"],f"{config['dataset_name']}_{config['experiment_name']}_{config['network_backbone']}_{config['network_decoder']}_{config['filter_name']}") + + + logging.getLogger().setLevel(config["logging"]) + + # create the network + N_LABELS = config["network_n_labels"] + latent_size = config["network_latent_size"] + backbone = config["network_backbone"] + decoder = {'name':config["network_decoder"], 'k': config['network_decoder_k']} + + logging.info("Creating the network") + def network_function(): + return networks.Network(3, latent_size, N_LABELS, backbone, decoder) + net = network_function() + net.to(device) + logging.info(f"Network -- Number of parameters {count_parameters(net)}") + + logging.info("Getting the dataset") + DatasetClass = get_dataset(eval("datasets."+config["dataset_name"])) + train_transform = [] + test_transform = [] + + # downsample + train_transform.append(lcp_T.FixedPoints(config["manifold_points"], item_list=["x", "pos", "normal", "y", "y_object"])) + test_transform.append(lcp_T.FixedPoints(config["manifold_points"], item_list=["x", "pos", "normal", "y", "y_object"])) + train_transform.append(lcp_T.FixedPoints(config["non_manifold_points"], item_list=["pos_non_manifold", "occupancies", "y_v", "y_v_object"])) + test_transform.append(lcp_T.FixedPoints(config["non_manifold_points"], item_list=["pos_non_manifold", "occupancies", "y_v", "y_v_object"])) + + random_rotation_x = config["training_random_rotation_x"] + random_rotation_y = config["training_random_rotation_y"] + random_rotation_z = config["training_random_rotation_z"] + if random_rotation_x is not None and random_rotation_x > 0: + train_transform += [lcp_T.RandomRotate(random_rotation_x, axis=0, item_list=["pos", "normal", "pos_non_manifold"]),] + if random_rotation_y is not None and random_rotation_y > 0: + train_transform += [lcp_T.RandomRotate(random_rotation_y, axis=1, item_list=["pos", "normal", "pos_non_manifold"]),] + if random_rotation_z is not None and random_rotation_z > 0: + train_transform += [lcp_T.RandomRotate(random_rotation_z, axis=2, item_list=["pos", "normal", "pos_non_manifold"]),] + + # add noise to data + if (config["random_noise"] is not None) and (config["random_noise"] > 0): + train_transform.append(lcp_T.RandomNoiseNormal(sigma=config["random_noise"])) + test_transform.append(lcp_T.RandomNoiseNormal(sigma=config["random_noise"])) + + # operate the permutations + train_transform = train_transform + [ + lcp_T.Permutation("pos", [1,0]), + lcp_T.Permutation("pos_non_manifold", [1,0]), + lcp_T.Permutation("normal", [1,0]), + lcp_T.Permutation("x", [1,0]), + lcp_T.ToDict(),] + test_transform = test_transform + [ + lcp_T.Permutation("pos", [1,0]), + lcp_T.Permutation("pos_non_manifold", [1,0]), + lcp_T.Permutation("normal", [1,0]), + lcp_T.Permutation("x", [1,0]), + lcp_T.ToDict(),] + + + train_transform = T.Compose(train_transform) + test_transform = T.Compose(test_transform) + + # build the dataset + train_dataset = DatasetClass(config["dataset_root"], + split=config["train_split"], + transform=train_transform, + network_function=network_function, + filter_name=config["filter_name"], + num_non_manifold_points=config["non_manifold_points"] + ) + test_dataset = DatasetClass(config["dataset_root"], + split=config["val_split"], + transform=test_transform, + network_function=network_function, + filter_name=config["filter_name"], + num_non_manifold_points=config["non_manifold_points"], + dataset_size=config["val_num_mesh"] + ) + + + # build the data loaders + train_loader = torch.utils.data.DataLoader( + train_dataset, + batch_size=config["training_batch_size"], + shuffle=True, + num_workers=config["threads"], + ) + test_loader = torch.utils.data.DataLoader( + test_dataset, + batch_size=config["training_batch_size"], + shuffle=False, + num_workers=config["threads"], + ) + + # create the optimizer + logging.info("Creating the optimizer") + optimizer = torch.optim.Adam(net.parameters(),config["training_lr_start"]) + + # save the config file in the directory to restore the configuration + if config["resume"] and os.path.exists(savedir_root): + checkpoint = torch.load(os.path.join(savedir_root, "checkpoint.pth"), map_location=device) + net.load_state_dict(checkpoint["state_dict"]) + optimizer.load_state_dict(checkpoint["optimizer"]) + epoch_start = checkpoint["epoch"] + train_iter_count = len(train_loader) * epoch_start + else: + if os.path.exists(savedir_root): + shutil.rmtree(savedir_root) + os.makedirs(savedir_root, exist_ok=True) + save_config_file(eval(str(config)), os.path.join(savedir_root, "config.yaml")) + epoch_start = 0 + train_iter_count = 0 + + # create the loss layer + loss_layer = torch.nn.CrossEntropyLoss() + + + # create the summary writer + logging.info("Creating tensorboard summary writer") + writer = SummaryWriter(log_dir=os.path.join(savedir_root, "logs_tb")) + + epoch = epoch_start + while True: + + # break if the number of iterations is reached + if train_iter_count >= config["training_iter_nbr"]: + break + + net.train() + error = 0 + cm = np.zeros((N_LABELS, N_LABELS)) + + t = tqdm( + train_loader, + desc="Epoch " + str(epoch), + ncols=130, + disable=disable_log, + ) + for data in t: + + data = dict_to_device(data, device) + optimizer.zero_grad() + + if config["normals"]: + data["x"] = data["normal"] + + outputs = net(data, spectral_only=True) + occupancies = data["occupancies"] + + loss = loss_layer(outputs, occupancies) + loss.backward() + optimizer.step() + + # compute scores + output_np = np.argmax(outputs.cpu().detach().numpy(), axis=1) + target_np = occupancies.cpu().numpy() + cm_ = confusion_matrix( + target_np.ravel(), output_np.ravel(), labels=list(range(N_LABELS)) + ) + cm += cm_ + error += loss.item() + + # point wise scores on training + train_oa = metrics.stats_overall_accuracy(cm) + train_aa = metrics.stats_accuracy_per_class(cm)[0] + train_iou = metrics.stats_iou_per_class(cm)[0] + train_aloss = error / cm.sum() + + description = f"Epoch {epoch} | OA {train_oa*100:.2f} | AA {train_aa*100:.2f} | IoU {train_iou*100:.2f} | Loss {train_aloss:.4e}" + t.set_description_str(wblue(description)) + + train_iter_count += 1 + + if train_iter_count >= config["training_iter_nbr"]: + break + + + # save the logs + train_log_data = { + "OA_train": train_oa, + "AA_train": train_aa, + "IoU_train": train_iou, + "Loss_train": train_aloss, + } + + # create the root folder + os.makedirs(savedir_root, exist_ok=True) + + + torch.save( + { + "epoch": epoch + 1, + "state_dict": net.state_dict(), + "optimizer": optimizer.state_dict(), + }, + os.path.join(savedir_root, "checkpoint.pth"), + ) + + logs_file(os.path.join(savedir_root, "logs_train.csv"), train_iter_count, train_log_data) + + + # tensorboard logging + writer.add_scalar('Loss/loss_train', train_aloss, train_iter_count) + writer.add_scalar('Metrics/iou_train', train_iou, train_iter_count) + + + # validation + if (epoch+1)%config["val_interval"]==0: + + net.eval() + error = 0 + cm = np.zeros((N_LABELS, N_LABELS)) + with torch.no_grad(): + + t = tqdm( + test_loader, + desc=" Test " + str(epoch), + ncols=100, + disable=disable_log, + ) + for data in t: + + + # data = data.to(device) + data = dict_to_device(data, device) + # output_data = net(data) + # outputs = output_data["outputs"] + + if config["normals"]: + data["x"] = data["normal"] + outputs = net(data, spectral_only=True) + occupancies = data["occupancies"] + + loss = loss_layer(outputs, occupancies) + + outputs = F.softmax(outputs, dim=1) + outputs_np = outputs.cpu().detach().numpy() + targets_np = occupancies.cpu().numpy() + pred_labels = np.argmax(outputs_np, axis=1) + cm_ = confusion_matrix(targets_np.ravel(), pred_labels.ravel(), labels=list(range(N_LABELS))) + cm += cm_ + error += loss.item() + + # point-wise scores on testing + test_oa = metrics.stats_overall_accuracy(cm) + test_aa = metrics.stats_accuracy_per_class(cm)[0] + test_iou = metrics.stats_iou_per_class(cm)[0] + test_aloss = error / cm.sum() + + description = f"Val. {epoch} | OA {test_oa*100:.2f} | AA {test_aa*100:.2f} | IoU {test_iou*100:.2f} | Loss {test_aloss:.4e}" + t.set_description_str(wgreen(description)) + + # save the logs + val_log_data = { + "OA_val": test_oa, + "AA_val": test_aa, + "IoU_val": test_iou, + "Loss_val": test_aloss, + } + logs_file(os.path.join(savedir_root, "logs_val.csv"), train_iter_count, val_log_data) + + # tensorboard logging + writer.add_scalar('Loss/loss_train', test_aloss, train_iter_count) + writer.add_scalar('Metrics/iou_train', test_iou, train_iter_count) + + epoch += 1 + + + +if __name__ == "__main__": + + + parser = argparse.ArgumentParserFromFile(description='Process some integers.') + parser.add_argument('--config_default', type=str, default="configs/config_default.yaml") + parser.add_argument('--config', '-c', type=str, default=None) + parser.update_file_arg_names(["config_default", "config"]) + + config = parser.parse(use_unknown=True) + + logging.getLogger().setLevel(config["logging"]) + if config["logging"] == "DEBUG": + config["threads"] = 0 + + main(config) diff --git a/utils/__init__.py b/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/utils/argparseFromFile.py b/utils/argparseFromFile.py new file mode 100644 index 0000000..24a878f --- /dev/null +++ b/utils/argparseFromFile.py @@ -0,0 +1,70 @@ +import sys +from argparse import ArgumentParser, HelpFormatter +import yaml + + +class ArgumentParserFromFile(ArgumentParser): + + def __init__(self, + prog=None, + usage=None, + description=None, + epilog=None, + parents=[], + formatter_class=HelpFormatter, + prefix_chars='-', + fromfile_prefix_chars=None, + argument_default=None, + conflict_handler='error', + add_help=True, + allow_abbrev=True): + super().__init__(prog=prog, usage=usage, description=description, epilog=epilog, parents=parents, formatter_class=formatter_class, + prefix_chars=prefix_chars, fromfile_prefix_chars=fromfile_prefix_chars, argument_default=argument_default, + conflict_handler=conflict_handler, add_help=add_help, allow_abbrev=allow_abbrev) + + self.file_arg_names=None + + def update_file_arg_names(self, file_arg_names): + + self.file_arg_names=file_arg_names + + def parse(self, use_unknown=False): + + # get the arguments + if use_unknown: + args, unknown = self.parse_known_args() + else: + args = self.parse_args() + unknown = None + + config = {} + + # parse the filenames + if self.file_arg_names is not None: + for file_arg_name in self.file_arg_names: + filename = getattr(args, file_arg_name) + config_ = yaml.load(open(filename, 'r'), Loader=yaml.FullLoader) + for key, val in config_.items(): + config[key] = val + + # iterate over the args + for arg in vars(args): + config[arg] = getattr(args, arg) + + # use the unknow + if use_unknown: + pos = 0 + while(pos < len(unknown)): + arg = unknown[pos] + if "--" in arg: + key = str(arg[2:]) + pos += 1 + try: + value = eval(unknown[pos]) + except: + value = unknown[pos] + print(key, value) + config[key] = value + pos+=1 + + return config \ No newline at end of file diff --git a/utils/metrics.py b/utils/metrics.py new file mode 100644 index 0000000..5755083 --- /dev/null +++ b/utils/metrics.py @@ -0,0 +1,102 @@ +import numpy as np + + +def stats_overall_accuracy(cm): + """Computes the overall accuracy. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + """ + return np.trace(cm) / cm.sum() + + +def stats_pfa_per_class(cm): + """Computes the probability of false alarms. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + """ + sums = np.sum(cm, axis=0) + mask = sums > 0 + sums[sums == 0] = 1 + pfa_per_class = (cm.sum(axis=0) - np.diag(cm)) / sums + pfa_per_class[np.logical_not(mask)] = -1 + average_pfa = pfa_per_class[mask].mean() + return average_pfa, pfa_per_class + + +def stats_accuracy_per_class(cm): + """Computes the accuracy per class and average accuracy. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + + # Returns + average_accuracy: float. + The average accuracy. + accuracy_per_class: 1-D numpy array. + The accuracy per class. + """ + sums = np.sum(cm, axis=1) + mask = sums > 0 + sums[sums == 0] = 1 + accuracy_per_class = np.diag(cm) / sums # sum over lines + accuracy_per_class[np.logical_not(mask)] = -1 + average_accuracy = accuracy_per_class[mask].mean() + return average_accuracy, accuracy_per_class + + +def stats_iou_per_class(cm): + """Computes the IoU per class and average IoU. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + + # Returns + average_accuracy: float. + The average IoU. + accuracy_per_class: 1-D numpy array. + The IoU per class. + """ + + # compute TP, FN et FP + TP = np.diagonal(cm, axis1=-2, axis2=-1) + TP_plus_FN = np.sum(cm, axis=-1) + TP_plus_FP = np.sum(cm, axis=-2) + + # compute IoU + mask = TP_plus_FN == 0 + IoU = TP / (TP_plus_FN + TP_plus_FP - TP + mask) + + # replace IoU with 0 by the average IoU + aIoU = IoU[np.logical_not(mask)].mean(axis=-1, keepdims=True) + IoU += mask * aIoU + + return IoU.mean(axis=-1), IoU + + +def stats_f1score_per_class(cm): + """Computes the F1 per class and average F1. + + # Arguments: + cm: 2-D numpy array. + Confusion matrix. + + # Returns + average_accuracy: float. + The average F1. + accuracy_per_class: 1-D numpy array. + The F1 per class. + """ + # defined as 2 * recall * prec / recall + prec + sums = np.sum(cm, axis=1) + np.sum(cm, axis=0) + mask = sums > 0 + sums[sums == 0] = 1 + f1score_per_class = 2 * np.diag(cm) / sums + f1score_per_class[np.logical_not(mask)] = -1 + average_f1_score = f1score_per_class[mask].mean() + return average_f1_score, f1score_per_class diff --git a/utils/utils.py b/utils/utils.py new file mode 100644 index 0000000..0d58fc7 --- /dev/null +++ b/utils/utils.py @@ -0,0 +1,17 @@ +class bcolors: + HEADER = '\033[95m' + OKBLUE = '\033[94m' + OKGREEN = '\033[92m' + WARNING = '\033[93m' + FAIL = '\033[91m' + ENDC = '\033[0m' + BOLD = '\033[1m' + UNDERLINE = '\033[4m' + +# wrap blue / green +def wblue(str): + return bcolors.OKBLUE+str+bcolors.ENDC +def wgreen(str): + return bcolors.OKGREEN+str+bcolors.ENDC +def wred(str): + return bcolors.FAIL+str+bcolors.ENDC \ No newline at end of file