-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_insurance.py
285 lines (236 loc) · 13.4 KB
/
run_insurance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
#import tensorflow as tf
# sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
import copy
import numpy as np
import gym
from copy import deepcopy
from logging import getLogger
import argparse
from comet_ml import Experiment
import neptune
from datetime import datetime
import pickle
from nolds import lyap_e, lyap_r
from agent_util import generate_agent_model, generate_insurance_model
import agent_util
from insurance_env import InsuranceEnv, LEN_EPISODE
from config import EnvConfig
seed = np.random.randint(1)
np.random.seed(seed)
logger = getLogger()
comet_cfg = EnvConfig()
def fit_n_agents(env, nb_steps, agents=None, num_agents=1, num_insurances=1, nb_max_episode_steps=None, logger=None, log_dir=None):
print('NUM_AGENTS:', len(agents))
for agent in agents:
if not agent.compiled:
raise RuntimeError(
'Your tried to fit your agent but it hasn\'t been compiled yet.'
' Please call `compile()` before `fit()`.')
agent.training = True
agent._on_train_begin()
episode = 0
observations = [None for _ in agents]
episode_rewards = [None for _ in agents]
episode_steps = [None for _ in agents]
for agent in agents:
agent.step = 0
did_abort = False
to_log = []
mean_ins_costs = [[] for _ in range(num_insurances)]
try:
while agents[0].step < nb_steps:
if observations[0] is None: # start of a new episode
observations = deepcopy(env.reset())
insurance_costs = [[] for _ in range(num_insurances)]
exp_lyap_r_intra = [0 for _ in range(num_insurances)]
exp_lyap_e = [[] for _ in range(num_insurances)]
for i, agent in enumerate(agents):
episode_steps[i] = 0
episode_rewards[i] = 0.
# Obtain the initial observation by resetting the environment.
agent.reset_states()
if agent.processor is not None:
observations[i] = agent.processor.process_observation(observations[i])
assert observations[i] is not None
# At this point, we expect to be fully initialized.
assert episode_rewards[i] is not None
assert episode_steps[i] is not None
assert observations[i] is not None
last_action_counter = copy.deepcopy(env.action_counter)
actions = []
for i, agent in enumerate(agents):
# Run a single step.
# This is were all of the work happens. We first perceive and compute the action
# (forward step) and then use the reward to improve (backward step).
actions.append(agent.forward(observations[i]))
if agent.processor is not None:
actions[i] = agent.processor.process_action(actions[i])
accumulated_info = {}
done = False
env.step_i = agents[0].step
for i in range(num_insurances):
env.set_insurance_cost(actions[i][0],i)
insurance_costs[i].append(actions[i][0])
observations, r, done, info = env.step(actions[num_insurances:])
observations = deepcopy(observations)
for i, agent in enumerate(agents):
if agent.processor is not None:
observations[i], r[i], done, info = agent.processor.process_step(observations[i], r[i], done, info)
if nb_max_episode_steps and episode_steps[0] >= nb_max_episode_steps - 1:
# Force a terminal state.
done = True
for i, agent in enumerate(agents):
metrics = agent.backward(r[i], terminal=done)
episode_rewards[i] += r[i]
episode_steps[i] += 1
agent.step += 1
to_log.append([observations[0], actions, r])
if args.comet:
step_action_counter = env.action_counter - last_action_counter
if agents[0].step<nb_steps/2:
log_str = '_log_0'
else:
log_str = '_log_1'
for i in range(num_insurances):
#experiment.log_metric("insurance_cost_"+str(i), actions[i][0])
neptune.send_metric('insurance_cost_'+str(i)+log_str, actions[i][0])
neptune.send_metric("step_num_insured_"+str(i)+log_str, np.sum(step_action_counter[:, i*2+2:i*2+4]))
if done:
# if agents[0].step == nb_steps/2:
# for i in range(num_agents):
# agents[i+num_insurances].restart_policy()
if args.comet:
# #experiment.log_metrics({"num_safe_non_insured": env.action_counter[0],
# "num_risky_non_insured": env.action_counter[1],
# "num_safe_insured": env.action_counter[2],
# "num_risky_insured": env.action_counter[3],
# "avg_insurance_cost": np.mean(insurance_costs),
# "num_safe": env.action_counter[0]+env.action_counter[2],
# "num_risky": env.action_counter[1]+env.action_counter[3],
# "num_insured": env.action_counter[2]+env.action_counter[3],
# "num_non_insured": env.action_counter[0]+env.action_counter[1]
# })
exp_lyap_r_intra = [lyap_r(x) for x in insurance_costs]
for (agent_id, i), action_count in np.ndenumerate(env.action_counter):
if i < 2:
if i % 2 == 0:
neptune.send_metric("num_safe_non_insured_agent_"+str(agent_id), action_count)
else:
neptune.send_metric("num_risky_non_insured_agent_"+str(agent_id), action_count)
else:
if i % 2 == 0:
if agent_id == 0:
neptune.send_metric("num_safe_insured_"+str(i//2-1), np.sum(env.action_counter[:, i]))
neptune.send_metric("num_safe_insured_agent_" + str(agent_id) +
"_insurance_"+str(i//2-1), action_count)
else:
if agent_id == 0:
neptune.send_metric("num_risky_insured_"+str(i//2-1), np.sum(env.action_counter[:, i]))
neptune.send_metric("num_risky_insured_agent_"+str(agent_id) +
"_insurance_"+str(i//2-1), action_count)
neptune.send_metric("avg_insurance_cost", np.mean(insurance_costs))
neptune.send_metric("avg_insurance_cost_scaled", np.mean(insurance_costs)*LEN_EPISODE)
neptune.send_metric("num_safe", np.sum(env.action_counter[:, 0::2]))
neptune.send_metric("num_risky", np.sum(env.action_counter[:, 1::2]))
neptune.send_metric("num_insured", np.sum(env.action_counter[:, 2:]))
neptune.send_metric("num_non_insured", np.sum(env.action_counter[:, :2]))
neptune.send_metric("num_safe_non_insured", np.sum(env.action_counter[:, 0]))
neptune.send_metric("num_risky_non_insured", np.sum(env.action_counter[:, 1]))
for i, v in enumerate(np.mean(insurance_costs, axis=1)):
neptune.send_metric("avg_insurance_cost_"+str(i), v)
neptune.send_metric("avg_insurance_cost_scaled_" + str(i), v*LEN_EPISODE)
mean_ins_costs[i].append(v)
for i in range(num_insurances):
neptune.send_metric("num_insured_"+str(i), np.sum(env.action_counter[:, i*2+2:i*2+4]))
neptune.send_metric("lyap_exp_intra_ins_"+str(i), exp_lyap_r_intra[i])
#experiment.set_step(env.step_i)
for i, agent in enumerate(agents):
agent.forward(observations[i])
agent.backward(0., terminal=False)
# logger.info('episode_return', np.sum(episode_rewards), episode)
# logger.info('bargaining_succes', info['bargaining_succes'], episode)
print('episode_return', np.sum(episode_rewards), episode)
for i, agent in enumerate(agents):
logger.info('episode_return_agent-{}'.format(i), r[i], episode)
print('episode_return_agent-{}'.format(i), r[i], episode)
if i < num_insurances:
model_type = "insurance_"+str(i)
else:
model_type = "agent_"+str(i-num_insurances)
if args.comet:
#experiment.log_metric("reward_"+model_type, np.sum(episode_rewards[i]))
neptune.send_metric("reward_"+model_type, np.sum(episode_rewards[i]))
# for key, value in info.items():
# logger.write_log(key, value, agents[0].step)
observations = [None for _ in agents]
episode_steps = [None for _ in agents]
episode_rewards = [None for _ in agents]
episode += 1
# print("step: ", env.step_i)
# except KeyboardInterrupt:
finally:
# We catch keyboard interrupts here so that training can be be safely aborted.
# This is so common that we've built this right into this function, which ensures that
# the `on_train_end` method is properly called.
if args.comet:
exp_lyap_r_inter = [lyap_r(x) for x in mean_ins_costs]
for i in range(num_insurances):
neptune.set_property("lyap_exp_inter_ins_"+str(i), exp_lyap_r_inter[i])
neptune.send_metric("lyap_exp_inter_ins_"+str(i), exp_lyap_r_inter[i])
did_abort = True
with open('logs/outfile-%s.p' % datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f'), 'wb') as fp:
pickle.dump(to_log, fp)
for i, agent in enumerate(agents):
if i < num_insurances:
model_type = "insurance_"+str(i)
else:
model_type = "agent_"+str(i-num_insurances)
filename = 'models/'+model_type+'-%s.h5' % datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
agent.save_weights(filename)
agent._on_train_end()
def main(args):
env = InsuranceEnv(args.num_agents, args.num_insurances)
agents = []
for i in range(args.num_insurances):
agents.append(generate_insurance_model(env, memory_len=args.memory_limit, lr=args.learning_rate,
target_model_update=args.target_model_update))
for i in range(args.num_agents):
agents.append(generate_agent_model(env, memory_len=args.memory_limit, lr=args.learning_rate,
target_model_update=args.target_model_update))
if args.comet:
experiment = Experiment(api_key=comet_cfg.comet_api_key,
project_name=comet_cfg.comet_project_name, workspace=comet_cfg.comet_workspace)
neptune.init(api_token=comet_cfg.neptune_token, project_qualified_name=comet_cfg.neptune_project_name)
neptune.create_experiment()
neptune.set_property('num_insurances', args.num_insurances)
neptune.set_property('num_agents', args.num_agents)
# neptune.set_property('memory_limit', agent_util.MEMORY_LIMIT)
neptune.set_property('memory_limit', agents[0].memory.limit)
# neptune.set_property('target_model_update', agent_util.TARGET_MODEL_UPDATE)
neptune.set_property('target_model_update', agents[0].target_model_update)
neptune.set_property('num_steps', args.num_steps)
neptune.set_property('risky_mu', env.risky_mu)
neptune.set_property('safe_mu', env.safe_mu)
neptune.set_property('insurance_return', env.insurance_return)
neptune.set_property('ag_model_eps_final', agents[-1].policy.value_min)
neptune.set_property('random_seed', seed)
neptune.set_property('learning_rate', args.learning_rate)
fit_n_agents(env=env, nb_steps=args.num_steps, agents=agents, num_agents=args.num_agents,
num_insurances=args.num_insurances, nb_max_episode_steps=1000, logger=logger)
print('done')
if args.comet:
neptune.stop()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--comet", action="store_true")
parser.add_argument("--num_steps", type=int, default=1000)
parser.add_argument("--num_agents", type=int, default=1)
parser.add_argument("--num_insurances", type=int, default=1)
parser.add_argument("--learning_rate", type=float, default=.0001)
parser.add_argument("--memory_limit", type=int, default=100)
parser.add_argument("--target_model_update", type=float, default=.09)
args = parser.parse_args()
print(args)
main(args)