-
Notifications
You must be signed in to change notification settings - Fork 7
/
mathGL.h
298 lines (245 loc) · 8.68 KB
/
mathGL.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include <math.h>
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
static const double PI = 4.0*atan(1.0);
struct vec4;
// Declare vec3 and corrensponding operator overloading and functions
// so that i don't have to include a separate library for it (glm.h)
struct vec3 {
float x, y, z;
vec3();
vec3(const float &, const float &, const float &);
vec3(const vec4 &);
};
vec3 operator+(const vec3 &, const vec3 &);
vec3 operator-(const vec3 &, const vec3 &);
vec3 operator-(const vec3 &);
vec3 operator*(const vec3 &, const float &);
vec3 operator*(const float &, const vec3 &);
vec3 normalize(const vec3 &);
float dot(const vec3 &, const vec3 &);
vec3 cross(const vec3 &, const vec3 &);
// Declare vec4 and corrensponding operator overloading and functions
struct vec4 {
float x, y, z, w;
vec4();
vec4(const float &, const float &, const float &, const float &);
vec4(const vec3 &, const float &);
};
vec4 operator+(const vec4 &, const vec4 &);
vec4 operator-(const vec4 &, const vec4 &);
vec4 operator-(const vec4 &);
vec4 operator*(const vec4 &, const float &);
vec4 operator*(const float &, const vec4 &);
vec4 normalize(const vec4 &);
float dot(const vec4 &, const vec4 &);
// Declare mat4 and corrensponding operator overloading and functions
struct mat4 {
union {
struct {float m11, m21, m31, m41, m12, m22, m32, m42, m13, m23, m33, m43, m14, m24, m34, m44;};
float m[16];
float M[4][4];
};
mat4(const float &);
mat4(const vec4 &, const vec4 &, const vec4 &, const vec4 &);
};
vec4 operator*(const mat4 &, const vec4 &);
mat4 operator*(const mat4 &, const mat4 &);
mat4 translate(const vec3 &);
mat4 scale(const vec3 &);
mat4 rotate(const vec3 &, const float &);
mat4 view(const vec3 &, const vec3 &, const vec3 &, const vec3 &);
mat4 lookAt(const vec3 &, const vec3 &, const vec3 &);
mat4 projection(const float &, const float &, const float &, const float &);
mat4 ortho(float x1, float x2, float y1, float y2, float z1, float z2);
vec3::vec3() : x(0.0f), y(0.0f), z(0.0f) {
}
vec3::vec3(const float &x, const float &y, const float &z) : x(x), y(y), z(z) {
}
vec3::vec3(const vec4 &v) : x(v.x), y(v.y), z(v.z) {
}
vec3 operator+(const vec3 &lhs, const vec3 &rhs) {
return vec3(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z);
}
vec3 operator-(const vec3 &lhs, const vec3 &rhs) {
return vec3(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z);
}
vec3 operator-(const vec3 &lhs) {
return vec3(-lhs.x, -lhs.y, -lhs.z);
}
vec3 operator*(const vec3 &lhs, const float &rhs) {
return vec3(lhs.x*rhs, lhs.y*rhs, lhs.z*rhs);
}
vec3 operator*(const float &lhs, const vec3 &rhs) {
return vec3(lhs*rhs.x, lhs*rhs.y, lhs*rhs.z);
}
float dot(const vec3 &a, const vec3 &b) {
return a.x*b.x + a.y*b.y + a.z*b.z;
}
vec3 normalize(const vec3 &in) {
float norm = 1.0/sqrt(dot(in, in));
return in*norm;
}
vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.y*v.z - u.z*v.y, u.z*v.x - u.x*v.z, u.x*v.y - u.y*v.x);
}
vec4::vec4() : x(0.0f), y(0.0f), z(0.0f), w(0.0f) {
// vec4 empty constructor
}
vec4::vec4(const float &x, const float &y, const float &z, const float &w) : x(x), y(y), z(z), w(w) {
// vec4 constructor using explicit values
}
vec4::vec4(const vec3 &v, const float &w) : x(v.x), y(v.y), z(v.z), w(w) {
// vec4 constructor using vec3
}
vec4 operator+(const vec4 &lhs, const vec4 &rhs) {
return vec4(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z, lhs.w + rhs.w);
}
vec4 operator-(const vec4 &lhs, const vec4 &rhs) {
return vec4(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z, lhs.w - rhs.w);
}
vec4 operator-(const vec4 &lhs) {
return vec4(-lhs.x, -lhs.y, -lhs.z, -lhs.w);
}
vec4 operator*(const vec4 &lhs, const float &rhs) {
return vec4(lhs.x*rhs, lhs.y*rhs, lhs.z*rhs, lhs.w*rhs);
}
vec4 operator*(const float &lhs, const vec4 &rhs) {
return vec4(lhs*rhs.x, lhs*rhs.y, lhs*rhs.z, lhs*rhs.w);
}
float dot(const vec4 &a, const vec4 &b) {
return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;
}
vec4 normalize(const vec4 in) {
float norm = 1.0/sqrt(dot(in, in));
return norm*in;
}
mat4::mat4(const float & diag = 1.0f) {
// create diagonal matrix
for (int i = 0; i < 16; i++)
m[i] = ((i / 4) == (i % 4) ? diag : 0.0f);
}
mat4::mat4(const vec4 &a, const vec4 &b, const vec4 &c, const vec4 &d) {
// create matrix from 4 column vectors
m11 = a.x, m12 = b.x, m13 = c.x, m14 = d.x;
m21 = a.y, m22 = b.y, m23 = c.y, m24 = d.y;
m31 = a.z, m32 = b.z, m33 = c.z, m34 = d.z;
m41 = a.w, m42 = b.w, m43 = c.w, m44 = d.w;
}
vec4 operator*(const mat4 &lhs, const vec4 &rhs) {
// matrix-vector product
vec4 out;
out.x = lhs.m11*rhs.x + lhs.m12*rhs.y + lhs.m13*rhs.z + lhs.m14*rhs.w;
out.y = lhs.m21*rhs.x + lhs.m22*rhs.y + lhs.m23*rhs.z + lhs.m24*rhs.w;
out.z = lhs.m31*rhs.x + lhs.m32*rhs.y + lhs.m33*rhs.z + lhs.m34*rhs.w;
out.w = lhs.m41*rhs.x + lhs.m42*rhs.y + lhs.m43*rhs.z + lhs.m44*rhs.w;
return out;
}
mat4 operator*(const mat4 &lhs, const mat4 &rhs) {
mat4 out(0.0f);
for (int j = 0; j < 4; j++) {
for (int i = 0; i < 4; i++) {
for (int k = 0; k < 4; k++) {
out.M[j][i] += lhs.M[k][i]*rhs.M[j][k];
}
}
}
return out;
}
mat4 translate(const vec3 &move) {
// 1 0 0 x
// 0 1 0 y
// 0 0 1 z
// 0 0 0 1
mat4 out(1.0f);
out.m14 = move.x, out.m24 = move.y, out.m34 = move.z;
return out;
}
mat4 scale(const vec3 &scale) {
// x 0 0 0
// 0 y 0 0
// 0 0 z 0
// 0 0 0 1
mat4 out(1.0f);
out.m11 = scale.x;
out.m22 = scale.y;
out.m33 = scale.z;
return out;
}
mat4 rotate(const vec3 &axis, const float &angle) {
vec3 axis_ = normalize(axis);
// Goggle: "Q38: How do I generate a rotation matrix for a selected axis and angle?""
// need to negate the angle
float rcos = cos(-angle*PI/180.0f);
float rsin = sin(-angle*PI/180.0f);
float u = axis_.x;
float v = axis_.y;
float w = axis_.z;
mat4 mat = mat4(1.0f);
mat.m11 = rcos + u*u*(1.0f - rcos);
mat.m12 = w * rsin + v*u*(1.0f - rcos);
mat.m13 = -v * rsin + w*u*(1.0f - rcos);
mat.m21 = -w * rsin + u*v*(1.0f - rcos);
mat.m22 = rcos + v*v*(1.0f - rcos);
mat.m23 = u * rsin + w*v*(1.0f - rcos);
mat.m31 = v * rsin + u*w*(1.0f - rcos);
mat.m32 = -u * rsin + v*w*(1.0f - rcos);
mat.m33 = rcos + w*w*(1.0f - rcos);
return mat;
}
mat4 view(const vec3 &r, const vec3 &u, const vec3 &f, const vec3 &p) {
// multiply the model matrix by this matrix to transform a vertex
// into camera space
//
// rx ry rz -dot(r,p)
// ux uy uz -dot(u,p)
// -fx -fy -fz dot(f,p)
// 0 0 0 1
mat4 mat(1.0f);
mat.m11 = r.x, mat.m12 = r.y, mat.m13 = r.z, mat.m14 = -dot(r, p);
mat.m21 = u.x, mat.m22 = u.y, mat.m23 = u.z, mat.m24 = -dot(u, p);
mat.m31 = -f.x, mat.m32 = -f.y, mat.m33 = -f.z, mat.m34 = dot(f, p);
return mat;
}
mat4 lookAt(const vec3 &eye, const vec3 ¢er, const vec3 &up) {
// Convert camera direction to a right handed coordinate system
// with one vector pointing in the direction of the camera (y-axis),
// one vector poiting to the "right" of this one (x-axis)
// and one orthogonal to these two, the "up" axis (z-axis). r x f = u
//
// These are automatically normalized. "Easily" derived by hand.
// Physicist notation is used, i.e. theta is the polar axis.
vec3 f = normalize(vec3(center.x - eye.x, center.y - eye.y, center.z - eye.z));
vec3 u = normalize(up);
vec3 r = normalize(cross(f,u));
u = cross(r,f);
return view(r, u ,f, eye);
}
mat4 projection(const float &fov, const float &ratio, const float &zmin, const float &zmax) {
// transforms camera space into clip space, perspective projection.
// Multiply with modelView to make modelViewProjection matrix (MVP)
//
// f/ratio 0 0 0
// 0 f 0 0
// 0 0 (zmax + zmin)/(zmin - zmax) 2*zmax*zmin/(zmin - zmax)
// 0 0 -1 0
mat4 out(0.0f);
float f = 1.0/tan(fov*PI/180.0/2.0);
out.m11 = f/ratio;
out.m22 = f;
out.m33 = (zmax + zmin)/(zmin - zmax);
out.m34 = 2*zmax*zmin/(zmin - zmax);
out.m43 = -1.0;
return out;
}
// https://msdn.microsoft.com/en-us/library/windows/desktop/dd373965(v=vs.85).aspx
mat4 ortho(float l, float r, float b, float t, float n, float f) {
mat4 out(1.0f);
out.m11 = 2/(r-l);
out.m22 = 2/(t-b);
out.m33 = -2/(f-n);
out.m14 = -(r+l)/(r-l);
out.m24 = -(t+b)/(t-b);
out.m34 = -(f+n)/(f-n);
return out;
}