forked from Team254/FRC-2018-Public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CheesyVision2.py
executable file
·806 lines (662 loc) · 27.4 KB
/
CheesyVision2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
import numpy as np
import cv2
from networktables import NetworkTables
import math
from time import perf_counter
import collections
import argparse
##########################################
############# some utilities #############
##########################################
def fadeHSV(image, mask):
fade = cv2.multiply(image, (0.6,))
cv2.subtract(image, fade, image, cv2.bitwise_not(mask))
def getKernel(size):
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size,size))
def getColorMask(input):
# convert to HSV
hsv = cv2.cvtColor(input, cv2.COLOR_BGR2HSV)
cv2.medianBlur(hsv, 5, hsv)
# threshold
global minColor, maxColor
halfW = hsv.shape[1] // 2
maskL = cv2.inRange(hsv[:, :halfW], minColor[0], maxColor[0])
maskR = cv2.inRange(hsv[:, halfW:], minColor[1], maxColor[1])
mask = np.hstack((maskL, maskR))
return mask, hsv
#########################################
############# main pipeline #############
#########################################
MAX_LINE_ANGLE = 15
angleMap = np.zeros((1,1))
angleMask = None
pivotChanged = True
def initAngleMap(shape):
start = perf_counter()
global angleMap, angleMask, pivotChanged
height, width = shape
# create angleMap
dxs = np.tile(np.arange(width) - pivotLoc[0], (height,1))
dys = np.tile(np.arange(height).reshape(height,1) - pivotLoc[1], (1,width))
invertMask = dxs < 0
dxs[invertMask] = np.negative(dxs[invertMask])
dys[invertMask] = np.negative(dys[invertMask])
angleMap = np.degrees(np.arctan2(dys, dxs))
# create angleMask
angleMask = cv2.inRange(angleMap, -MAX_LINE_ANGLE, +MAX_LINE_ANGLE)
cx, cy, r = int(pivotLoc[0]), int(pivotLoc[1]), shape[1]//12
cv2.rectangle(angleMask, (cx-r,cy-r), (cx+r,cy+r), 0, cv2.FILLED)
pivotChanged = False
end = perf_counter()
if args.debug_timing: print(f"initAngleMap took {int((end-start)*1000)} ms")
autoPivotMask = None
def autoDetectPivot():
start = perf_counter()
global pivotLoc, pivotChanged
if autoPivotMask is not None:
# filter contours by aspect ratio
_, contours, _ = cv2.findContours(autoPivotMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
def keep(contour):
_, (w, h), _ = cv2.minAreaRect(contour)
if w == 0 or h == 0: return False
aspect = w / h
if aspect < 1.0: aspect = 1/aspect
return aspect > 4.5
contours = [c for c in contours if keep(c)]
if len(contours) == 0: return
# set pivot to median of the filtered blobs
xs, ys = np.hstack(c[:, 0, 0] for c in contours), np.hstack(c[:, 0, 1] for c in contours)
if len(xs) > 0 and len(ys) > 0:
pivotLoc = ((xs.max()+xs.min())/2, (ys.max()+ys.min())/2)
pivotChanged = True
end = perf_counter()
if args.debug_timing: print(f"autoDetectPivot took {int((end-start)*1000)} ms")
def process(input):
shape = input.shape[:2]
height, width = shape
global pivotLoc
if pivotLoc is None:
pivotLoc = (width//2, height//2)
if pivotChanged or angleMap.shape != shape:
initAngleMap(shape)
if args.auto:
autoSetColor(input)
start = perf_counter()
# get the color mask
global curFrame
mask, curFrame = getColorMask(input)
# dilate the mask a bit
cv2.dilate(mask, getKernel(4), mask)
# compute distance transform
dist = cv2.distanceTransform(cv2.copyMakeBorder(mask, 1,1,1,1, cv2.BORDER_CONSTANT, value=0), cv2.DIST_L2, 3)
dist = dist[1:-1, 1:-1] # cut off the temporary border
maxDist = float(dist.max())
# threshold the distance transform
mask2 = cv2.inRange(dist, maxDist*0.7, maxDist) if maxDist > 0 else np.zeros(shape, dtype=np.uint8)
global autoPivotMask
autoPivotMask = mask2.copy()
# mask out bad angles
cv2.bitwise_and(mask2, angleMask, mask2)
if cv2.countNonZero(mask2) > 0:
# compute average angle
angle = cv2.mean(angleMap, mask2)[0]
# histogram...
#...
updateAngle([-angle, -angle])
else:
angle = None
updateAngle(None)
end = perf_counter()
if args.debug_timing: print(f"process took {int((end-start)*1000)} ms")
### draw debug info onto the input image and show it ###
if args.debug_mask:
cv2.imshow("mask", getColorMask(input)[0])
cv2.imshow("dist transform", dist/(maxDist+0.01))
if mask2 is not None: cv2.imshow("mask2", autoPivotMask)
output = input.copy()
fadeHSV(output, mask)
# blow up image for easier viewing
if args.roi_scale != 1.0:
output = cv2.resize(output, (0,0), fx=args.roi_scale, fy=args.roi_scale, interpolation=cv2.INTER_NEAREST)
# draw pivot and detected angle
cx, cy = int(pivotLoc[0]*args.roi_scale), int(pivotLoc[1]*args.roi_scale)
if angle is not None:
dx = int(2000*math.cos(math.radians(angle)))
dy = int(2000*math.sin(math.radians(angle)))
cv2.line(output, (cx-dx,cy-dy), (cx+dx,cy+dy), (0,255,0), 1, cv2.LINE_AA)
cv2.circle(output, (cx,cy), 3, (255,255,0), cv2.FILLED)
def drawText(text, x, y, color, size=0.4, fromM=0):
textSz, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, size, 1)
y += int(textSz[1]*fromM)
cv2.putText(output, text, (x, y), cv2.FONT_HERSHEY_SIMPLEX,
size, color, 1, cv2.LINE_AA)
# FPS/debug text
global dt, fps
debugStr = ""
if dt is not None:
debugStr += f"{int(dt*1000)} ms"
if fps is not None:
debugStr += f" ({int(fps)} FPS)"
drawText(debugStr, 10, int(height*args.roi_scale)-10, (0,255,0))
if not NetworkTables.isConnected():
drawText("Not Connected!", 10, int(height*args.roi_scale)-45, (0,0,255))
else:
drawText("Connected!", 10, int(height*args.roi_scale)-45, (0,255,0))
drawText("tuning mode = auto" if args.auto else "tuning mode = manual", 60, 29, (0, 255, 0))
if selectingPivot:
drawText("SELECTING PIVOT", 60, 47, (0, 255, 0))
drawText(f"using device {args.device}", 10, int(height*args.roi_scale)-30, (0,255,0))
# visualize the detected angle and state
angle = getAngle()
if angle is not None:
PRE_SZ = 50
cv2.rectangle(output, (0, 0), (PRE_SZ, PRE_SZ), (255,255,255), cv2.FILLED)
rads = math.radians(angle)
offX = 200*math.cos(rads)
offY = -200*math.sin(rads)
cv2.line(output[0:PRE_SZ, 0:PRE_SZ], (int(PRE_SZ/2-offX),int(PRE_SZ/2-offY)), (int(PRE_SZ/2+offX),int(PRE_SZ/2+offY)), (0,0,0), lineType=cv2.LINE_AA)
drawText(f"angle = {int(angle*100)/100} deg (tip = {getTip()})", 60, 3, (0,255,0), fromM=1)
if errorMsg is not None:
drawText(errorMsg, 5, 60, (0,0,255), fromM=1)
cv2.line(output, (output.shape[1]//2, 0), (output.shape[1]//2, output.shape[0]), (255, 0, 0), 2)
cv2.imshow("raw", output)
#########################################
######### automatic calibration #########
#########################################
HIST_SMOOTH_RADIUS = 2
HIST_SMOOTH_KERNEL = np.hamming(HIST_SMOOTH_RADIUS*2 + 1)
HIST_SMOOTH_KERNEL /= HIST_SMOOTH_KERNEL.sum()
def getHistogram(hsv, channel, mask, normMax=255, reduce=3):
maxV = [180,255,255][channel]
hist = cv2.calcHist([hsv[:, :, channel]], [0], mask, [maxV//reduce], [0,maxV])
# smooth histogram
hist = np.r_[hist[-HIST_SMOOTH_RADIUS:], hist, hist[:HIST_SMOOTH_RADIUS]]
hist = hist.reshape(len(hist))
hist = np.convolve(hist, HIST_SMOOTH_KERNEL, mode="valid")
cv2.normalize(hist, hist, 0, normMax, cv2.NORM_MINMAX)
return hist
def drawHistogram(hist, markers=[], bestMarker=-1):
n = hist.shape[0]
m = 180//n
histImage = np.zeros((256, n*2, 3), np.uint8)
hist = np.int32(np.around(hist))
markers = markers + [bestMarker]
for x,y in enumerate(hist):
cv2.line(histImage, (x*2,256), (x*2,256-y), (x*m,255,255))
cv2.line(histImage, (x*2+1,256), (x*2+1,256-y), (x*m+1,255,255))
if x in markers:
color = (0,0,255)
if x == bestMarker: color = (60,255,255)
cv2.line(histImage, (x*2,0), (x*2,256-y), color)
histImage = cv2.cvtColor(histImage, cv2.COLOR_HSV2BGR)
cv2.imshow("histogram", histImage)
def getMaxima(hist):
def at(i): return hist[(i) % len(hist)]
return [i for i in range(1, len(hist)-1) if hist[i] > at(i-1) and hist[i] > at(i+1)]
def getClosestExtremum(extrema, target):
return extrema[np.argmin([abs(i-target) for i in extrema])]
def getClosestMinLeft(hist, maxI):
minI = maxI
while minI > 1 and hist[minI] > hist[minI-1]:
minI -= 1
return minI
def getClosestMinRight(hist, maxI):
minI = maxI
while minI < len(hist)-2 and hist[minI] > hist[minI+1]:
minI += 1
return minI
lastMax, lastMin0, lastMin1 = None, None, None
MIN_HUE, TARGET_HUE, MAX_HUE = 126, 148, 164
def computeHueRange(hsv):
start = perf_counter()
# compute hue histogram
mask = cv2.inRange(hsv, (0, 64, 64), (180, 255, 255))
hist = getHistogram(hsv, 0, mask, reduce=2)
# find hue range
maxima = getMaxima(hist)
bestMax = getClosestExtremum(maxima, TARGET_HUE / 2)
min0 = getClosestMinLeft(hist, bestMax)
min1 = getClosestMinRight(hist, bestMax)
# update positions
global lastMax, lastMin0, lastMin1
def update(last, cur):
cur = min(max(cur, MIN_HUE//2), MAX_HUE//2) # clamp to for-sure range
if last is None: return cur
if cur > last: return last+1
if cur < last: return last-1
return last
lastMax = update(lastMax, bestMax)
lastMin0 = update(lastMin0, min0)
lastMin1 = update(lastMin1, min1)
end = perf_counter()
if args.debug_timing: print(f" computeHueRange took {int((end-start)*1000)} ms")
if args.debug_histograms:
# visualize the histogram
drawHistogram(hist, [lastMin0, lastMin1], lastMax)
#drawHistogram(hist, [MIN_HUE//2, MAX_HUE//2], TARGET_HUE//2)
return lastMin0*2, lastMin1*2, lastMax*2
SCALE = 8
H_BINS = 256//SCALE
hists = collections.deque(maxlen=15)
def svHist(hsv, mask, peakHue):
start = perf_counter()
# compute histogram
hsv = hsv[mask > 128]
weights = hsv[:,0] - peakHue
weights = 1 / (0.004 + weights*weights)
hist, _, _ = np.histogram2d(hsv[:,2], hsv[:,1], weights=weights, bins=H_BINS, range=[[0,255],[0,255]])
hists.append(hist)
# normalize
hist = np.sum(hists, axis=0)
cv2.GaussianBlur(hist, (3,3), 0.5, hist)
hist = hist/hist.max() # normalize
def tryThreshold(thresh):
# create mask
mask = cv2.inRange(hist, thresh, 999999)
# cv2.erode(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2,2)), mask)
# find best contour
_, contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
return None, 0, mask
def contourScore(c):
cMask = np.zeros((H_BINS,H_BINS), dtype=np.uint8)
cv2.drawContours(cMask, [c], 0, 255, cv2.FILLED)
integral = hist[cMask>128].sum()
x,y,w,h = cv2.boundingRect(c)
d = (x+w/2) + (y+h/2) # distance along diagonal
return integral + d*0.5
scores = [contourScore(c) for c in contours]
bestIndex = np.argmax(scores)
return contours[bestIndex], scores[bestIndex], mask
contour, score, mask = tryThreshold(np.percentile(hist, 90))
if args.debug_histograms:
cv2.imshow("SV mask", cv2.resize(mask, (512,512), interpolation=cv2.INTER_NEAREST))
# get bounding rect
x,y,w,h = cv2.boundingRect(contour)
end = perf_counter()
if args.debug_timing: print(f" svHist took {int((end-start)*1000)} ms")
if args.debug_histograms:
# display
# hist = mask.astype(np.float)/255
hist = cv2.resize((hist*255).astype(np.uint8), (512,512), interpolation=cv2.INTER_NEAREST)
hist = cv2.cvtColor(hist, cv2.COLOR_GRAY2BGR)
cv2.rectangle(hist, (x*SCALE*2,y*SCALE*2), ((x+w)*SCALE*2,(y+h)*SCALE*2), (0,255,0))
cv2.imshow("SV histogram", hist)
return x*SCALE, (x+w)*SCALE, y*SCALE, (y+h)*SCALE
def autoSetColor(input):
start = perf_counter()
# convert to HSV
hsv = cv2.cvtColor(input, cv2.COLOR_BGR2HSV)
# get the hue range
minH, maxH, peakHue = computeHueRange(hsv)
# process/visualize S-V histogram
mask = cv2.inRange(hsv, (minH, 40, 40), (maxH, 255, 255))
# TODO: add hysteresis to this rectangle (like for the hue range)
minS,maxS,minV,maxV = svHist(hsv, mask, peakHue)
if args.debug_hue_mask:
scaledMask = cv2.resize(mask, (0,0), fx=args.roi_scale, fy=args.roi_scale, interpolation=cv2.INTER_NEAREST)
cv2.imshow("hue mask", scaledMask)
# set color range
global minColor, maxColor
minColor[0] = (minH, minS, minV)
maxColor[0] = (maxH, 255, 255)
minColor[1] = minColor[0]
maxColor[1] = maxColor[0]
end = perf_counter()
if args.debug_timing: print(f"autoSetColor took {int((end-start)*1000)} ms")
#########################################
############ angle filtering ############
#########################################
# constants (TODO: tune these)
MAX_SCALE_SPEED = 40.0 # maximum normal movement speed (degrees per second)
SMOOTH_HISTORY = 1.0 # amount of history to consider for smoothing (seconds)
SMOOTH_FIT_DEGREE = 2 # degree of polynomial fit for smoothing
STEADY_HISTORY = 1.0 # amount of history to consider for steadiness (seconds)
STEADY_THRESHOLD = 4.0 # angle variation considered "steady" (degrees)
MAX_SKEW = 3.0 #2.2 # maximum skew between the top & bottom lines (degrees)
TIPPED_THRESHOLD = 3.5 # angle at which the scale is "tipped" (degrees)
UNTIPPED_THRESHOLD = 2.7 # angle at which the scale is no longer "tipped" (degrees)
# ignore RankWarnings from np.polyfit
import warnings
warnings.simplefilter("ignore", np.RankWarning)
curAngle = 0
zeroPoint = 0
zeroed = False
lastUpdate = None
smoothHistory = collections.deque()
steadyHistory = collections.deque()
waitingForSteady = True
errorMsg = None
def isSteady():
if len(steadyHistory) == 0: return False
angles = [e[1] for e in steadyHistory]
minA = min(angles)
maxA = max(angles)
return maxA - minA < STEADY_THRESHOLD
def updateAngle(lineAngles):
global curAngle, zeroPoint, zeroed, lastUpdate, waitingForSteady, errorMsg
errorMsg = None
if not zeroed:
errorMsg = "NOT ZEROED YET"
# calculate dt
now = perf_counter()
if lastUpdate is None: lastUpdate = now
dt = now - lastUpdate
lastUpdate = now
maxDelta = MAX_SCALE_SPEED*dt
newAngle = None
# history update functions
def updateHistory(list, history, value):
list.append((now, value))
while now - list[0][0] > history:
list.popleft()
def updateSmoothHistory():
updateHistory(smoothHistory, SMOOTH_HISTORY, curAngle)
# use the the angles from the lines, if available
if lineAngles is None:
errorMsg = "LINES FAILED"
else:
a1, a2 = lineAngles
if abs(a1 - a2) > MAX_SKEW:
errorMsg = "SKEWED"
else:
newAngle = (a1 + a2) / 2
# fall back to angles from centers of blobs, if necessary
if newAngle is None:
if errorMsg is None: errorMsg = "NO GOOD DATA"
updateSmoothHistory()
return
delta = newAngle - curAngle
# update history
updateHistory(steadyHistory, STEADY_HISTORY, newAngle)
# if it's moving too fast, stop updating until it's steady again
if abs(delta) > maxDelta:
waitingForSteady = True
if waitingForSteady and not isSteady():
errorMsg = "STEADYING"
updateSmoothHistory()
return
waitingForSteady = False
curAngle += min(max(delta, -maxDelta), +maxDelta)
updateSmoothHistory()
def getRawAngle():
return curAngle
def getAngle():
if len(smoothHistory) == 0: return 0.0
# do a polynomial fit on the history, putting more weight on recent data points
weights = [x**0 for x in range(1, len(smoothHistory)+1)]
fitFunc = np.poly1d(np.polyfit(*zip(*smoothHistory), SMOOTH_FIT_DEGREE, w=weights))
lastTime = smoothHistory[-1][0]
return fitFunc(lastTime) - zeroPoint
curTip = 0
def getTip():
global curTip
angle = getAngle()
if abs(angle) < UNTIPPED_THRESHOLD: curTip = 0
elif angle > +TIPPED_THRESHOLD: curTip = +1
elif angle < -TIPPED_THRESHOLD: curTip = -1
return curTip
def zeroAngle():
global zeroPoint, zeroed
angle = getRawAngle()
if angle is not None:
zeroPoint = angle
zeroed = True
##########################################
######### command-line arguments #########
##########################################
parser = argparse.ArgumentParser(description="Program to track the scale arm using OpenCV. (by Quinn Tucker '18)")
parser.add_argument("-n", "--no-network", action="store_true", help="don't initialize/output to NetworkTables")
optGroup = parser.add_mutually_exclusive_group()
optGroup.add_argument("-d", "--device", type=int, default=0, metavar="ID",
help="device ID of the camera to use (default: %(default)s)")
optGroup.add_argument("-i", "--input-image", metavar="FILE", help="optional image to use instead of a live camera")
optGroup.add_argument("-v", "--input-video", metavar="FILE", help="optional video to use instead of a live camera")
parser.add_argument("-s", "--scale", type=float, default=1.0, metavar="FACTOR",
help="amount to up/downsample each frame (optional)")
parser.add_argument("-a", "--auto", action='store_true', default=False,
help="set hue value automatically")
parser.add_argument("--hue-shift", type=float, default=0.0, metavar="DEGREES",
help="amount to shift the hue of each frame (optional)")
parser.add_argument("--raw-scale", type=float, default=1.0, metavar="FACTOR",
help="amount to scale the raw frame display by (default: %(default)s)")
parser.add_argument("--roi-scale", type=float, default=2.0, metavar="FACTOR",
help="amount to scale the region-of-interest display by (default: %(default)s)")
parser.add_argument("--csv-output", type=argparse.FileType("w"), metavar="FILE",
help="optional file to write angle data to")
parser.add_argument("--ip", type=str, default='10.2.54.2', metavar="IP",
help="ip to connect to.")
debugGroup = parser.add_argument_group(title="debug flags")
debugGroup.add_argument("--debug-histograms", action="store_true", help="show the hue and saturation-value histograms")
debugGroup.add_argument("--debug-mask", action="store_true", help="show the thresholded color mask / debug masks")
debugGroup.add_argument("--debug-hue-mask", action="store_true", help="show the hue mask")
debugGroup.add_argument("--debug-timing", action="store_true", help="print how long various operations take")
args = parser.parse_args()
#########################################
########## robot communication ##########
#########################################
if args.no_network:
print("Skipping NetworkTables initialization")
else:
print("Using: " + args.ip)
NetworkTables.initialize(server=args.ip)
smartDashboard = NetworkTables.getTable("SmartDashboard")
#########################################
############### main code ###############
#########################################
minColor = [(0,0,0), (0,0,0)]
maxColor = [(0,0,0), (0,0,0)]
H_PAD = 10
S_PAD = 20
V_PAD = 20
roi = None
gotROI = False
pivotLoc = None
selectingPivot = False
frozen = False
global width, height
def onMouse_raw(event, x, y, flags, param):
global roi, gotROI, width, height
x = int(x/args.raw_scale)
y = int(y/args.raw_scale)
x = min(max(x, 0), width-1)
y = min(max(y, 0), height-1)
if event == cv2.EVENT_LBUTTONDOWN:
roi = (x, y, x, y)
gotROI = False
elif event == cv2.EVENT_LBUTTONUP:
if roi[0] > roi[2]: roi = (roi[2], roi[1], roi[0], roi[3])
if roi[1] > roi[3]: roi = (roi[0], roi[3], roi[2], roi[1])
if roi[0] < roi[2] and roi[1] < roi[3]:
gotROI = True
if flags & cv2.EVENT_FLAG_LBUTTON:
roi = roi[:2] + (x, y)
def onMouse(event, x, y, flags, param):
global curFrame, minColor, maxColor, selectingPivot, pivotLoc, pivotChanged
h, w = curFrame.shape[:2]
x = int(x/args.roi_scale)
y = int(y/args.roi_scale)
if event == cv2.EVENT_LBUTTONUP or event == cv2.EVENT_RBUTTONUP:
selectingPivot = False
leftDown = flags & cv2.EVENT_FLAG_LBUTTON != 0
rightDown = flags & cv2.EVENT_FLAG_RBUTTON != 0
if not (leftDown or rightDown):
return
if selectingPivot:
pivotLoc = (x, y)
pivotChanged = True
return
ci = 0 if x < w/2 else 1
if event == cv2.EVENT_RBUTTONDOWN:
maxColor[ci] = (0,0,0)
def addPixel(x, y):
global curFrame, minColor, maxColor
if x >= w or y >= h:
return
color = curFrame[y, x]
newMinColor = (float(color[0])-H_PAD, float(color[1])-S_PAD, float(color[2])-V_PAD)
newMaxColor = (float(color[0])+H_PAD, float(color[1])+S_PAD, float(color[2])+V_PAD)
if maxColor[ci] == (0,0,0):
minColor[ci] = newMinColor
maxColor[ci] = newMaxColor
elif leftDown or rightDown:
minColor[ci] = tuple(map(min, minColor[ci], newMinColor))
maxColor[ci] = tuple(map(max, maxColor[ci], newMaxColor))
BRUSH_R = 4 # radius of brush
for x2 in range(x-BRUSH_R, x+BRUSH_R+1):
for y2 in range(y-BRUSH_R, y+BRUSH_R+1):
addPixel(x2, y2)
def onKey(key):
global minColor, maxColor, gotROI, exposure, selectingPivot
print(f"key: {key}")
if key == ord("c") or key == ord("C"):
minColor[0], minColor[1] = (0,0,0), (0,0,0)
maxColor[0], maxColor[1] = (0,0,0), (0,0,0)
if key == ord("z") or key == ord("Z"):
zeroAngle()
if key == ord("a") or key == ord("A"):
args.auto = True
if key == ord("m") or key == ord("M"):
args.auto = False
if key == ord("r") or key == ord("R"):
gotROI = False
if key == ord("p") or key == ord("P"):
selectingPivot = not selectingPivot
if key == ord("o") or key == ord("O"):
autoDetectPivot()
if key == ord("d") or key == ord("D"):
args.device += 1
print(f" switching device id to {args.device}")
global cap
cap = initCapture()
if key == ord("s") or key == ord("S"):
cap.set(cv2.CAP_PROP_SETTINGS, 1)
if key == ord("f") or key == ord("F"):
global frozen
frozen = not frozen
if key == ord("-") or key == ord("_"):
exposure -= 1
cap.set(cv2.CAP_PROP_EXPOSURE, exposure)
if key == ord("=") or key == ord("+"):
exposure += 1
cap.set(cv2.CAP_PROP_EXPOSURE, exposure)
######### VideoCapture #########
def initCapture():
if args.input_image is not None: return None
print("Initializing VideoCapture...")
if args.input_video is not None:
cap = cv2.VideoCapture(args.input_video)
else:
cap = cv2.VideoCapture(args.device)
if not cap.isOpened():
print(f" failed to open camera device {args.device}")
print(f" resetting device id to 0")
args.device = 0
initCapture()
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
global exposure
exposure = cap.get(cv2.CAP_PROP_EXPOSURE)
cap.set(cv2.CAP_PROP_EXPOSURE, exposure) # disable auto exposure & white balance
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
print(" done.")
return cap
global cap
cap = initCapture()
if args.input_image is not None:
inputImage = cv2.imread(args.input_image)
inputImage = cv2.resize(inputImage, (0,0), fx=args.scale, fy=args.scale)
global dt, fps
dt = fps = None
frameCount = 0
heartbeat = 0
lastSecond = perf_counter()
first_call = True
while True:
# read the next frame and make sure it's valid
if args.input_image is not None:
frame = inputImage.copy()
elif not frozen:
ret, frame = cap.read()
def isFrameOK():
if not ret or frame is None:
return False
for i in [0,1,2]:
if cv2.countNonZero(frame[:,:,i]) > 0:
return True
return False
if not isFrameOK():
print("Got a bad frame, reinitializing.")
cap.release()
cap = initCapture() # reopen the VideoCapture
continue
if args.scale != 1.0:
frame = cv2.resize(frame, (0,0), fx=args.scale, fy=args.scale)
height, width = frame.shape[:2]
if args.hue_shift != 0.0:
start = perf_counter()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
shift = (args.hue_shift//2) % 180
if shift < 0: shift += 180
if 180+shift > 255:
tmp = frame[:, :, 0].astype(np.uint16) + np.uint16(shift)
tmp[tmp > 180] -= 180
frame[:, :, 0] = tmp
else:
frame[:, :, 0] += np.uint8(shift)
frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)
end = perf_counter()
if args.debug_timing: print(f"hue shift took {int((end-start)*1000)} ms")
# show the raw frame (with ROI rect)
frameDisp = frame.copy()
if args.raw_scale != 1.0:
frameDisp = cv2.resize(frameDisp, (0,0), fx=args.raw_scale, fy=args.raw_scale)
if roi is not None:
sROI = tuple(int(v*args.raw_scale) for v in roi)
cv2.rectangle(frameDisp, sROI[:2], sROI[2:], (0, 0, 255), 2)
if not NetworkTables.isConnected():
cv2.putText(frameDisp, "NetworkTables is not connected", (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 1, cv2.LINE_AA)
else:
cv2.putText(frameDisp, "NetworkTables is connected", (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255,0), 1, cv2.LINE_AA)
if not gotROI:
cv2.imshow("raw", frameDisp)
cv2.setMouseCallback("raw", onMouse_raw)
if first_call:
cv2.moveWindow("raw", 0, 0)
first_call = False
if gotROI:
start = perf_counter()
frameROI = frame[roi[1]:roi[3], roi[0]:roi[2]]
process(frameROI)
end = perf_counter()
dt = end - start
frameCount += 1
if perf_counter() - lastSecond > 1.0:
lastSecond += 1.0
fps = frameCount
frameCount = 0
cv2.setMouseCallback("raw", onMouse)
# if args.csv_output is not None and dbg1 is not None:
# args.csv_output.write(f"{start}, {dbg1}, {dbg2}, {getTip()}\n")
else:
frameROI = None
if not args.no_network:
smartDashboard.putNumber("scaleAngle", getAngle())
smartDashboard.putNumber("scaleTip", getTip())
smartDashboard.putBoolean("scaleError", errorMsg is not None)
smartDashboard.putNumber("scaleHeartbeat", heartbeat)
heartbeat += 1
key = cv2.waitKey(1) & 0xFF
if key == 27:
break
elif key != 0xFF:
onKey(key)
# cleanup VideoCapture, windows, and CSV output
if args.input_image is None:
cap.release()
cv2.destroyAllWindows()
if args.csv_output is not None:
args.csv_output.close()