-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
128 lines (99 loc) · 4.71 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import copy
import numpy as np
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
def square(a):
return torch.pow(a, 2.)
class ActorCritic(nn.Module):
def __init__(self, num_inputs, num_outputs, hidden=64):
super(ActorCritic, self).__init__()
self.affine1 = nn.Linear(num_inputs, hidden)
self.affine2 = nn.Linear(hidden, hidden)
self.action_mean = nn.Linear(hidden, num_outputs)
self.action_mean.weight.data.mul_(0.1)
self.action_mean.bias.data.mul_(0.0)
self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs))
self.value_head = nn.Linear(hidden, 1)
self.module_list_current = [self.affine1, self.affine2, self.action_mean, self.action_log_std, self.value_head]
self.module_list_old = [None]*len(self.module_list_current)
self.backup()
def backup(self):
for i in range(len(self.module_list_current)):
self.module_list_old[i] = copy.deepcopy(self.module_list_current[i])
def forward(self, x, old=False):
if old:
x = F.tanh(self.module_list_old[0](x))
x = F.tanh(self.module_list_old[1](x))
action_mean = self.module_list_old[2](x)
action_log_std = self.module_list_old[3].expand_as(action_mean)
action_std = torch.exp(action_log_std)
value = self.module_list_old[4](x)
else:
x = F.tanh(self.affine1(x))
x = F.tanh(self.affine2(x))
action_mean = self.action_mean(x)
action_log_std = self.action_log_std.expand_as(action_mean)
action_std = torch.exp(action_log_std)
value = self.value_head(x)
return action_mean, action_log_std, action_std, value
class Policy(nn.Module):
def __init__(self, num_inputs, num_outputs):
super(Policy, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.action_mean = nn.Linear(64, num_outputs)
self.action_mean.weight.data.mul_(0.1)
self.action_mean.bias.data.mul_(0.0)
self.action_log_std = nn.Parameter(torch.zeros(1, num_outputs))
self.module_list_current = [self.affine1, self.affine2, self.action_mean, self.action_log_std]
self.module_list_old = [None]*len(self.module_list_current) #self.affine1_old, self.affine2_old, self.action_mean_old, self.action_log_std_old]
self.backup()
def backup(self):
for i in range(len(self.module_list_current)):
self.module_list_old[i] = copy.deepcopy(self.module_list_current[i])
def kl_div_p_q(self, p_mean, p_std, q_mean, q_std):
"""KL divergence D_{KL}[p(x)||q(x)] for a fully factorized Gaussian"""
# print (type(p_mean), type(p_std), type(q_mean), type(q_std))
# q_mean = Variable(torch.DoubleTensor([q_mean])).expand_as(p_mean)
# q_std = Variable(torch.DoubleTensor([q_std])).expand_as(p_std)
numerator = square(p_mean - q_mean) + \
square(p_std) - square(q_std) #.expand_as(p_std)
denominator = 2. * square(q_std) + eps
return torch.sum(numerator / denominator + torch.log(q_std) - torch.log(p_std))
def kl_old_new(self):
"""Gives kld from old params to new params"""
kl_div = self.kl_div_p_q(self.module_list_old[-2], self.module_list_old[-1], self.action_mean, self.action_log_std)
return kl_div
def entropy(self):
"""Gives entropy of current defined prob dist"""
ent = torch.sum(self.action_log_std + .5 * torch.log(2.0 * np.pi * np.e))
return ent
def forward(self, x, old=False):
if old:
x = F.tanh(self.module_list_old[0](x))
x = F.tanh(self.module_list_old[1](x))
action_mean = self.module_list_old[2](x)
action_log_std = self.module_list_old[3].expand_as(action_mean)
action_std = torch.exp(action_log_std)
else:
x = F.tanh(self.affine1(x))
x = F.tanh(self.affine2(x))
action_mean = self.action_mean(x)
action_log_std = self.action_log_std.expand_as(action_mean)
action_std = torch.exp(action_log_std)
return action_mean, action_log_std, action_std
class Value(nn.Module):
def __init__(self, num_inputs):
super(Value, self).__init__()
self.affine1 = nn.Linear(num_inputs, 64)
self.affine2 = nn.Linear(64, 64)
self.value_head = nn.Linear(64, 1)
self.value_head.weight.data.mul_(0.1)
self.value_head.bias.data.mul_(0.0)
def forward(self, x):
x = F.tanh(self.affine1(x))
x = F.tanh(self.affine2(x))
state_values = self.value_head(x)
return state_values