-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpcc_dpr_MRR.py
140 lines (102 loc) · 4.5 KB
/
pcc_dpr_MRR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
Reading MRR Data
"""
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from io import StringIO
# MRR
pfad_mrr = '/automount/mrr/mrr2/2014/2014-10/2014-10-07/AveData_mrr2_20141007023828.ave.gz'
#pfad_mrr = '/automount/mrr/mrr2/2016/2016-01/2016-01-07/AveData_mrr2_20160107124312.ave.gz'
# DPR
#dpr_pfad = '/automount/ags/velibor/gpmdata/dpr/2A.GPM.DPR.V6-20160118.20141007-S015721-E032951.003445.V04A.HDF5'
#dpr_pfad = '/automount/ags/velibor/gpmdata/dpr/2A.GPM.DPR.V6-20160118.20160107-S120629-E133900.010562.V04A.HDF5'
#dpr_pfad = '/automount/ags/velibor/gpmdata/dpr_brandon_BB/2A.GPM.DPR.V7-20170308.20170306-S151005-E164237.017160.V05A.HDF5'
#dpr_pfad = '/automount/ags/velibor/gpmdata/dpr_brandon_BB/2A.GPM.DPR.V7-20170308.20170223-S182621-E195854.016991.V05A.HDF5'
#dpr_pfad = '/automount/ags/velibor/gpmdata/dpr_brandon_BB/2A.GPM.DPR.V7-20170308.20170222-S113453-E130727.016971.V05A.HDF5'
#dpr_pfad = '/automount/ags/velibor/gpmdata/dpr_brandon_BB/2A.GPM.DPR.V7-20170308.20170401-S003803-E021037.017555.V05A.HDF5'
dpr_pfad = '/automount/ags/velibor/gpmdata/dpr_brandon_BB/2A.GPM.DPR.V7-20170308.20170603-S235100-E012332.018550.V05A.HDF5'
df = pd.read_csv(pfad_mrr, compression='gzip', header=1, delim_whitespace=True,index_col=False)
df = df.set_index(u'H')
h = np.arange(150,4800,150)
plt.plot(df.loc['Z'].values,h, label='Ref. in dBZ', color='blue', linestyle='-', lw=2)
plt.plot(df.loc['PIA'].values,h,label='PIA in dB', color='blue', linestyle='-.', lw=2)
plt.plot(df.loc['z'].values,h,label='att. Ref in dBZ', color='blue', linestyle='--', lw=2)
plt.plot(df.loc['TF'].values,h,label='TF', color='grey')
plt.plot(df.loc['RR'].values,h,label='RR', linestyle='-', color='black',lw=2)
plt.plot(df.loc['LWC'].values,h,label='Liquid Water Content')
plt.plot(df.loc['W'].values,h,label='Fallgeschwindigkeit')
plt.grid()
plt.legend(loc='lower right')
plt.xlabel('Reflectivity in dBZ')
plt.ylabel('Hight in m')
plt.title('MRR - ' + pfad_mrr[44:44+28])
plt.ylim(0,6000)
plt.xlim(0,50)
plt.show()
import satlib as sl
import h5py
scan = 'NS' #or MS
dpr = h5py.File(dpr_pfad, 'r')
dpr_lat=np.array(dpr[scan]['Latitude'])
dpr_lon=np.array(dpr[scan]['Longitude'])
dpr_pp=np.array(dpr[scan]['SLV']['zFactorCorrected'])
dpr_pp[dpr_pp<0]= np.nan
lat_ppi = 50.730519999999999,
lon_ppi = 7.071663
for iii in range(len(dpr_pp[1,1,:])):
plt.pcolormesh(dpr_lon, dpr_lat,np.ma.masked_invalid(dpr_pp[:,:,iii]))
plt.xlim(2,12)
plt.ylim(49,53)
plt.scatter(lon_ppi, lat_ppi, c=100 ,s=100, color='red')
plt.grid()
plt.show()
position = np.where((dpr_lat<51.) & (dpr_lat>50.0) & (dpr_lon < 8) & (dpr_lon > 6) )
#position = np.where((dpr_lat<50.95) & (dpr_lat>50.70) & (dpr_lon < 7.5) & (dpr_lon > 6.5) )
lat = dpr_lat[position]
lon = dpr_lon[position]
pp = dpr_pp[position]
dpr_time = dpr['NS']['ScanTime']
stunde = np.array(dpr_time['Hour'])[position[0]]
minute = np.array(dpr_time['Minute'])[position[0]]
sekunde = np.array(dpr_time['Second'])[position[0]]
jahr = np.array(dpr_time['Year'])[position[0]]
monat = np.array(dpr_time['Month'])[position[0]]
tag = np.array(dpr_time['DayOfMonth'])[position[0]]
zeit = (str(jahr)+'.'+str(monat)+'.'+str(tag) + ' -- ' + str(stunde)+':'+str(minute)+':'+str(sekunde))
print zeit
hdpr = 1000 * (np.arange(176,0,-1)*0.125) # Bei 88 500m und bei 176 ist es 250m
ff = 20
plt.figure(figsize=(12,12))
plt.subplot(1,2,1)
plt.plot(df.loc['Z'].values,h, label='Ref. in dBZ', color='blue', linestyle='-', lw=2)
plt.plot(df.loc['PIA'].values,h,label='PIA in dB', color='blue', linestyle='-.', lw=2)
plt.plot(df.loc['z'].values,h,label='att. Ref in dBZ', color='blue', linestyle='--', lw=2)
#plt.plot(df.loc['TF'].values,h,label='TF', color='grey')
plt.plot(df.loc['RR'].values,h,label='RR', linestyle='-', color='black',lw=2)
#plt.plot(df.loc['LWC'].values,h,label='Liquid Water Content')
#plt.plot(df.loc['W'].values,h,label='Fallgeschwindigkeit')
plt.grid()
plt.legend(loc='lower right', fontsize=ff)
plt.ylabel('Hight in m', fontsize=ff)
plt.title('MRR - ' + pfad_mrr[44:44+28], fontsize=ff)
plt.ylim(0,6000)
plt.xlim(0,50)
plt.xticks(fontsize=ff)
plt.yticks(fontsize=ff)
plt.subplot(1,2,2)
for jjj in range(len(pp[:,1])):
plt.plot(pp[jjj,:], hdpr)
plt.title('DPR '+ zeit, fontsize=ff)
plt.xlabel('Reflectivity in dBZ', fontsize=ff)
plt.grid()
plt.xticks(fontsize=ff)
plt.yticks(fontsize=ff)
plt.ylim(0,6000)
plt.xlim(0,50)
plt.show()
#plt.plot(pp[0,:], hdpr)
#plt.plot(df.loc['Z'].values,h, label='Ref. in dBZ', color='blue', linestyle='-', lw=2)
#plt.xlabel('Reflectivity in dBZ')
#plt.grid()
#plt.show()