-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcuda_hamming_threads.py
131 lines (91 loc) · 3.38 KB
/
cuda_hamming_threads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import pycuda
import pycuda.driver as drv
from pycuda.compiler import SourceModule
import threading
import numpy
class GPUThread(threading.Thread):
def __init__(self, number, vec_a, vec_b, block, grid):
threading.Thread.__init__(self)
self.number = number
self.vec_a = vec_a
self.vec_b = vec_b
self.block = block
self.grid = grid
def run(self):
self.dev = drv.Device(self.number)
self.ctx = self.dev.make_context()
self.ctx.push()
self.vec_b = self.multi_iteration(self.vec_a, self.vec_b)
#self.vec_b = hamming_kernel(self.vec_a, self.vec_b, self.block, self.grid)
print "successful exit from thread %d" % self.number
self.ctx.pop()
self.ctx.detach()
def multi_iteration(self, vec_a, vec_b):
vector_len = vec_b.shape[0]
sections = range(0, vector_len, 10000000)
sections = sections[1:]
sub_vec_bs = numpy.split(vec_b, sections)
dest = numpy.array([])
for sub_vec in sub_vec_bs:
#sub_dest = self.cuda_hamming_dist(vec_a, sub_vec)
sub_dest = hamming_kernel(self.vec_a, sub_vec, self.block, self.grid)
dest = numpy.concatenate((dest, sub_dest))
return dest
def hamming_kernel(vec_a, vec_b, block, grid):
vector_len = 100000
mod = SourceModule("""
typedef unsigned long long int uint64_t;
__global__ void hamming_dist(uint64_t *a, uint64_t *b, uint64_t *length)
{
const uint64_t i = gridDim.x * blockDim.x * blockIdx.y + blockIdx.x * blockDim.x + threadIdx.x;
uint64_t xor_r;
if (i < length[0]) {
xor_r = a[0] ^ b[i];
const uint64_t m1 = 0x5555555555555555;
const uint64_t m2 = 0x3333333333333333;
const uint64_t m4 = 0x0f0f0f0f0f0f0f0f;
const uint64_t m8 = 0x00ff00ff00ff00ff;
const uint64_t m16 = 0x0000ffff0000ffff;
const uint64_t m32 = 0x00000000ffffffff;
const uint64_t hff = 0xffffffffffffffff;
const uint64_t h01 = 0x0101010101010101;
xor_r -= (xor_r >> 1) & m1;
xor_r = (xor_r & m2) + ((xor_r >> 2) & m2);
xor_r = (xor_r + (xor_r >> 4)) & m4;
b[i] = (xor_r * h01) >> 56;
}
}
""")
hamming_dist = mod.get_function("hamming_dist")
dest = numpy.array(vec_b)
length = numpy.array([vec_b.shape[0]]).astype(numpy.uint64)
hamming_dist(
drv.In(vec_a), drv.InOut(dest), drv.In(length),
block = block, grid = grid)
print dest
return dest
class CudaHamming(object):
def __init__(self, block = (500, 1, 1), grid = (500, 200)):
self.block = block
self.grid = grid
def run_kernel_on_gpus(self, vec_a, vec_b):
drv.init()
num = drv.Device.count()
num = 1
vector_len = vec_b.shape[0]
sections = range(0, vector_len, vector_len / num)
sections = sections[1:]
print "section on gpus:"
print sections
sub_vec_bs = numpy.split(vec_b, sections)
gpu_thread_list = []
for i in range(num):
gpu_thread = GPUThread(i, vec_a, sub_vec_bs[i], self.block, self.grid)
gpu_thread.start()
gpu_thread_list.append(gpu_thread)
dest = numpy.array([])
for gpu in gpu_thread_list:
gpu.join()
dest = numpy.concatenate((dest, gpu.vec_b))
print dest
return dest