From 4c78d7cf2be10f5d711d32c61d2dfded5861daf0 Mon Sep 17 00:00:00 2001 From: abhi-jha Date: Mon, 21 Oct 2024 16:00:47 +0200 Subject: [PATCH] DOC Fix dropdown content indentation (#30116) --- doc/modules/manifold.rst | 26 +++++++++---------- .../manifold/tests/test_spectral_embedding.py | 2 +- 2 files changed, 14 insertions(+), 14 deletions(-) diff --git a/doc/modules/manifold.rst b/doc/modules/manifold.rst index c8a50a6c8fb22..6e5a361c4d7a2 100644 --- a/doc/modules/manifold.rst +++ b/doc/modules/manifold.rst @@ -293,24 +293,24 @@ It requires ``n_neighbors > n_components * (n_components + 3) / 2``. .. dropdown:: Complexity -The HLLE algorithm comprises three stages: + The HLLE algorithm comprises three stages: -1. **Nearest Neighbors Search**. Same as standard LLE + 1. **Nearest Neighbors Search**. Same as standard LLE -2. **Weight Matrix Construction**. Approximately - :math:`O[D N k^3] + O[N d^6]`. The first term reflects a similar - cost to that of standard LLE. The second term comes from a QR - decomposition of the local hessian estimator. + 2. **Weight Matrix Construction**. Approximately + :math:`O[D N k^3] + O[N d^6]`. The first term reflects a similar + cost to that of standard LLE. The second term comes from a QR + decomposition of the local hessian estimator. -3. **Partial Eigenvalue Decomposition**. Same as standard LLE. + 3. **Partial Eigenvalue Decomposition**. Same as standard LLE. -The overall complexity of standard HLLE is -:math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[N d^6] + O[d N^2]`. + The overall complexity of standard HLLE is + :math:`O[D \log(k) N \log(N)] + O[D N k^3] + O[N d^6] + O[d N^2]`. -* :math:`N` : number of training data points -* :math:`D` : input dimension -* :math:`k` : number of nearest neighbors -* :math:`d` : output dimension + * :math:`N` : number of training data points + * :math:`D` : input dimension + * :math:`k` : number of nearest neighbors + * :math:`d` : output dimension .. rubric:: References diff --git a/sklearn/manifold/tests/test_spectral_embedding.py b/sklearn/manifold/tests/test_spectral_embedding.py index 6dec35123f9cc..d63f6bd33fc96 100644 --- a/sklearn/manifold/tests/test_spectral_embedding.py +++ b/sklearn/manifold/tests/test_spectral_embedding.py @@ -54,7 +54,7 @@ def _assert_equal_with_sign_flipping(A, B, tol=0.0): """Check array A and B are equal with possible sign flipping on - each columns""" + each column""" tol_squared = tol**2 for A_col, B_col in zip(A.T, B.T): assert (