-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDataFrame.cpp
176 lines (145 loc) · 5.65 KB
/
DataFrame.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include "DataFrame.h"
#include "Model.h"
#include "MonteCarlo.h"
#include "Timer.h"
#include "Log.h"
#include "ArrayHelpers.h"
#include "NewOrder.h"
#include <map>
py::array_t<int64_t> no::df::unique_index(size_t n)
{
int64_t i = no::env::uniqueIndex.load(std::memory_order_acquire);
int64_t s = no::env::size.load(std::memory_order_relaxed);
auto a = no::make_array<int64_t>({static_cast<py::ssize_t>(n)}, [&]() { int64_t ret = i; i += s; return ret; });
no::env::uniqueIndex.store(i, std::memory_order_release);
return a;
}
// TODO non-integer categories?
// TODO different output column?
// categories are all possible category labels. Order corresponds to row/col in matrix
// matrix is a transition matrix
void no::df::transition(no::Model& model, py::array_t<int64_t> categories, py::array_t<double> matrix, py::object &df, const std::string& colname)
{
// Extract column from DF as np.array
py::array col_untyped = df.attr(colname.c_str());
// check col is int64
if (!col_untyped.dtype().is(py::dtype::of<int64_t>()))
{
throw py::type_error("dataframe transitions can only be performed on columns containing int64 values");
}
py::array_t<int64_t> col = col_untyped;
py::ssize_t m = categories.size();
// check matrix is 2d, square & categories len = matrix len
if (matrix.ndim() != 2)
throw py::value_error("cumulative transition matrix dimension is %%"s % matrix.ndim());
if (matrix.shape(0) != matrix.shape(1))
throw py::value_error("cumulative transition matrix shape is not square: %% by %%"s % matrix.shape(0) % matrix.shape(1));
if (m != matrix.shape(0))
throw py::value_error("cumulative transition matrix size (%%) is not same as length of categories (%%)"s % matrix.shape(0) % m);
// IMPORTANT NOTES:
// - whilst numpy is row-major, pandas stores column-major, i.e. the columns are contiguous memory
// - transposing (square matrices at least) in python doesn't change the memory layout, it just changes the view
// - the code below assumes the transition matrix has a row major memory layout (i.e. row sums to unity not cols)
// construct checked cumulative probabilities for each state to randomly interpolate
std::vector<std::vector<double>> cumprobs(m);
for (int i = 0; i < m; ++i)
{
cumprobs[i] = no::cumulative(no::cbegin(matrix) + (i * m), m);
// // point to beginning of row
// double* p = no::begin(matrix) + (i * m);
// if (p[0] < 0.0 || p[0] > 1.0)
// throw py::value_error("invalid transition probability %% at (%%, 0)"s % p[0] % i);
// cumprobs[i][0] = p[0];
// for (int j = 1; j < m; ++j)
// {
// if (p[j] < 0.0 || p[j] > 1.0)
// throw py::value_error("invalid transition probability %% at (%%, %%)"s % p[0] % i % j);
// cumprobs[i][j] = cumprobs[i][j-1] + p[j];
// }
// // check probabilities sum to unity within tolerance
// if (fabs(cumprobs[i][m-1] - 1.0) > std::numeric_limits<double>::epsilon())
// throw py::value_error("probabilities don't sum to unity (%%) in transition matrix row %%"s % cumprobs[i][m-1] % i);
}
// reverse catgory lookup
std::map<int64_t, int64_t> lookup;
for (py::ssize_t i = 0; i < m; ++i)
{
lookup[no::at<int64_t>(categories, Index_t<1>{i})] = i;
}
py::ssize_t n = col.size();
Timer t;
// define a base model to init the MC engine
py::array_t<double> rpy = model.mc().ustream(n);
// possible unsafe access?
double* r = no::begin(rpy);
int64_t* pcat = no::begin<int64_t>(categories);
for (py::ssize_t i = 0; i < n; ++i)
{
// look up the index, ignoring values that haven't been explicitly set in categories (like -1)
auto it = lookup.find(no::at<int64_t>(col, Index_t<1>{i}));
if (it == lookup.end())
continue;
int64_t j = it->second;
py::ssize_t k = no::interp(cumprobs[j], r[i]/*no::at(r, Index_t<1>{i})*/);
//no::log("interp %%:%% -> %%"s % j % r[i] % k);
no::at<int64_t>(col, Index_t<1>{i}) = pcat[k]; //no::at<int64_t>(categories, Index_t<1>{k});
}
//no::log("transition %% elapsed: %%"s % n % t.elapsed_s());
}
template<typename T>
void dump(const T* p, py::ssize_t n)
{
for (py::ssize_t i = 0; i < n; ++i, ++p)
{
no::log("%%"s % *p);
//no::at<std::string>(arr, Index_t<1>{i}) += 1;
}
}
// example of directly modifying a DF testing different dtypes
void no::df::testfunc(no::Model& model, py::object& df, const std::string& colname)
{
// .values? pd.Series -> np.array?
py::array arr = df.attr(colname.c_str()); //.request();
//no::log(arr.dtype());
py::buffer_info buf = arr.request();
py::ssize_t n = buf.shape[0];
if (arr.dtype().is(py::dtype::of<int64_t>()))
{
dump(static_cast<int64_t*>(buf.ptr), n);
}
else if (arr.dtype().is(py::dtype::of<double>()))
{
dump(static_cast<double*>(buf.ptr), n);
}
else if (arr.dtype().is(py::dtype::of<bool>()))
{
dump(static_cast<bool*>(buf.ptr), n);
}
// else if (arr.dtype() == "object")
// {
// py::str* p = static_cast<py::str*>(buf.ptr);
// }
// else if (arr.dtype() == py::object)
// {
// py::object* p = static_cast<py::object*>(buf.ptr);
// for (py::ssize_t i = 0; i < n; ++i, ++p)
// {
// no::log(*p);
// }
// }
else
{
throw py::type_error("unsupported dtype '%%' in column '%%'"s % /*arr.dtype().cast<std::string>() %*/ colname);
}
}
// TODO implement - see liam2-demo07
// void no::df::linked_change(py::object& df, const std::string& cat, const std::string& link_cat)
// {
// // .values? pd.Series -> np.array?
// py::array arr0 = df.attr(cat.c_str()); // this is a reference
// // .values? pd.Series -> np.array?
// py::array arr1 = df.attr(link_cat.c_str()); // this is a reference
// for ()
// // {
// // }
// }