forked from kr-stn/EarthEngine_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSAR_speckle_filters.js
217 lines (186 loc) · 10.8 KB
/
SAR_speckle_filters.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/** Refined Lee Speckle Filter
* from https://code.earthengine.google.com/2ef38463ebaf5ae133a478f173fd0ab5
* by Guido Lemoine
*
* img: ee.Image, S1 in natural units (not dB), single band?
*
* Returns: S1 ee.Image with RL filter applied.
*/
function RefinedLee(img) {
// img must be in natural units, i.e. not in dB!
// Set up 3x3 kernels
var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3);
var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3);
// Use a sample of the 3x3 windows inside a 7x7 windows to determine gradients and directions
var sample_weights = ee.List([[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0], [0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);
var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
// Calculate mean and variance for the sampled windows and store as 9 bands
var sample_mean = mean3.neighborhoodToBands(sample_kernel);
var sample_var = variance3.neighborhoodToBands(sample_kernel);
// Determine the 4 gradients for the sampled windows
var gradients = sample_mean.select(1).subtract(sample_mean.select(7)).abs();
gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean.select(2)).abs());
gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean.select(5)).abs());
gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean.select(8)).abs());
// And find the maximum gradient amongst gradient bands
var max_gradient = gradients.reduce(ee.Reducer.max());
// Create a mask for band pixels that are the maximum gradient
var gradmask = gradients.eq(max_gradient);
// duplicate gradmask bands: each gradient represents 2 directions
gradmask = gradmask.addBands(gradmask);
// Determine the 8 directions
var directions = sample_mean.select(1).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);
directions = directions.addBands(sample_mean.select(6).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(2))).multiply(2));
directions = directions.addBands(sample_mean.select(3).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(5))).multiply(3));
directions = directions.addBands(sample_mean.select(0).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(8))).multiply(4));
// The next 4 are the not() of the previous 4
directions = directions.addBands(directions.select(0).not().multiply(5));
directions = directions.addBands(directions.select(1).not().multiply(6));
directions = directions.addBands(directions.select(2).not().multiply(7));
directions = directions.addBands(directions.select(3).not().multiply(8));
// Mask all values that are not 1-8
directions = directions.updateMask(gradmask);
// "collapse" the stack into a singe band image (due to masking, each pixel has just one value (1-8) in it's directional band, and is otherwise masked)
directions = directions.reduce(ee.Reducer.sum());
//var pal = ['ffffff','ff0000','ffff00', '00ff00', '00ffff', '0000ff', 'ff00ff', '000000'];
//Map.addLayer(directions.reduce(ee.Reducer.sum()), {min:1, max:8, palette: pal}, 'Directions', false);
var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
// Calculate localNoiseVariance
var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5).arrayReduce(ee.Reducer.mean(), [0]);
// Set up the 7*7 kernels for directional statistics
var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List.repeat(ee.List.repeat(1,7),4));
var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,1,0,0,0,0],
[1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0], [1,1,1,1,1,1,1]]);
var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
// Create stacks for mean and variance using the original kernels. Mask with relevant direction.
var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(), rect_kernel).updateMask(directions.eq(1));
var dir_var = img.reduceNeighborhood(ee.Reducer.variance(), rect_kernel).updateMask(directions.eq(1));
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), diag_kernel).updateMask(directions.eq(2)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), diag_kernel).updateMask(directions.eq(2)));
// and add the bands for rotated kernels
for (var i=1; i<4; i++) {
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
}
// "collapse" the stack into a single band image (due to masking, each pixel has just one value in it's directional band, and is otherwise masked)
dir_mean = dir_mean.reduce(ee.Reducer.sum());
dir_var = dir_var.reduce(ee.Reducer.sum());
// A finally generate the filtered value
var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV)).divide(sigmaV.add(1.0));
var b = varX.divide(dir_var);
var result = dir_mean.add(b.multiply(img.subtract(dir_mean)));
return(result.arrayFlatten([['sum']]));
}
/**
* GammaMap Speckle Filter conformation
*
* by Guido Lemoine see https://groups.google.com/forum/#!topic/google-earth-engine-developers/a9W0Nlrhoq0
* Cf. https://github.com/senbox-org/s1tbx/blob/master/s1tbx-op-sar-processing/src/main/java/org/esa/s1tbx/sar/gpf/filtering/SpeckleFilters/GammaMap.java
* which implements Lopes et al, IGARSS 1990, 2409-2412.
* See: https://www.researchgate.net/publication/224270891_Maximum_A_Posteriori_Speckle_Filtering_And_First_Order_Texture_Models_In_Sar_Images.
* This is the equivalent of the getGammaMapValue() method
*
* image: A sentinel 1 ee.Image single band in linear (natural) scale
* enl: 4.9 for IW GRD Full Resolution with 10x10 m spacing, See: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected
* ksize: Size of kernel, ksize should be odd (typically 3, 5 or 7)
*
* Returns: 3 band image in linear units with the mean filtered "pure speckle", the "low textured" filtered and the unfiltered portions
*
* Example: image = GammaMap(image, 5, 7)
*/
function GammaMap(image, enl, ksize) {
enl = enl || 5;
ksize = ksize || 3;
var nat_img = image;
// Square kernel, ksize should be odd (typically 3, 5 or 7)
var weights = ee.List.repeat(ee.List.repeat(1,ksize),ksize);
// ~~(ksize/2) does integer division in JavaScript
var kernel = ee.Kernel.fixed(ksize,ksize, weights, ~~(ksize/2), ~~(ksize/2), false);
// Get mean and variance
var mean = nat_img.reduceNeighborhood(ee.Reducer.mean(), kernel);
var variance = nat_img.reduceNeighborhood(ee.Reducer.variance(), kernel);
// "Pure speckle" threshold
var ci = variance.sqrt().divide(mean); // square root of inverse of enl
// If ci <= cu, the kernel lies in a "pure speckle" area -> return simple mean
var cu = 1.0/Math.sqrt(enl);
// If cu < ci < cmax the kernel lies in the low textured speckle area -> return the filtered value
var cmax = Math.sqrt(2.0) * cu;
var alpha = ee.Image(1.0 + cu*cu).divide(ci.multiply(ci).subtract(cu*cu));
var b = alpha.subtract(enl + 1.0);
var d = mean.multiply(mean).multiply(b).multiply(b).add(alpha.multiply(mean).multiply(nat_img).multiply(4.0*enl));
var f = b.multiply(mean).add(d.sqrt()).divide(alpha.multiply(2.0));
// If ci > cmax do not filter at all (i.e. we don't do anything, other then masking)
// Compose a 3 band image with the mean filtered "pure speckle", the "low textured" filtered and the unfiltered portions
var out = mean.updateMask(ci.lte(cu)).addBands(f.updateMask(ci.gt(cu).updateMask(ci.lt(cmax)))).addBands(image.updateMask(ci.gte(cmax)));
return out.reduce(ee.Reducer.sum());
}
/**
* Perona-Malik (anisotropic diffusion) convolution
*
* by Gennadii Donchyts see https://groups.google.com/forum/#!topic/google-earth-engine-developers/a9W0Nlrhoq0
* I(n+1, i, j) = I(n, i, j) + lambda * (cN * dN(I) + cS * dS(I) + cE * dE(I), cW * dW(I))
*
* I: ee.Image single band, natural units
* iter: Number of interations to apply filter
* K: kernal size
* opt_method: choose method 1 (default) or 2, DETAILS
*
* Returns: single band ee.Image in natural units
*
* Example: image = PeronaMalik(image, 10, 3.5, 1)
*/
function PeronaMalik(I, iter, K, opt_method) {
iter = iter || 10;
K = K || 3;
method = opt_method || 1;
// Define kernels
var dxW = ee.Kernel.fixed(3, 3,
[[ 0, 0, 0],
[ 1, -1, 0],
[ 0, 0, 0]]);
var dxE = ee.Kernel.fixed(3, 3,
[[ 0, 0, 0],
[ 0, -1, 1],
[ 0, 0, 0]]);
var dyN = ee.Kernel.fixed(3, 3,
[[ 0, 1, 0],
[ 0, -1, 0],
[ 0, 0, 0]]);
var dyS = ee.Kernel.fixed(3, 3,
[[ 0, 0, 0],
[ 0, -1, 0],
[ 0, 1, 0]]);
var lambda = 0.2;
var k1 = ee.Image(-1.0/K);
var k2 = ee.Image(K).multiply(ee.Image(K));
// Convolve
for(var i = 0; i < iter; i++) {
var dI_W = I.convolve(dxW);
var dI_E = I.convolve(dxE);
var dI_N = I.convolve(dyN);
var dI_S = I.convolve(dyS);
// Combine using choosen method
switch(method) {
case 1:
var cW = dI_W.multiply(dI_W).multiply(k1).exp();
var cE = dI_E.multiply(dI_E).multiply(k1).exp();
var cN = dI_N.multiply(dI_N).multiply(k1).exp();
var cS = dI_S.multiply(dI_S).multiply(k1).exp();
I = I.add(ee.Image(lambda).multiply(cN.multiply(dI_N).add(cS.multiply(dI_S)).add(cE.multiply(dI_E)).add(cW.multiply(dI_W))));
break;
case 2:
var cW = ee.Image(1.0).divide(ee.Image(1.0).add(dI_W.multiply(dI_W).divide(k2)));
var cE = ee.Image(1.0).divide(ee.Image(1.0).add(dI_E.multiply(dI_E).divide(k2)));
var cN = ee.Image(1.0).divide(ee.Image(1.0).add(dI_N.multiply(dI_N).divide(k2)));
var cS = ee.Image(1.0).divide(ee.Image(1.0).add(dI_S.multiply(dI_S).divide(k2)));
I = I.add(ee.Image(lambda).multiply(cN.multiply(dI_N).add(cS.multiply(dI_S)).add(cE.multiply(dI_E)).add(cW.multiply(dI_W))));
break;
}
}
return I;
};