-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbeenet.py
70 lines (47 loc) · 2.38 KB
/
beenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 4 09:51:40 2020
@author: fabiana
"""
from DataPreparation.Filtering import Filtering
from WordEmbeddings.WordEmbeddingPhrases import WordEmbPhrases
from WordEmbeddings.WordEmbeddingWords import WordEmbWords
from Recommendation.RecommendationW2vecPhrases import RecommendationWord2vecPhrases
from Recommendation.RecommendationW2vecWords import RecommendationWord2vecWords
from Recommendation.RecommendationTF_IDF import RecommendationTF_IDF
import argparse
import os
def main():
parser = argparse.ArgumentParser(description = 'Beenet Code.')
parser.add_argument('-o', action = 'store', dest = 'out', default = os.getcwd()+"/out/", required = False,
help = 'Output directory.')
parser.add_argument('-i', action = 'store', dest = 'input', default = os.getcwd()+"/Data/", required = False,
help = 'Input directory.')
parser.add_argument('-dc', action = 'store', dest = 'datacatho', default = "Data/vagas_catho_etiquetadas.csv", required = False,
help = 'Directory of Catho data.')
parser.add_argument('-dl', action = 'store', dest = 'datalinkedin', default = "Data/cvs_linkedin.csv", required = False,
help = 'Directory of Linkedin data.')
arguments = parser.parse_args()
return arguments
if __name__== "__main__":
arguments = main()
# Calling filtering step
f = Filtering(arguments.datacatho, arguments.out)
f.applyLimiar()
# Calling feature representation step (including preprocessing) - Word Embeddings-Phrases
wbp = WordEmbPhrases(arguments.out+"/vagas_ti.csv", arguments.out)
wbp.main()
# Calling feature representation step (including preprocessing) - Word Embeddings-Words
wbw = WordEmbWords(arguments.out+"/vagas_ti.csv", arguments.out)
wbw.getWordEmbModel()
# Recommendation using Embeddings-Phrases
recPhrases = RecommendationWord2vecPhrases(arguments.out+"/vagas_ti.csv", arguments.datalinkedin, "out/")
recPhrases.main()
# Recommendation using Embeddings-Words
recWords = RecommendationWord2vecWords(arguments.out+"/vagas_ti.csv", arguments.datalinkedin, "out/")
recWords.main()
# Recommendation using TF_IDF
recTf_idf = RecommendationTF_IDF(arguments.out+"/vagas_ti.csv", arguments.datalinkedin, "out/")
recTf_idf.main()
# Generating Final Results