-
Notifications
You must be signed in to change notification settings - Fork 605
/
lasot_candidate_matching.py
235 lines (176 loc) · 9.77 KB
/
lasot_candidate_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import os.path
import json
import torch
import numpy as np
import pandas
import csv
import random
from collections import OrderedDict, defaultdict
from ltr.dataset.base_video_dataset import BaseVideoDataset
from ltr.data.image_loader import jpeg4py_loader
from ltr.admin.environment import env_settings
class LasotCandidateMatching(BaseVideoDataset):
""" LaSOT dataset dumped results during tracking super_dimp_hinge.
"""
def __init__(self, root=None, path_to_json=None, image_loader=jpeg4py_loader, vid_ids=None, split=None, data_fraction=None):
"""
args:
root - path to the lasot candidate matching dataset json file.
image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py)
is used by default.
vid_ids - List containing the ids of the videos (1 - 20) used for training. If vid_ids = [1, 3, 5], then the
videos with subscripts -1, -3, and -5 from each class will be used for training.
split - If split='train', the official train split (protocol-II) is used for training. Note: Only one of
vid_ids or split option can be used at a time.
data_fraction - Fraction of dataset to be used. The complete dataset is used by default
"""
root = env_settings().lasot_dir if root is None else root
path_to_json = env_settings().lasot_candidate_matching_dataset_path if path_to_json is None else path_to_json
super().__init__('LaSOTCandidateMatching', root, image_loader)
self.sequence_info_cache = {}
# Keep a list of all classes
self.class_list = [f for f in os.listdir(self.root)]
self.class_to_id = {cls_name: cls_id for cls_id, cls_name in enumerate(self.class_list)}
self.sequence_list = self._build_sequence_list(vid_ids, split)
if data_fraction is not None:
self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction))
self.seq_per_class = self._build_class_list()
self.dataset = self._load_dataset(path_to_json)
def _load_dataset(self, path):
with open(path, 'r') as f:
data = json.load(f)
return data
def get_frame_states(self):
frame_states_all = defaultdict(list)
for seq_id, seq_name in enumerate(self.sequence_list):
if 'frame_states' in self.dataset[seq_name]:
for frame_state_name, frame_state_indices in self.dataset[seq_name]['frame_states'].items():
frame_state_indices = torch.tensor(frame_state_indices).view(-1, 1)
seq_ids = seq_id * torch.ones_like(frame_state_indices).view(-1, 1)
data = torch.cat([seq_ids, frame_state_indices], dim=1)
frame_states_all[frame_state_name].append(data)
for state_name in frame_states_all.keys():
frame_states_all[state_name] = torch.cat(frame_states_all[state_name], dim=0)
return frame_states_all
def get_subseq_states(self):
subseq_states_all = defaultdict(list)
for seq_id, seq_name in enumerate(self.sequence_list):
if 'subseq_states' in self.dataset[seq_name]:
for subseq_state_name, subseq_state_indices in self.dataset[seq_name]['subseq_states'].items():
subseq_state_indices = torch.tensor(subseq_state_indices).view(-1, 1)
seq_ids = seq_id * torch.ones_like(subseq_state_indices).view(-1, 1)
data = torch.cat([seq_ids, subseq_state_indices], dim=1)
subseq_states_all[subseq_state_name].append(data)
for state_name in subseq_states_all.keys():
subseq_states_all[state_name] = torch.cat(subseq_states_all[state_name], dim=0)
return subseq_states_all
def _build_sequence_list(self, vid_ids=None, split=None):
if split is not None:
if vid_ids is not None:
raise ValueError('Cannot set both split_name and vid_ids.')
ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..')
if split == 'train':
file_path = os.path.join(ltr_path, 'data_specs', 'lasot_train_split.txt')
elif split == 'val':
file_path = os.path.join(ltr_path, 'data_specs', 'lasot_val_split.txt')
elif split == 'train-train':
file_path = os.path.join(ltr_path, 'data_specs', 'lasot_train_train_split.txt')
elif split == 'train-val':
file_path = os.path.join(ltr_path, 'data_specs', 'lasot_train_val_split.txt')
else:
raise ValueError('Unknown split name.')
sequence_list = pandas.read_csv(file_path, header=None, squeeze=True).values.tolist()
elif vid_ids is not None:
sequence_list = [c+'-'+str(v) for c in self.class_list for v in vid_ids]
else:
raise ValueError('Set either split_name or vid_ids.')
return sequence_list
def _build_class_list(self):
seq_per_class = {}
for seq_id, seq_name in enumerate(self.sequence_list):
class_name = seq_name.split('-')[0]
if class_name in seq_per_class:
seq_per_class[class_name].append(seq_id)
else:
seq_per_class[class_name] = [seq_id]
return seq_per_class
def get_name(self):
return 'lasot_candidate_matching_new'
def has_class_info(self):
return True
def has_occlusion_info(self):
return True
def get_num_sequences(self):
return len(self.sequence_list)
def get_num_classes(self):
return len(self.class_list)
def get_sequences_in_class(self, class_name):
return self.seq_per_class[class_name]
def _read_bb_anno(self, seq_path):
bb_anno_file = os.path.join(seq_path, 'groundtruth.txt')
gt = pandas.read_csv(bb_anno_file, delimiter=',', header=None, dtype=np.float32, na_filter=False, low_memory=False).values
return torch.tensor(gt)
def _read_target_visible(self, seq_path):
# Read full occlusion and out_of_view
occlusion_file = os.path.join(seq_path, 'full_occlusion.txt')
out_of_view_file = os.path.join(seq_path, 'out_of_view.txt')
with open(occlusion_file, 'r', newline='') as f:
occlusion = torch.ByteTensor([int(v) for v in list(csv.reader(f))[0]])
with open(out_of_view_file, 'r') as f:
out_of_view = torch.ByteTensor([int(v) for v in list(csv.reader(f))[0]])
target_visible = ~occlusion & ~out_of_view
return target_visible
def _get_sequence_path(self, root, seq_id):
seq_name = self.sequence_list[seq_id]
class_name = seq_name.split('-')[0]
vid_id = seq_name.split('-')[1]
return os.path.join(root, class_name, class_name + '-' + vid_id)
def get_sequence_info(self, seq_id):
if seq_id not in self.sequence_info_cache:
seq_path_img = self._get_sequence_path(env_settings().lasot_dir, seq_id)
bbox = self._read_bb_anno(seq_path_img)
valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0)
visible = self._read_target_visible(seq_path_img) & valid.byte()
self.sequence_info_cache[seq_id] = dict(bbox=bbox, valid=valid, visible=visible)
return self.sequence_info_cache[seq_id]
def _get_frame_path(self, seq_path, frame_id):
return os.path.join(seq_path, 'img', '{:08}.jpg'.format(frame_id+1)) # frames start from 1
def _get_frame(self, seq_path, frame_id):
return self.image_loader(self._get_frame_path(seq_path, frame_id))
def _get_class(self, seq_path):
raw_class = seq_path.split('/')[-2]
return raw_class
def _get_data(self, seq_id, seq_img_path, frame_id):
data = self.dataset[self.get_sequence_name(seq_id)]
idx = data['index'].index(frame_id)
search_area_box = torch.FloatTensor(data['search_area_box'][idx])
target_candidate_scores = torch.FloatTensor(data['target_candidate_scores'][idx])
target_candidate_coords = torch.FloatTensor(data['target_candidate_coords'][idx])
target_anno_coord = torch.FloatTensor(data['target_anno_coord'][idx])
img = self.image_loader(self._get_frame_path(seq_img_path, frame_id))
return dict(search_area_box=search_area_box, img=img, target_anno_coord=target_anno_coord,
target_candidate_coords=target_candidate_coords, target_candidate_scores=target_candidate_scores)
def get_class_name(self, seq_id):
seq_path = self._get_sequence_path(self.root, seq_id)
obj_class = self._get_class(seq_path)
return obj_class
def get_sequence_name(self, seq_id):
return self.sequence_list[seq_id]
def get_frames(self, seq_id, frame_ids, anno=None):
frames_dict = dict()
if anno is None:
anno = self.get_sequence_info(seq_id)
seq_path_img = self._get_sequence_path(env_settings().lasot_dir, seq_id)
obj_class = self._get_class(seq_path_img)
dumped_data_frame_list = [self._get_data(seq_id, seq_path_img, f_id) for f_id in frame_ids]
for key in dumped_data_frame_list[0].keys():
frames_dict[key] = [data[key] for data in dumped_data_frame_list] # is cloning needed here?
for key, value in anno.items():
frames_dict[key] = [value[f_id, ...].clone() for f_id in frame_ids]
object_meta = OrderedDict({'object_class_name': obj_class,
'motion_class': None,
'major_class': None,
'root_class': None,
'motion_adverb': None})
return frames_dict, object_meta