-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcode.cpp
286 lines (280 loc) · 7.95 KB
/
code.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#include<bits/stdc++.h>
#include<math.h>
using namespace std;
const int N = 1005; // Maximum no. of nodes the road network can have
vector < vector < pair< int, int> > > graph(N); // should be a simple graph
vector < int > s;
set< pair<double, int>, greater< pair<double, int > > > p;
double demand[N] = {};
const int INF = 100000;
int n, m;
int candidate[N], grid[N], grid_num[N];
vector< vector< int > > grid_con(N);
int roc;
double alpha, beta;
double l1, l2; // Please make sure 0 <= l1 + l2 <= 1
double c, capacity[N] = {}, uv[N] = {};
double travel_penalty = 0;
double eps;
vector< pair<int, int > > roc_neighbours;
// input format:
// t (no of test cases)
// n (no of vertices)
// edges (no of edges)
// next "edges" no. of lines of the format u v w (edge between node u-v of length w) all in 1-indexed format
// m (no of candidate nodes)
// "m" space separated integers specifying the candidate nodes ( 1-indexed )
// roc (the radius of coverage)
// "m" space separated integers specifying the demand values (float) of the candidate nodes (in the same order as the candidated nodes given)
// "m" space separated integers specifying the index of the grid (1-indexed) to which the i_th candidate node is connected
// alpha (the travel penalty coeff)
// beta (the grid penalty coeff)
// l1 l2 (penalty factors)
// c (capacity)
// epsilon (randomness coeff )
void init()
{
cin>>n;
int i;
int edges;
s.clear();
travel_penalty = 0;
p.clear();
// no. of edges
for( i = 0; i < n ; i++)
{
graph[i].clear();
candidate[i] = 0;
uv[i] = 0;
capacity[i] = 0;
demand[i] = 0;
grid_num[i] = 0;
}
cin>>edges;
for( i = 0; i < edges; i++)
{
int u ,v, w;
cin>>u>>v>>w;
u--;v--;
graph[u].push_back(make_pair(v, w));
graph[v].push_back(make_pair(u, w));
}
cin>>m;
for( i = 0; i < m; i++)
{
int u;
cin>>u;
u--;
s.push_back(u);
candidate[u] = 1;
}
cin>>roc;
for( i = 0; i < m; i++)
{
double temp;
cin>>temp;
demand[s[i]] = temp;
}
for( i = 0; i< m; i++ )
{
int g;
cin>>g;
g--;
grid[i] = g;
grid_con[g].push_back(i);
}
cin>>alpha;
cin>>beta;
cin>>l1>>l2;
cin>>c;
for( i = 0; i < m; i++)
{
capacity[s[i]] = c - demand[s[i]];
}
cin>>eps;
}
void compute_uv(int i, int d, int max_dis, int head, int* vis)
{
if(d > max_dis) return;
vis[i] = 1;
if(candidate[i] && i != head)
uv[head] += capacity[i];
int j, si = graph[i].size();
for( j = 0; j < si; j++ )
{
pair< int, int > v = graph[i][j];
if(vis[v.first]) continue;
compute_uv(v.first, d+v.second, max_dis, head, vis);
}
}
void dfs(int i, int d, int max_dis, int head, int* vis)
{
if( d > max_dis) return;
vis[i] = 1;
if(candidate[i] && i != head && capacity[i] > 1e-3)
roc_neighbours.push_back(make_pair(d, i));
int j, si = graph[i].size();
for( j = 0; j < si; j++ )
{
pair< int, int > v = graph[i][j];
if(vis[v.first]) continue;
dfs(v.first, d+v.second, max_dis, head, vis);
}
return;
}
void modify_grid(int g)
{
int i, si = grid_con[g].size();
double nval = grid_num[g]+1;
set< pair<double, int>, greater< pair<double, int > > >::iterator it;
for( i = 0; i < si; i++)
{
int u = grid_con[g][i];
it = p.find(make_pair(uv[u], u));
uv[u] -= beta*grid_num[g];
uv[u] += beta*nval;
if( it != p.end())
{
p.erase(it);
p.insert(make_pair(uv[u], u));
}
}
grid_num[g] = nval;
return;
}
void modify_uv(int i, int d, int max_dis, int head, int* vis, double ncap)
{
if(d > max_dis) return;
vis[i] = 1;
if(candidate[i] && i != head)
{
set< pair<double, int>, greater< pair<double, int > > >::iterator it = p.find(make_pair(uv[i], i));
if(it != p.end())
{
p.erase(it);
uv[i] += alpha*(ncap - capacity[head]);
p.insert(make_pair(uv[i], i));
}
}
int j, si = graph[i].size();
for( j = 0; j < si; j++ )
{
pair< int, int > v = graph[i][j];
if(vis[v.first]) continue;
modify_uv(v.first, d+v.second, max_dis, head, vis, ncap);
}
}
bool is_random()
{
double num = rand()%100 + 1;
num = 1/num;
if(num < eps) return true;
return false;
}
double compute_grid_penalty(set< int > out)
{
double cost = 0;
map< int, double> c;
map<int, double>::iterator it2;
set<int>::iterator it = out.begin();
while(it != out.end())
{
int cur = *it;
c[grid[cur]]++;
it++;
}
// for now assuming y = beta*x^3
it2 = c.begin();
while(it2 != c.end())
{
double cur = it2->second;
cost += (double)beta*cur*cur*cur;
it2++;
}
return cost;
}
int main()
{
int t;
cin>>t;
srand(time(NULL));
while(t--)
{
init();
int i;
set< int > out;
for(i = 0; i < m; i++ )
{
int vis[N] = {};
uv[s[i]] = -1*demand[s[i]];
compute_uv(s[i], 0, roc, s[i], vis);
out.insert(s[i]);
uv[s[i]] *= alpha;
p.insert(make_pair(uv[s[i]], s[i]));
}
while(p.size())
{
int x;
if(is_random())
{
set< pair<double, int>, greater< pair<double, int > > >::iterator it;
it = p.begin();
int cnt = rand()%p.size();
i = 0;
while(i < cnt)
{
it++;
i++;
}
x = it->second;
p.erase(it);
}
else
{
x = p.begin()->second;
p.erase(p.begin());
}
if(uv[x] < 1e-3) break;
out.erase(x);
int vis[N] = {};
modify_uv(x, 0, roc, x, vis, 0);
capacity[x] = 0;
roc_neighbours.clear();
memset(vis, 0, sizeof vis);
dfs(x, 0, roc, x, vis);
sort(roc_neighbours.begin(), roc_neighbours.end());
int j, si = roc_neighbours.size();
double dem = demand[x];
for( j = 0; j < si; j++ )
{
int nei = roc_neighbours[j].second;
double dis = roc_neighbours[j].first;
if(dem < 1e-3) break;
double cur = fmin(dem, capacity[nei]);
dem -= cur;
travel_penalty += alpha*cur*dis;
int vis[N] = {};
p.erase( make_pair(uv[nei], nei) );
modify_grid( grid[nei] );
modify_uv(nei, 0, roc, nei, vis, capacity[nei]-cur);
capacity[nei] -= cur;
}
memset(vis, 0, sizeof vis);
}
int no_of_charging_points = out.size();
double grid_penalty = compute_grid_penalty(out);
cout<<"The charging point locations are: \n";
set< int >::iterator it = out.begin();
while(it != out.end())
{
cout<<*it+1<<" ";
it++;
}
cout<<endl;
printf("Incurring costs:\nTravel penalty: %f\nGrid penalty: %f\nNo. of charging points: %d\n", travel_penalty, grid_penalty,no_of_charging_points);
double cost = l1*travel_penalty + l2*no_of_charging_points + (1 - l1 - l2)*grid_penalty;
cout<<"Total reduced cost: "<<cost<<" units\n";
cout<<endl;
}
cerr <<endl<< "Time elapsed : " << clock() * 1000.0 / CLOCKS_PER_SEC << " ms" << '\n';
}