forked from Yang233666/CMVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembeddings_multi_view.py
577 lines (507 loc) · 27.7 KB
/
embeddings_multi_view.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import gensim, itertools, pickle, random, time
from few_shot_clustering.cmvc.helper import *
from few_shot_clustering.cmvc.cmvc_utils import cos_sim
from few_shot_clustering.cmvc.test_performance import cluster_test, HAC_getClusters
from few_shot_clustering.cmvc.train_embedding_model import Train_Embedding_Model, pair2triples
from few_shot_clustering.cmvc.Context_view import BERT_Model
class DisjointSet(object):
def __init__(self):
self.leader = {} # maps a member to the group's leader
self.group = {} # maps a group leader to the group (which is a set)
def add(self, a, b):
leadera = self.leader.get(a)
leaderb = self.leader.get(b)
if leadera is not None:
if leaderb is not None:
if leadera == leaderb: return # nothing to do
groupa = self.group[leadera]
groupb = self.group[leaderb]
if len(groupa) < len(groupb):
a, leadera, groupa, b, leaderb, groupb = b, leaderb, groupb, a, leadera, groupa
groupa |= groupb
del self.group[leaderb]
for k in groupb:
self.leader[k] = leadera
else:
self.group[leadera].add(b)
self.leader[b] = leadera
else:
if leaderb is not None:
self.group[leaderb].add(a)
self.leader[a] = leaderb
else:
self.leader[a] = self.leader[b] = a
self.group[a] = set([a, b])
def amieInfo(triples, ent2id, rel2id):
uf = DisjointSet()
min_supp = 2
min_conf = 0.5 # cesi=0.2
amie_cluster = []
rel_so = {}
for trp in triples:
sub, rel, obj = trp['triple']
if sub in ent2id and rel in rel2id and obj in ent2id:
sub_id, rel_id, obj_id = ent2id[sub], rel2id[rel], ent2id[obj]
rel_so[rel_id] = rel_so.get(rel_id, set())
rel_so[rel_id].add((sub_id, obj_id))
for r1, r2 in itertools.combinations(rel_so.keys(), 2):
supp = len(rel_so[r1].intersection(rel_so[r2]))
if supp < min_supp: continue
s1, _ = zip(*list(rel_so[r1]))
s2, _ = zip(*list(rel_so[r2]))
z_conf_12, z_conf_21 = 0, 0
for ele in s1:
if ele in s2: z_conf_12 += 1
for ele in s2:
if ele in s1: z_conf_21 += 1
conf_12 = supp / z_conf_12
conf_21 = supp / z_conf_21
if conf_12 >= min_conf and conf_21 >= min_conf:
amie_cluster.append((r1, r2)) # Replace with union find DS
uf.add(r1, r2)
rel2amie = uf.leader
return rel2amie
def seed_pair2cluster(seed_pair_list, ent_list):
pair_dict = dict()
for seed_pair in seed_pair_list:
a, b = seed_pair
if a != b:
if a < b:
rep, ent_id = a, b
else:
ent_id, rep = b, a
if ent_id not in pair_dict:
if rep not in pair_dict:
pair_dict.update({ent_id: rep})
else:
new_rep = pair_dict[rep]
j = 0
while rep in pair_dict:
new_rep = pair_dict[rep]
rep = new_rep
j += 1
if j > 1000000:
break
pair_dict.update({ent_id: new_rep})
else:
if rep not in pair_dict:
new_rep = pair_dict[ent_id]
if rep > new_rep:
pair_dict.update({rep: new_rep})
else:
pair_dict.update({new_rep: rep})
else:
old_rep = rep
new_rep = pair_dict[rep]
j = 0
while rep in pair_dict:
new_rep = pair_dict[rep]
rep = new_rep
j += 1
if j > 1000000:
break
if old_rep > new_rep:
pair_dict.update({ent_id: new_rep})
else:
pair_dict.update({ent_id: old_rep})
cluster_list = []
for i in range(len(ent_list)):
cluster_list.append(i)
for ent_id in pair_dict:
rep = pair_dict[ent_id]
if ent_id < len(cluster_list):
cluster_list[ent_id] = rep
return cluster_list
def get_seed_pair(ent_list, ent2id, ent_old_id2new_id):
seed_pair = []
for i in range(len(ent_list)):
ent1 = ent_list[i]
old_id1 = ent2id[ent1]
if old_id1 in ent_old_id2new_id:
for j in range(i + 1, len(ent_list)):
ent2 = ent_list[j]
old_id2 = ent2id[ent2]
if old_id2 in ent_old_id2new_id:
new_id1, new_id2 = ent_old_id2new_id[old_id1], ent_old_id2new_id[
old_id2]
if new_id1 == new_id2:
id_tuple = (i, j)
seed_pair.append(id_tuple)
return seed_pair
def difference_cluster2pair(cluster_list_1, cluster_list_2, EL_seed):
new_seed_pair_list = []
for i in range(len(cluster_list_1)):
id_1, id_2 = cluster_list_1[i], cluster_list_2[i]
if id_1 == id_2:
continue
else:
index_list_1 = [i for i, x in enumerate(cluster_list_1) if x == id_1]
index_list_2 = [i for i, x in enumerate(cluster_list_2) if x == id_2]
if len(index_list_2) == 1:
continue
else:
iter_list_1 = list(itertools.combinations(index_list_1, 2))
iter_list_2 = list(itertools.combinations(index_list_2, 2))
if len(iter_list_1) > 0:
for iter_pair in iter_list_1:
if iter_pair in iter_list_2: iter_list_2.remove(iter_pair)
for iter in iter_list_2:
if iter not in EL_seed:
new_seed_pair_list.append(iter)
return new_seed_pair_list
def totol_cluster2pair(cluster_list):
seed_pair_list, id_list = [], []
for i in range(len(cluster_list)):
id = cluster_list[i]
if id not in id_list:
id_list.append(id)
index_list = [i for i, x in enumerate(cluster_list) if x == id]
if len(index_list) > 1:
iter_list = list(itertools.combinations(index_list, 2))
seed_pair_list += iter_list
return seed_pair_list
def initialize_cluster_seeds(num_cluster_seeds, ent2id, id_to_embedding_rows, true_clust2ent):
"""Init k-means clusters seeds according to k-means++
Parameters
----------
X : array or sparse matrix, shape (n_samples, n_features)
The data to pick seeds for. To avoid memory copy, the input data
should be double precision (dtype=np.float64).
num_cluster_seeds : array or sparse matrix, shape (n_samples, n_features)
Pre-initialized cluster seeds chosen by a previous method (such as an
oracle). The number of initial cluster seeds N must be less than
num_clusters.
...
Return indices into the embedding matrix to use as cluster initializations
"""
seed_points = []
assert num_cluster_seeds <= len(true_clust2ent)
cluster_names_to_sample = random.sample(true_clust2ent.keys(), num_cluster_seeds)
for cluster_name in cluster_names_to_sample:
cluster_entities = true_clust2ent[cluster_name]
random_entity = random.choice(list(cluster_entities))
entity_name = random_entity.split("|")[0]
seed_points.append(id_to_embedding_rows[ent2id[entity_name]])
return seed_points
class Embeddings(object):
"""
Learns embeddings for NPs and relation phrases
"""
def __init__(self, params, side_info, true_ent2clust, true_clust2ent, sub_uni2triple_dict=None,
triple_list=None, num_reinit=10, random_seed=None):
self.p = params
self.side_info = side_info
self.ent2embed = {} # Stores final embeddings learned for noun phrases
self.rel2embed = {} # Stores final embeddings learned for relation phrases
self.true_ent2clust, self.true_clust2ent = true_ent2clust, true_clust2ent
self.sub_uni2triple_dict = sub_uni2triple_dict
self.triples_list = triple_list
self.rel_id2sentence_list = dict()
self.num_reinit = num_reinit
self.random_seed = random_seed
ent_id2sentence_list = self.side_info.ent_id2sentence_list
for rel in self.side_info.rel_list:
rel_id = self.side_info.rel2id[rel]
if rel_id not in self.rel_id2sentence_list:
triple_id_list = self.side_info.rel2triple_id_list[rel]
sentence_list = []
for triple_id in triple_id_list:
triple = self.triples_list[triple_id]
sub, rel_, obj = triple['triple'][0], triple['triple'][1], triple['triple'][2]
assert str(rel_) == str(rel)
if sub in self.side_info.ent2id:
sentence_list += ent_id2sentence_list[self.side_info.ent2id[sub]]
if obj in self.side_info.ent2id:
sentence_list += ent_id2sentence_list[self.side_info.ent2id[obj]]
sentence_list = list(set(sentence_list))
self.rel_id2sentence_list[rel_id] = sentence_list
print('self.rel_id2sentence_list:', type(self.rel_id2sentence_list), len(self.rel_id2sentence_list))
def fit(self):
show_memory = False
if show_memory:
print('show_memory:', show_memory)
import tracemalloc
tracemalloc.start(25) # 默认25个片段,这个本质还是多次采样
clean_ent_list, clean_rel_list = [], []
for ent in self.side_info.ent_list: clean_ent_list.append(ent.split('|')[0])
for rel in self.side_info.rel_list: clean_rel_list.append(rel.split('|')[0])
print('clean_ent_list:', type(clean_ent_list), len(clean_ent_list))
print('clean_rel_list:', type(clean_rel_list), len(clean_rel_list))
''' Intialize embeddings '''
if self.p.embed_init == 'crawl':
fname1, fname2 = '../file/' + self.p.dataset + '_' + self.p.split + '/1E_init', '../file/' + self.p.dataset + '_' + self.p.split + '/1R_init'
if not checkFile(fname1) or not checkFile(fname2):
print('generate pre-trained embeddings')
model = gensim.models.KeyedVectors.load_word2vec_format(self.p.embed_loc, binary=False)
self.E_init = getEmbeddings(model, clean_ent_list, self.p.embed_dims)
self.R_init = getEmbeddings(model, clean_rel_list, self.p.embed_dims)
pickle.dump(self.E_init, open(fname1, 'wb'))
pickle.dump(self.R_init, open(fname2, 'wb'))
else:
print('load init embeddings')
self.E_init = pickle.load(open(fname1, 'rb'))
self.R_init = pickle.load(open(fname2, 'rb'))
else:
print('generate init random embeddings')
self.E_init = np.random.rand(len(clean_ent_list), self.p.embed_dims)
self.R_init = np.random.rand(len(clean_rel_list), self.p.embed_dims)
folder = 'multi_view/relation_view'
print('folder:', folder)
folder_to_make = '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/'
if not os.path.exists(folder_to_make):
os.makedirs(folder_to_make)
fname_EL = '../file/' + self.p.dataset + '_' + self.p.split + '/EL_seed'
if not checkFile(fname_EL):
self.EL_seed = get_seed_pair(self.side_info.ent_list, self.side_info.ent2id,
self.side_info.ent_old_id2new_id)
pickle.dump(self.EL_seed, open(fname_EL, 'wb'))
else:
self.EL_seed = pickle.load(open(fname_EL, 'rb'))
print('self.EL_seed:', type(self.EL_seed), len(self.EL_seed))
fname_amie = '../file/' + self.p.dataset + '_' + self.p.split + '/amie_rp_seed'
if not checkFile(fname_amie):
self.amie_rp = amieInfo(self.triples_list, self.side_info.ent2id, self.side_info.rel2id)
self.amie_rp_seed = get_seed_pair(self.side_info.rel_list, self.side_info.rel2id,
self.amie_rp)
pickle.dump(self.amie_rp_seed, open(fname_amie, 'wb'))
else:
self.amie_rp_seed = pickle.load(open(fname_amie, 'rb'))
print('self.amie_rp_seed:', type(self.amie_rp_seed), len(self.amie_rp_seed))
web_seed_Jaccard_threshold = 0.015
fname2_entity = '../file/' + self.p.dataset + '_' + self.p.split + '/WEB_seed/entity/cluster_list_threshold_' + \
str(web_seed_Jaccard_threshold) + '_url_max_length_all'
fname2_relation = '../file/' + self.p.dataset + '_' + self.p.split + '/WEB_seed/relation/cluster_list_threshold_' + \
str(web_seed_Jaccard_threshold) + '_url_max_length_all'
print('fname2_entity:', fname2_entity)
print('fname2_relation:', fname2_relation)
self.web_entity_cluster_list = pickle.load(open(fname2_entity, 'rb'))
self.web_relation_cluster_list = pickle.load(open(fname2_relation, 'rb'))
print('self.web_entity_cluster_list:', type(self.web_entity_cluster_list),
len(self.web_entity_cluster_list),
self.web_entity_cluster_list[0:10])
print('self.web_relation_cluster_list:', type(self.web_relation_cluster_list),
len(self.web_relation_cluster_list),
self.web_relation_cluster_list[0:10])
self.web_entity_seed_pair_list = totol_cluster2pair(self.web_entity_cluster_list)
self.web_relation_seed_pair_list = totol_cluster2pair(self.web_relation_cluster_list)
print('self.web_entity_seed_pair_list:', type(self.web_entity_seed_pair_list),
len(self.web_entity_seed_pair_list), self.web_entity_seed_pair_list[0:10])
print('self.web_relation_seed_pair_list:', type(self.web_relation_seed_pair_list),
len(self.web_relation_seed_pair_list), self.web_relation_seed_pair_list[0:10])
# web_entity_cluster_list = seed_pair2cluster(self.web_entity_seed_pair_list, clean_ent_list)
# cluster_test(self.p, self.side_info, web_entity_cluster_list, self.true_ent2clust, self.true_clust2ent,
# print_or_not=True)
# web_relation_cluster_list = seed_pair2cluster(self.web_relation_seed_pair_list, clean_rel_list)
# print('web_relation_cluster_list:', type(web_relation_cluster_list), len(web_relation_cluster_list),
# web_relation_cluster_list[0:10])
# print('different web_relation_cluster:', len(list(set(web_relation_cluster_list))))
# print()
# el_cluster_list = seed_pair2cluster(self.EL_seed, clean_ent_list)
# print('el_cluster_list:', type(el_cluster_list), len(el_cluster_list), el_cluster_list[0:10])
# cluster_test(self.p, self.side_info, el_cluster_list, self.true_ent2clust, self.true_clust2ent,
# print_or_not=True)
self.all_seed_pair_list = []
for pair in self.web_entity_seed_pair_list:
if pair not in self.all_seed_pair_list:
self.all_seed_pair_list.append(pair)
for pair in self.EL_seed:
if pair not in self.all_seed_pair_list:
self.all_seed_pair_list.append(pair)
self.context_seed_pair_list = []
for pair in self.web_relation_seed_pair_list:
if pair not in self.context_seed_pair_list:
self.context_seed_pair_list.append(pair)
for pair in self.amie_rp_seed:
if pair not in self.context_seed_pair_list:
self.context_seed_pair_list.append(pair)
all_cluster_list = seed_pair2cluster(self.all_seed_pair_list, clean_ent_list)
# cluster_test(self.p, self.side_info, all_cluster_list, self.true_ent2clust, self.true_clust2ent,
# print_or_not=True)
print('self.context_seed_pair_list:', type(self.context_seed_pair_list), len(self.context_seed_pair_list),
self.context_seed_pair_list[0:10])
context_relation_cluster_list = seed_pair2cluster(self.context_seed_pair_list, clean_rel_list)
print('context_relation_cluster_list:', type(context_relation_cluster_list), len(context_relation_cluster_list),
context_relation_cluster_list[0:10])
print('different context_relation_cluster_list:', len(list(set(context_relation_cluster_list))))
print()
relation_seed_pair_list = self.all_seed_pair_list
relation_seed_cluster_list = seed_pair2cluster(relation_seed_pair_list, clean_ent_list)
print('fact view seed :')
cluster_test(self.p, self.side_info, relation_seed_cluster_list, self.true_ent2clust, self.true_clust2ent,
print_or_not=True)
self.seed_trpIds, self.seed_sim = pair2triples(relation_seed_pair_list, clean_ent_list, self.side_info.ent2id,
self.side_info.id2ent, self.side_info.ent2triple_id_list,
self.side_info.trpIds, self.E_init, cos_sim, is_cuda=False,
high_confidence=False)
print('self.seed_trpIds:', type(self.seed_trpIds), len(self.seed_trpIds), self.seed_trpIds[0:30])
print('self.seed_sim:', type(self.seed_sim), len(self.seed_sim), self.seed_sim[0:30])
print()
if self.p.use_Embedding_model:
fname1, fname2 = '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/entity_embedding', '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/relation_embedding'
if not checkFile(fname1) or not checkFile(fname2):
print('generate TransE embeddings', fname1)
self.new_seed_trpIds, self.new_seed_sim = self.seed_trpIds, self.seed_sim
entity_embedding, relation_embedding = self.E_init, self.R_init
print('self.training_time', 'use pre-trained crawl embeddings ... ')
TEM = Train_Embedding_Model(self.p, self.side_info, entity_embedding, relation_embedding,
relation_seed_pair_list, self.new_seed_trpIds, self.new_seed_sim)
self.entity_embedding, self.relation_embedding = TEM.train()
pickle.dump(self.entity_embedding, open(fname1, 'wb'))
pickle.dump(self.relation_embedding, open(fname2, 'wb'))
else:
print('load TransE embeddings')
self.entity_embedding = pickle.load(open(fname1, 'rb'))
self.relation_embedding = pickle.load(open(fname2, 'rb'))
for id in self.side_info.id2ent.keys(): self.ent2embed[id] = self.entity_embedding[id]
for id in self.side_info.id2rel.keys(): self.rel2embed[id] = self.relation_embedding[id]
else: # do not use embedding model
for id in self.side_info.id2ent.keys(): self.ent2embed[id] = self.E_init[id]
for id in self.side_info.id2rel.keys(): self.rel2embed[id] = self.R_init[id]
if self.p.input == 'entity':
context_view_label = all_cluster_list
print('context_view_seed : web_entity + EL')
cluster_test(self.p, self.side_info, context_view_label, self.true_ent2clust, self.true_clust2ent, print_or_not=True)
else:
context_view_label = context_relation_cluster_list
print('context_view_seed : web_relation + AMIE')
folder = 'multi_view/context_view_' + str(self.p.input)
print('self.p.input:', self.p.input)
print('folder:', folder)
print()
self.epochs = 3
# self.epochs = 1 # this is the rebuttal mode
print('self.epochs:', self.epochs)
if self.p.use_context and self.p.use_BERT:
folder_to_make = '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/'
if not os.path.exists(folder_to_make):
os.makedirs(folder_to_make)
fname1 = '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/' + 'BERT_fine-tune_label'
print('fname1:', fname1)
if not checkFile(fname1):
print('generate BERT_fine-tune_', fname1)
self.label = context_view_label
self.sub_label = []
for eid in self.side_info.isSub.keys():
self.sub_label.append(self.label[eid])
K_init = len(list(set(self.sub_label)))
print('K_init:', K_init)
print('epochs:', self.epochs)
for random_seed in range(self.epochs):
BERT_self_training_time = random_seed
if str(self.p.input) == 'entity':
input_list = clean_ent_list
else:
input_list = self.side_info.rel_list
K = K_init # just for cesi_main_opiec_2
print('K:', K)
BM = BERT_Model(self.p, self.side_info, input_list, self.label,
self.true_ent2clust, self.true_clust2ent, 0,
BERT_self_training_time, self.sub_uni2triple_dict, self.rel_id2sentence_list, K)
self.label, K_init = BM.fine_tune()
pickle.dump(self.label, open(fname1, 'wb'))
else:
print('load BERT_fine-tune_', fname1)
self.label = pickle.load(open(fname1, 'srb'))
context_view_label = self.label
old_label, new_label = context_view_label, self.label
print('old_label : ')
cluster_test(self.p, self.side_info, old_label, self.true_ent2clust, self.true_clust2ent, print_or_not=True)
print('new_label : ')
cluster_test(self.p, self.side_info, new_label, self.true_ent2clust, self.true_clust2ent, print_or_not=True)
BERT_self_training_time = self.epochs - 1
fname1 = '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/bert_cls_el_' + str(0) + '_' + str(
BERT_self_training_time)
# fname1 = '../file/' + self.p.dataset + '_' + self.p.split + '/' + folder + '/bert_cls_el_' + str(0) + '_' + str(
# BERT_self_training_time) + '_finetune' # this is the rebuttal mode
self.BERT_CLS = pickle.load(open(fname1, 'rb'))
print('self.ent2embed:', len(self.ent2embed))
print('self.rel2embed:', len(self.rel2embed))
print('self.BERT_CLS:', len(self.BERT_CLS))
self.relation_view_embed, self.context_view_embed = [], []
id_to_embedding_rows = {}
for ent in clean_ent_list:
id = self.side_info.ent2id[ent]
if id in self.side_info.isSub:
self.relation_view_embed.append(self.ent2embed[id])
id_to_embedding_rows[id] = len(self.context_view_embed)
self.context_view_embed.append(self.BERT_CLS[id])
print('self.relation_view_embed:', len(self.relation_view_embed))
print('self.context_view_embed:', len(self.context_view_embed))
print('fact view: ')
# threshold_or_cluster = 'threshold'
threshold_or_cluster = 'cluster'
if threshold_or_cluster == 'threshold':
if self.p.dataset == 'OPIEC59k':
cluster_threshold_real = 0.29
else:
cluster_threshold_real = 0.35
else:
if self.p.dataset == 'OPIEC59k':
cluster_threshold_real = 490
else:
cluster_threshold_real = 6700
print('cluster_threshold_real:', cluster_threshold_real)
labels, clusters_center = HAC_getClusters(self.p, self.relation_view_embed, cluster_threshold_real, False)
cluster_predict_list = list(labels)
ave_prec, ave_recall, ave_f1, macro_prec, micro_prec, pair_prec, macro_recall, micro_recall, \
pair_recall, macro_f1, micro_f1, pair_f1, model_clusters, model_Singletons, gold_clusters, gold_Singletons \
= cluster_test(self.p, self.side_info, cluster_predict_list, self.true_ent2clust,
self.true_clust2ent)
print('Ave-prec=', ave_prec, 'macro_prec=', macro_prec, 'micro_prec=', micro_prec,
'pair_prec=', pair_prec)
print('Ave-recall=', ave_recall, 'macro_recall=', macro_recall, 'micro_recall=', micro_recall,
'pair_recall=', pair_recall)
print('Ave-F1=', ave_f1, 'macro_f1=', macro_f1, 'micro_f1=', micro_f1, 'pair_f1=', pair_f1)
print('Model: #Clusters: %d, #Singletons %d' % (model_clusters, model_Singletons))
print('Gold: #Clusters: %d, #Singletons %d' % (gold_clusters, gold_Singletons))
print()
# exit()
print('context view: ')
if self.p.dataset == 'OPIEC59k':
cluster_threshold_real = 923
else:
cluster_threshold_real = 7064
print('cluster_threshold_real:', cluster_threshold_real)
labels, clusters_center = HAC_getClusters(self.p, self.context_view_embed, cluster_threshold_real, True)
cluster_predict_list = list(labels)
ave_prec, ave_recall, ave_f1, macro_prec, micro_prec, pair_prec, macro_recall, micro_recall, \
pair_recall, macro_f1, micro_f1, pair_f1, model_clusters, model_Singletons, gold_clusters, gold_Singletons \
= cluster_test(self.p, self.side_info, cluster_predict_list, self.true_ent2clust,
self.true_clust2ent)
print('Ave-prec=', ave_prec, 'macro_prec=', macro_prec, 'micro_prec=', micro_prec,
'pair_prec=', pair_prec)
print('Ave-recall=', ave_recall, 'macro_recall=', macro_recall, 'micro_recall=', micro_recall,
'pair_recall=', pair_recall)
print('Ave-F1=', ave_f1, 'macro_f1=', macro_f1, 'micro_f1=', micro_f1, 'pair_f1=', pair_f1)
print('Model: #Clusters: %d, #Singletons %d' % (model_clusters, model_Singletons))
print('Gold: #Clusters: %d, #Singletons %d' % (gold_clusters, gold_Singletons))
print()
print('Model is multi-view spherical-k-means')
np.save(open("../data/OPIEC59k/valid_relation_view_embed.npz", 'wb'), np.vstack(self.relation_view_embed))
np.save(open("../data/OPIEC59k/valid_context_view_embed.npz", 'wb'), np.vstack(self.context_view_embed))
json.dump(self.side_info.id2sub, open("../data/OPIEC59k/valid_entId2name.json", 'w'), indent=4)
for random_seed in range(3):
print('test time:', random_seed)
if self.p.dataset == 'OPIEC59k':
n_cluster = 490
elif self.p.dataset == 'reverb45k' or self.p.dataset == 'reverb45k_change':
n_cluster = 6700
else:
n_cluster = 5700
print('n_cluster:', type(n_cluster), n_cluster)
t0 = time.time()
real_time = time.strftime("%Y_%m_%d") + ' ' + time.strftime("%H:%M:%S")
print('time:', real_time)
if self.p.kmeans_initialization == "seeded-k-means++":
init = "seeded-k-means++"
assert self.p.num_cluster_seeds <= n_cluster
seed_set = initialize_cluster_seeds(self.p.num_cluster_seeds, self.side_info.ent2id, id_to_embedding_rows, self.true_clust2ent)
print("TODO(Vijay): Not implemented")
elif self.p.kmeans_initialization == "pc":
init = "seeded-k-means++"
seed_set = np.array([])
print("TODO(Vijay): Not implemented")
else:
init = "k-means++"
seed_set = None
raise ValueError("multi-view spherical k-means is deprecated")