forked from Yang233666/CMVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_max_margin.py
362 lines (296 loc) · 13.7 KB
/
model_max_margin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#!/usr/bin/python3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
from few_shot_clustering.cmvc.helper import *
import json
import logging
import os
import gensim
import numpy as np
from tqdm import tqdm
def hinge_loss(positive_score, negative_score, gamma):
err = positive_score - negative_score + gamma
max_err = err.clamp(0)
return max_err
class KGEModel(nn.Module):
def __init__(self, model_name, dict_local, init, E_init, R_init, nentity, nrelation, hidden_dim, gamma,
double_entity_embedding=False, double_relation_embedding=False):
super(KGEModel, self).__init__()
self.model_name = model_name
self.nentity = nentity
self.nrelation = nrelation
self.hidden_dim = hidden_dim
self.epsilon = 2.0
self.embed_loc = dict_local
self.E_init = E_init
self.R_init = R_init
self.init = init
self.gamma = nn.Parameter(
torch.Tensor([gamma]),
requires_grad=False
)
self.embedding_range = nn.Parameter(
torch.Tensor([(self.gamma.item() + self.epsilon) / hidden_dim]),
requires_grad=False
)
self.entity_dim = hidden_dim*2 if double_entity_embedding else hidden_dim
self.relation_dim = hidden_dim*2 if double_relation_embedding else hidden_dim
''' Intialize embeddings '''
if self.init == 'crawl':
self.entity_embedding = nn.Parameter(torch.from_numpy(self.E_init))
self.relation_embedding = nn.Parameter(torch.from_numpy(self.R_init))
else:
self.entity_embedding = nn.Parameter(torch.zeros(nentity, self.entity_dim))
nn.init.uniform_(tensor=self.entity_embedding, a=-self.embedding_range.item(), b=self.embedding_range.item())
self.relation_embedding = nn.Parameter(torch.zeros(nrelation, self.relation_dim))
nn.init.uniform_(tensor=self.relation_embedding, a=-self.embedding_range.item(), b=self.embedding_range.item())
if model_name == 'pRotatE' or model_name == 'new_rotate':
self.modulus = nn.Parameter(torch.Tensor([[0.5 * self.embedding_range.item()]]))
#Do not forget to modify this line when you add a new model in the "forward" function
if model_name not in ['TransE']:
raise ValueError('model %s not supported' % model_name)
def forward(self, sample, mode='single'):
'''
Forward function that calculate the score of a batch of triples.
In the 'single' mode, sample is a batch of triple.
In the 'head-batch' or 'tail-batch' mode, sample consists two part.
The first part is usually the positive sample.
And the second part is the entities in the negative samples.
Because negative samples and positive samples usually share two elements
in their triple ((head, relation) or (relation, tail)).
'''
if mode == 'single':
batch_size, negative_sample_size = sample.size(0), 1
head = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:,0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=sample[:,1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:,2]
).unsqueeze(1)
elif mode == 'head-batch':
tail_part, head_part = sample
batch_size, negative_sample_size = head_part.size(0), head_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part.view(-1)
).view(batch_size, negative_sample_size, -1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=tail_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part[:, 2]
).unsqueeze(1)
elif mode == 'tail-batch':
head_part, tail_part = sample
batch_size, negative_sample_size = tail_part.size(0), tail_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part[:, 0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=head_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part.view(-1)
).view(batch_size, negative_sample_size, -1)
else:
raise ValueError('mode %s not supported' % mode)
model_func = {
'TransE': self.TransE
}
if self.model_name in model_func:
score = model_func[self.model_name](head, relation, tail, mode)
else:
raise ValueError('model %s not supported' % self.model_name)
return score
def TransE(self, head, relation, tail, mode):
if mode == 'head-batch':
score = head + (relation - tail)
else:
score = (head + relation) - tail
score = torch.norm(score, p=1, dim=2)
return score
@staticmethod
def train_step(args, model, optimizer, train_iterator):
'''
A single train step. Apply back-propation and return the loss
'''
negative_sample_size = int(args.single_negative_sample_size)
gamma = torch.full((1, negative_sample_size), float(args.single_gamma))
model.train()
optimizer.zero_grad()
positive_sample, negative_sample, subsampling_weight, mode = next(train_iterator)
if args.cuda:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
subsampling_weight = subsampling_weight.cuda()
gamma = gamma.cuda()
negative_score = model((positive_sample, negative_sample), mode=mode)
positive_score = model(positive_sample)
positive_score = positive_score.repeat(1, negative_sample_size)
loss = hinge_loss(positive_score, negative_score, gamma)
if args.uni_weight:
loss = loss.sum()
else:
loss = (subsampling_weight * loss).sum()/subsampling_weight.sum()
if args.regularization != 0.0:
regularization = args.regularization * (
model.entity_embedding.norm(p=3)**3 +
model.relation_embedding.norm(p=3).norm(p=3)**3
)
loss = loss + regularization
regularization_log = {'regularization': regularization.item()}
else:
regularization_log = {}
loss.backward()
optimizer.step()
log = {
**regularization_log,
'loss': loss.item()
}
return log
@staticmethod
def cross_train_step(args, model, optimizer, seed_iterator):
'''
A single train step. Apply back-propation and return the loss
'''
negative_sample_size = int(args.cross_negative_sample_size)
gamma = torch.full((1, negative_sample_size), float(args.cross_gamma)) # 返回大小为sizes,单位值为fill_value的矩阵
model.train()
optimizer.zero_grad()
positive_sample, negative_sample, subsampling_weight, seed_sim, mode = next(seed_iterator)
if args.cuda:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
subsampling_weight = subsampling_weight.cuda()
gamma = gamma.cuda()
seed_sim = seed_sim.cuda()
negative_score = model((positive_sample, negative_sample), mode=mode)
positive_score = model(positive_sample)
seed_sim = torch.from_numpy(np.diag(seed_sim.t().cpu().numpy()[0])).cuda()
positive_score = positive_score.repeat(1, negative_sample_size)
loss = hinge_loss(positive_score, negative_score, gamma)
loss = loss.sum(dim=1) * seed_sim
if args.uni_weight:
loss = loss.sum()
else:
loss = (subsampling_weight * loss).sum() / subsampling_weight.sum()
if args.regularization != 0.0:
regularization = args.regularization * (
model.entity_embedding.norm(p=3) ** 3 +
model.relation_embedding.norm(p=3).norm(p=3) ** 3
)
loss = loss + regularization
regularization_log = {'regularization': regularization.item()}
else:
regularization_log = {}
loss.backward()
optimizer.step()
log = {
**regularization_log,
'loss': loss.item()
}
return log
def get_seeds(self, p, side_info, logging):
self.p = p
self.side_info = side_info
self.logging = logging
self.id2ent, self.id2rel = self.side_info.id2ent, self.side_info.id2rel
self.ent2id, self.rel2id = self.side_info.ent2id, self.side_info.rel2id
self.ent2triple_id_list, self.rel2triple_id_list = self.side_info.ent2triple_id_list, self.side_info.rel2triple_id_list
self.trpIds = self.side_info.trpIds
entity_embedding, relation_embedding = self.entity_embedding.data, self.relation_embedding.data
self.seed_trpIds, self.seed_sim = [], []
for i in tqdm(range(len(entity_embedding))):
for j in range(i + 1, len(entity_embedding)):
e1_embed, e2_embed = entity_embedding[i], entity_embedding[j]
sim = torch.cosine_similarity(e1_embed, e2_embed, dim=0)
if sim > self.p.entity_threshold:
ent1, ent2 = self.id2ent[i], self.id2ent[j]
for ent in [ent1, ent2]:
triple_list = self.ent2triple_id_list[ent]
for triple_id in triple_list:
triple = self.trpIds[triple_id]
if str(self.id2ent[triple[0]]) == str(ent1):
trp = (self.ent2id[str(ent2)], triple[1], triple[2])
self.seed_trpIds.append(trp)
self.seed_sim.append(sim)
if str(self.id2ent[triple[0]]) == str(ent2):
trp = (self.ent2id[str(ent1)], triple[1], triple[2])
self.seed_trpIds.append(trp)
self.seed_sim.append(sim)
if str(self.id2ent[triple[2]]) == str(ent1):
trp = (triple[0], triple[1], self.ent2id[str(ent2)])
self.seed_trpIds.append(trp)
self.seed_sim.append(sim)
if str(self.id2ent[triple[2]]) == str(ent2):
trp = (triple[0], triple[1], self.ent2id[str(ent1)])
self.seed_trpIds.append(trp)
self.seed_sim.append(sim)
for i in tqdm(range(len(relation_embedding))):
for j in range(i + 1, len(relation_embedding)):
r1_embed, r2_embed = relation_embedding[i], relation_embedding[j]
sim = torch.cosine_similarity(r1_embed, r2_embed, dim=0)
if sim > self.p.relation_threshold:
rel1, rel2 = self.id2rel[i], self.id2rel[j]
for rel in [rel1, rel2]:
triple_list = self.rel2triple_id_list[rel]
for triple_id in triple_list:
triple = self.trpIds[triple_id]
if str(self.id2rel[triple[1]]) == str(rel1):
trp = (triple[0], self.rel2id[str(rel2)], triple[2])
self.seed_trpIds.append(trp)
self.seed_sim.append(sim)
if str(self.id2rel[triple[1]]) == str(rel2):
trp = (triple[0], self.rel2id[str(rel1)], triple[2])
self.seed_trpIds.append(trp)
self.seed_sim.append(sim)
return self.seed_trpIds, self.seed_sim
def set_logger(self):
'''
Write logs to checkpoint and console
'''
if self.p.do_train:
log_file = os.path.join(self.p.out_path or self.p.init_checkpoint, 'train.log')
else:
log_file = os.path.join(self.p.out_path or self.p.init_checkpoint, 'test.log')
logging.basicConfig(
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S',
filename=log_file,
filemode='w'
)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
def log_metrics(self, mode, step, metrics):
'''
Print the evaluation logs
'''
for metric in metrics:
logging.info('%s %s at step %d: %f' % (mode, metric, step, metrics[metric]))