forked from Yang233666/CMVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
558 lines (503 loc) · 28.4 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
'''
Side Information Acquisition module
'''
from few_shot_clustering.cmvc.helper import *
import pdb, itertools
from nltk.corpus import stopwords
from few_shot_clustering.cmvc.cmvc_utils import *
import pickle
'''*************************************** INPUT CLASS ********************************************'''
class SideInfo(object):
def __init__(self, args, triples_list):
self.p = args
self.file = open(self.p.out_path + '/side_info.txt', 'w')
self.triples = triples_list
self.initVariables()
self.process()
def process(self):
self.folder_to_make = '../file/' + self.p.dataset + '_' + self.p.split + '/'
if not os.path.exists(self.folder_to_make):
print('folder_to_make:', self.folder_to_make)
os.makedirs(self.folder_to_make)
fname1, fname2, fname3 = self.folder_to_make + '/self.rel_list', self.folder_to_make + '/self.ent_list', self.folder_to_make + '/self.sub_list'
fname4, fname5, fname6 = self.folder_to_make + '/self.clean_ent_list', self.folder_to_make + '/self.ent2id', self.folder_to_make + '/self.rel2id'
fname7, fname8, fname9 = self.folder_to_make + '/self.isSub', self.folder_to_make + '/self.ent_freq', self.folder_to_make + '/self.rel_freq'
fname10, fname11, fname12 = self.folder_to_make + '/self.id2ent', self.folder_to_make + '/self.id2rel', self.folder_to_make + '/self.trpIds'
fname13, fname14, fname15 = self.folder_to_make + '/self.sub2id', self.folder_to_make + '/self.id2sub', self.folder_to_make + '/self.obj2id'
fname16, fname17, fname18 = self.folder_to_make + '/self.id2obj', self.folder_to_make + '/self.ent_id2sentence_list', self.folder_to_make + '/self.sentence_list'
fname19, fname20 = self.folder_to_make + '/self.ent2triple_id_list', self.folder_to_make + '/self.rel2triple_id_list'
if not checkFile(fname1) or not checkFile(fname2):
print('generate side_info')
ent1List, relList, ent2List = [], [], [] # temp variables
self.sentence_List = []
self.ent2triple_id_list, self.rel2triple_id_list = dict(), dict()
triple2sentence = dict()
if self.p.use_assume:
self.triple_str = str('triple')
print('use assume...')
else:
self.triple_str = str('triple_unique')
print('do not use assume...')
triple_num, sentence_num = 0, 0
for triple in self.triples: # Get all subject, objects and relations
sub, rel, obj = triple[self.triple_str][0], triple[self.triple_str][1], triple[self.triple_str][2]
ent1List.append(sub)
relList.append(rel)
ent2List.append(obj)
triple2sentence[triple_num] = []
if sub not in self.ent2triple_id_list:
self.ent2triple_id_list.update({sub: [triple_num]})
else:
self.ent2triple_id_list[sub].append(triple_num)
if rel not in self.rel2triple_id_list:
self.rel2triple_id_list.update({rel: [triple_num]})
else:
self.rel2triple_id_list[rel].append(triple_num)
if obj not in self.ent2triple_id_list:
self.ent2triple_id_list.update({obj: [triple_num]})
else:
self.ent2triple_id_list[obj].append(triple_num)
for sentence in triple['src_sentences']:
if self.p.replace_h:
sentence = sentence.replace(str(triple[self.triple_str][0]), '')
sentence_ = word_tokenize(sentence)
sentence = str()
for i in range(len(sentence_)):
w = sentence_[i]
if self.p.sentence_delete_stopwords:
if w not in stopwords.words('english'):
sentence += str(w)
else:
sentence += str(w)
if not i == len(sentence_) - 1:
sentence += ' '
# print('sentence:', type(sentence), len(sentence), sentence)
if len(sentence) == 0:
sentence += str(triple[self.triple_str][0])
# print('sentence:', type(sentence), len(sentence), sentence)
self.sentence_List.append(sentence)
triple2sentence[triple_num].append(sentence_num)
if len(self.sentence_List) == 0:
self.sentence_List.append(triple[self.triple_str][0])
# self.sentence_List.append(triple[self.triple_str][2])
sentence_num += 1
triple_num += 1
print('relList:', len(relList)) # 35812
print('ent1List:', len(ent1List)) # 35812
print('ent2List:', len(ent2List)) # 35812
print('sentence_List:', len(self.sentence_List)) # 93934
print('triple2sentence:', len(triple2sentence)) # 35812
assert len(triple2sentence) == len(relList)
assume_rel, assume_sub, assume_obj = dict(), dict(), dict()
for i in range(len(relList)):
rel = relList[i]
if rel in assume_rel.keys():
assume_rel[rel].append(i)
else:
assume_rel[rel] = [i]
for i in range(len(ent1List)):
sub = ent1List[i]
if sub in assume_sub.keys():
assume_sub[sub].append(i)
else:
assume_sub[sub] = [i]
for i in range(len(ent2List)):
obj = ent2List[i]
if obj in assume_obj.keys():
assume_obj[obj].append(i)
else:
assume_obj[obj] = [i]
print('assume_rel, assume_sub, assume_obj:', len(assume_rel), len(assume_sub),
len(assume_obj)) # 18288 12295 14935
self.rel_list = list(assume_rel.keys())
self.sub_list = list(assume_sub.keys())
self.obj_list = list(assume_obj.keys())
self.ent_list = [] # self.ent_list 's order is self.sub_list + self.obj_list
self.ent_id2sentence_list = []
# print('assume_sub:', assume_sub) # {'The Guardian': [0, 1], 'Guardian': [2], 'Franz Kafka': [3, 4], 'Kafka': [5],
for i in range(len(self.sub_list)):
ent = self.sub_list[i]
ids = assume_sub[ent]
self.ent_id2sentence_list.append([])
self.ent_list.append(ent)
for id in ids:
self.ent_id2sentence_list[i] += triple2sentence[id]
for i in range(len(self.obj_list)):
obj = self.obj_list[i]
ids = assume_obj[obj]
if obj in self.sub_list:
continue
else:
self.ent_list.append(obj)
self.ent_id2sentence_list.append([])
index = len(self.ent_id2sentence_list) - 1
for id in ids:
self.ent_id2sentence_list[index] += triple2sentence[id]
print('self.ent_id2sentence_list:', len(self.ent_id2sentence_list)) # 23735
print('self.ent_list:', len(self.ent_list)) # 23735
print('self.sub_list:', len(self.sub_list)) # 12295
print('self.obj_list:', len(self.obj_list)) # 14935
print('self.rel_list:', len(self.rel_list)) # 18288
# Generate a unique id for each entity and relations
self.ent2id = dict([(v, k) for k, v in enumerate(self.ent_list)])
self.rel2id = dict([(v, k) for k, v in enumerate(self.rel_list)])
self.sub2id = dict([(v, k) for k, v in enumerate(self.sub_list)])
self.obj2id = dict([(v, k) for k, v in enumerate(self.obj_list)])
print('self.sub2id:', len(self.sub2id)) # 12295
print('self.obj2id:', len(self.obj2id)) # 14935
print('self.ent2id:', len(self.ent2id)) # 23735
print('self.rel2id:', len(self.rel2id)) # 18288
self.isSub = {}
for sub in self.sub_list:
self.isSub[self.ent2id[sub]] = 1
print('self.isSub:', len(self.isSub)) # 12295
# Get frequency of occurence of entities and relations
for ele in ent1List:
ent = self.ent2id[ele]
self.ent_freq[ent] = self.ent_freq.get(ent, 0)
self.ent_freq[ent] += 1
for ele in ent2List:
ent = self.ent2id[ele]
self.ent_freq[ent] = self.ent_freq.get(ent, 0)
self.ent_freq[ent] += 1
for ele in relList:
rel = self.rel2id[ele]
self.rel_freq[rel] = self.rel_freq.get(rel, 0)
self.rel_freq[rel] += 1
# Creating inverse mapping as well
self.id2ent = invertDic(self.ent2id)
self.id2rel = invertDic(self.rel2id)
self.id2sub = invertDic(self.sub2id)
self.id2obj = invertDic(self.obj2id)
# self.id2text = invertDic(self.text2id)
print('self.ent_freq:', len(self.ent_freq)) # 23735
print('self.rel_freq:', len(self.rel_freq)) # 18288
print('self.id2ent:', len(self.id2ent)) # 23735
print('self.id2rel:', len(self.id2rel)) # 18288
print('self.id2sub:', len(self.id2sub)) # 12295
print('self.id2obj:', len(self.id2obj)) # 14935
for triple in self.triples:
trp = (
self.ent2id[triple[self.triple_str][0]], self.rel2id[triple[self.triple_str][1]],
self.ent2id[triple[self.triple_str][2]])
self.trpIds.append(trp)
print('self.trpIds:', len(self.trpIds)) # 35812
pickle.dump(self.rel_list, open(fname1, 'wb'))
pickle.dump(self.ent_list, open(fname2, 'wb'))
pickle.dump(self.sub_list, open(fname3, 'wb'))
pickle.dump(self.obj_list, open(fname4, 'wb'))
pickle.dump(self.ent2id, open(fname5, 'wb'))
pickle.dump(self.rel2id, open(fname6, 'wb'))
pickle.dump(self.isSub, open(fname7, 'wb'))
pickle.dump(self.ent_freq, open(fname8, 'wb'))
pickle.dump(self.rel_freq, open(fname9, 'wb'))
pickle.dump(self.id2ent, open(fname10, 'wb'))
pickle.dump(self.id2rel, open(fname11, 'wb'))
pickle.dump(self.trpIds, open(fname12, 'wb'))
pickle.dump(self.sub2id, open(fname13, 'wb'))
pickle.dump(self.id2sub, open(fname14, 'wb'))
pickle.dump(self.obj2id, open(fname15, 'wb'))
pickle.dump(self.id2obj, open(fname16, 'wb'))
pickle.dump(self.ent_id2sentence_list, open(fname17, 'wb'))
pickle.dump(self.sentence_List, open(fname18, 'wb'))
pickle.dump(self.ent2triple_id_list, open(fname19, 'wb'))
pickle.dump(self.rel2triple_id_list, open(fname20, 'wb'))
else:
print('load side_info')
self.rel_list = pickle.load(open(fname1, 'rb'))
self.ent_list = pickle.load(open(fname2, 'rb'))
self.sub_list = pickle.load(open(fname3, 'rb'))
self.obj_list = pickle.load(open(fname4, 'rb'))
self.ent2id = pickle.load(open(fname5, 'rb'))
self.rel2id = pickle.load(open(fname6, 'rb'))
self.isSub = pickle.load(open(fname7, 'rb'))
self.ent_freq = pickle.load(open(fname8, 'rb'))
self.rel_freq = pickle.load(open(fname9, 'rb'))
self.id2ent = pickle.load(open(fname10, 'rb'))
self.id2rel = pickle.load(open(fname11, 'rb'))
self.trpIds = pickle.load(open(fname12, 'rb'))
self.sub2id = pickle.load(open(fname13, 'rb'))
self.id2sub = pickle.load(open(fname14, 'rb'))
self.obj2id = pickle.load(open(fname15, 'rb'))
self.id2obj = pickle.load(open(fname16, 'rb'))
self.ent_id2sentence_list = pickle.load(open(fname17, 'rb'))
self.sentence_List = pickle.load(open(fname18, 'rb'))
self.ent2triple_id_list = pickle.load(open(fname19, 'rb'))
self.rel2triple_id_list = pickle.load(open(fname20, 'rb'))
print('self.rel_list:', type(self.rel_list), len(self.rel_list))
print('self.ent_list:', type(self.ent_list), len(self.ent_list))
print('self.sub_list:', type(self.sub_list), len(self.sub_list))
print('self.obj_list:', type(self.obj_list), len(self.obj_list))
print('self.ent2id:', type(self.ent2id), len(self.ent2id))
print('self.rel2id:', type(self.rel2id), len(self.rel2id))
print('self.isSub:', type(self.isSub), len(self.isSub))
print('self.ent_freq:', type(self.ent_freq), len(self.ent_freq))
print('self.rel_freq:', type(self.rel_freq), len(self.rel_freq))
print('self.id2ent:', type(self.id2ent), len(self.id2ent))
print('self.id2rel:', type(self.id2rel), len(self.id2rel))
print('self.trpIds:', type(self.trpIds), len(self.trpIds))
print('self.sub2id:', type(self.sub2id), len(self.sub2id))
print('self.id2sub:', type(self.id2sub), len(self.id2sub))
print('self.obj2id:', type(self.obj2id), len(self.obj2id))
print('self.id2obj:', type(self.id2obj), len(self.id2obj))
print('self.ent_id2sentence_list:', type(self.ent_id2sentence_list), len(self.ent_id2sentence_list))
print('self.sentence_List:', type(self.sentence_List), len(self.sentence_List))
print('self.ent2triple_id_list:', type(self.ent2triple_id_list), len(self.ent2triple_id_list))
print('self.rel2triple_id_list:', type(self.rel2triple_id_list), len(self.rel2triple_id_list))
print()
if self.p.use_Entity_linking_dict:
fname1 = '../file/Entity_linking_dict'
if not checkFile(fname1):
print('generate Entity_linking_dict')
self.Entity_linking_dict = self.generate_Entity_linking_dict()
pickle.dump(self.Entity_linking_dict, open(fname1, 'wb'))
print('Entity_linking_dict :', len(self.Entity_linking_dict), type(self.Entity_linking_dict))
else:
print('load Entity_linking_dict')
self.Entity_linking_dict = pickle.load(open(fname1, 'rb'))
print('Entity_linking_dict :', len(self.Entity_linking_dict), type(self.Entity_linking_dict))
fname1, fname2 = self.folder_to_make + '/look_up_entity_EL_dict', self.folder_to_make + '/look_up_relation_EL_dict'
if not checkFile(fname1) or not checkFile(fname2):
print('generate look_up Entity_linking_dict')
self.look_up_entity_EL_dict, self.look_up_relation_EL_dict = self.look_up_Entity_linking_dict()
pickle.dump(self.look_up_entity_EL_dict, open(fname1, 'wb'))
pickle.dump(self.look_up_relation_EL_dict, open(fname2, 'wb'))
else:
print('load look_up Entity_linking_dict')
self.look_up_entity_EL_dict = pickle.load(open(fname1, 'rb'))
self.look_up_relation_EL_dict = pickle.load(open(fname2, 'rb'))
fname1, fname2 = self.folder_to_make + '/entity_score_EL_dict', self.folder_to_make + '/relation_score_EL_dict'
if not checkFile(fname1) or not checkFile(fname2) or self.p.change_EL_threshold:
print('generate max score Entity_linking_dict')
self.entity_score_EL_dict, self.relation_score_EL_dict = self.score_Entity_linking_dict()
pickle.dump(self.entity_score_EL_dict, open(fname1, 'wb'))
pickle.dump(self.relation_score_EL_dict, open(fname2, 'wb'))
else:
print('load max score Entity_linking_dict')
self.entity_score_EL_dict = pickle.load(open(fname1, 'rb'))
self.relation_score_EL_dict = pickle.load(open(fname2, 'rb'))
fname1, fname2 = self.folder_to_make + '/ent_old_id2new_id', self.folder_to_make + '/rel_old_id2new_id'
if not checkFile(fname1) or self.p.change_EL_threshold:
print('generate el ent_old_id2new_id')
self.ent_old_id2new_id, self.rel_old_id2new_id = self.generate_old_id2new_id()
pickle.dump(self.ent_old_id2new_id, open(fname1, 'wb'))
pickle.dump(self.rel_old_id2new_id, open(fname2, 'wb'))
else:
print('load new ent2id_dict')
self.ent_old_id2new_id = pickle.load(open(fname1, 'rb'))
self.rel_old_id2new_id = pickle.load(open(fname2, 'rb'))
fname1, fname2 = self.folder_to_make + '/new_seed_sim', self.folder_to_make + '/new_seed_trpIds'
if not checkFile(fname1) or not checkFile(fname2) or self.p.change_EL_threshold:
print('generate EL dict seed')
self.seed_sim, self.seed_trpIds = self.get_EL_seed()
pickle.dump(self.seed_sim, open(fname1, 'wb'))
pickle.dump(self.seed_trpIds, open(fname2, 'wb'))
else:
print('load seed')
self.seed_sim = pickle.load(open(fname1, 'rb'))
self.seed_trpIds = pickle.load(open(fname2, 'rb'))
def generate_Entity_linking_dict(self):
Entity_linking_dict = dict()
with open(self.p.Entity_linking_dict_loc, 'r', encoding='utf-8') as f:
for line in f.readlines():
line = line.strip('\n').split('\t') # 去掉换行符\n, 将每一行以空格为分隔符转换成列表
key, value = line[0], line[1:len(line)]
Entity_linking_dict.update({key: value})
return Entity_linking_dict
def look_up_Entity_linking_dict(self):
look_up_entity_EL_dict, look_up_relation_EL_dict = dict(), dict()
num1, num2, num3, num4 = 0, 0, 0, 0
print('num of entity', len(self.ent_list), 'num of relation:', len(self.rel_list))
for i in range(len(self.ent_list)):
if self.Entity_linking_dict.__contains__(self.ent_list[i]):
value = self.Entity_linking_dict[self.ent_list[i]]
look_up_entity_EL_dict.update({self.ent_list[i]: value})
else:
# print('not have1', self.ent_list[i])
num1 += 1
lower_key = str(self.ent_list[i]).lower()
if self.Entity_linking_dict.__contains__(lower_key):
value = self.Entity_linking_dict[lower_key]
look_up_entity_EL_dict.update({self.ent_list[i]: value})
else:
# print('not have2', self.ent_list[i])
num2 += 1
for i in range(len(self.rel_list)):
if self.Entity_linking_dict.__contains__(self.rel_list[i]):
value = self.Entity_linking_dict[self.rel_list[i]]
look_up_relation_EL_dict.update({self.rel_list[i]: value})
else:
num3 += 1
lower_key = str(self.rel_list[i]).lower()
if self.Entity_linking_dict.__contains__(lower_key):
value = self.Entity_linking_dict[lower_key]
look_up_relation_EL_dict.update({self.rel_list[i]: value})
else:
num4 += 1
print('num1:', num1, 'num2:', num2)
print('look_up_entity_EL_dict:', len(look_up_entity_EL_dict), type(look_up_entity_EL_dict))
print('num3:', num3, 'num4:', num4)
print('look_up_relation_EL_dict:', len(look_up_relation_EL_dict), type(look_up_relation_EL_dict))
return look_up_entity_EL_dict, look_up_relation_EL_dict
def score_Entity_linking_dict(self):
self.entity_score_EL_dict, self.relation_score_EL_dict = dict(), dict()
print('self.p.entity_EL_threshold:', self.p.entity_EL_threshold) # 0
print('self.p.relation_EL_threshold:', self.p.relation_EL_threshold) # 0
for mention, entity in self.look_up_entity_EL_dict.items():
score_sum, score_list = 0, []
for i in range(len(entity)):
if i % 2 == 0: continue
else: score_sum += int(entity[i])
for i in range(len(entity)):
if i % 2 == 0: continue
else:
if score_sum == 0:score_sum=1
score = int(entity[i]) / score_sum
entity[i] = score
score_list.append(score)
max_score = max(score_list)
max_score_index = entity.index(max_score)
if max_score > self.p.entity_EL_threshold:
if self.entity_score_EL_dict.__contains__(entity[max_score_index - 1]):
self.entity_score_EL_dict[entity[max_score_index - 1]].append(mention)
else:
self.entity_score_EL_dict.update({entity[max_score_index - 1]: [mention]})
for mention, entity in self.look_up_relation_EL_dict.items():
score_sum, score_list = 0, []
for i in range(len(entity)):
if i % 2 == 0: continue
else: score_sum += int(entity[i])
for i in range(len(entity)):
if i % 2 == 0: continue
else:
if score_sum == 0:score_sum = 1
score = int(entity[i]) / score_sum
entity[i] = score
score_list.append(score)
max_score = max(score_list)
max_score_index = entity.index(max_score)
if max_score > self.p.entity_EL_threshold:
if self.relation_score_EL_dict.__contains__(entity[max_score_index - 1]):
self.relation_score_EL_dict[entity[max_score_index - 1]].append(mention)
else:
self.relation_score_EL_dict.update({entity[max_score_index - 1]: [mention]})
return self.entity_score_EL_dict, self.relation_score_EL_dict
def generate_old_id2new_id(self):
ent_old_id2new_id, rel_old_id2new_id = {}, {}
for entity, mention in self.entity_score_EL_dict.items():
max_len, max_len_of_ent = 0, str()
for i in range(len(mention)):
ent = mention[i]
if len(mention) > max_len:
max_len = len(mention)
max_len_of_ent = ent
for i in range(len(mention)):
ent = mention[i]
ent_old_id2new_id.update({self.ent2id[ent]: self.ent2id[max_len_of_ent]})
for ent in self.ent_list:
if self.ent2id[ent] in ent_old_id2new_id.keys(): continue
else:
ent_old_id2new_id.update({self.ent2id[ent]: self.ent2id[ent]})
for entity, mention in self.relation_score_EL_dict.items():
max_len, max_len_of_rel = 0, str()
for i in range(len(mention)):
rel = mention[i]
if len(mention) > max_len:
max_len = len(mention)
max_len_of_rel = rel
for i in range(len(mention)):
rel = mention[i]
rel_old_id2new_id.update({self.rel2id[rel]: self.rel2id[max_len_of_rel]})
for rel in self.rel_list:
if self.rel2id[rel] in rel_old_id2new_id.keys(): continue
else:
rel_old_id2new_id.update({self.rel2id[rel]: self.rel2id[rel]})
return ent_old_id2new_id, rel_old_id2new_id
def get_EL_seed(self):
seed_sim, seed_trpIds = [], []
fname1, fname2 = self.folder_to_make + '/1E_init', self.folder_to_make + '/1R_init'
if not checkFile(fname1) or not checkFile(fname2):
print('generate pre-trained embeddings')
import gensim
model = gensim.models.KeyedVectors.load_word2vec_format(self.p.embed_loc, binary=False)
self.E_init = getEmbeddings(model, self.ent_list, self.p.embed_dims)
self.R_init = getEmbeddings(model, self.rel_list, self.p.embed_dims)
pickle.dump(self.E_init, open(fname1, 'wb'))
pickle.dump(self.R_init, open(fname2, 'wb'))
else:
print('load pre-trained embeddings')
self.E_init = pickle.load(open(fname1, 'rb'))
self.R_init = pickle.load(open(fname2, 'rb'))
for i in range(len(self.ent_list)):
ent1= self.ent_list[i]
old_id1 = self.ent2id[ent1]
for j in range(i + 1, len(self.ent_list)):
ent2 = self.ent_list[j]
old_id2 = self.ent2id[ent2]
new_id1, new_id2 = self.ent_old_id2new_id[old_id1], self.ent_old_id2new_id[old_id2]
if new_id1 == new_id2:
if not np.dot(self.E_init[i], self.E_init[j]) == 0:sim = cos_sim(self.E_init[i], self.E_init[j])
else:sim = 0
for ent in [ent1, ent2]:
triple_list = self.ent2triple_id_list[ent]
for triple_id in triple_list:
triple = self.trpIds[triple_id]
if str(self.id2ent[triple[0]]) == str(ent1):
trp = (self.ent2id[str(ent2)], triple[1], triple[2])
seed_trpIds.append(trp)
seed_sim.append(sim)
if str(self.id2ent[triple[0]]) == str(ent2):
trp = (self.ent2id[str(ent1)], triple[1], triple[2])
seed_trpIds.append(trp)
seed_sim.append(sim)
if str(self.id2ent[triple[2]]) == str(ent1):
trp = (triple[0], triple[1], self.ent2id[str(ent2)])
seed_trpIds.append(trp)
seed_sim.append(sim)
if str(self.id2ent[triple[2]]) == str(ent2):
trp = (triple[0], triple[1], self.ent2id[str(ent1)])
seed_trpIds.append(trp)
seed_sim.append(sim)
entity_seed_length = len(seed_sim)
for i in range(len(self.rel_list)):
rel1= self.rel_list[i]
old_id1 = self.rel2id[rel1]
for j in range(i + 1, len(self.rel_list)):
rel2 = self.rel_list[j]
old_id2 = self.rel2id[rel2]
new_id1, new_id2 = self.rel_old_id2new_id[old_id1], self.rel_old_id2new_id[old_id2]
if new_id1 == new_id2:
if not np.dot(self.R_init[i], self.R_init[j]) == 0:sim = cos_sim(self.R_init[i], self.R_init[j])
else:sim = 0
for rel in [rel1, rel2]:
triple_list = self.rel2triple_id_list[rel]
for triple_id in triple_list:
triple = self.trpIds[triple_id]
if str(self.id2rel[triple[1]]) == str(rel1):
trp = (triple[0], self.rel2id[str(rel2)], triple[2])
seed_trpIds.append(trp)
seed_sim.append(sim)
if str(self.id2rel[triple[1]]) == str(rel2):
trp = (triple[0], self.rel2id[str(rel1)], triple[2])
seed_trpIds.append(trp)
seed_sim.append(sim)
relation_seed_length = len(seed_sim) - entity_seed_length
print('entity_seed_length:', entity_seed_length, 'relation_seed_length:', relation_seed_length, 'all_seed_length:', len(seed_sim))
return seed_sim, seed_trpIds
''' ATTRIBUTES DECLARATION '''
def initVariables(self):
self.ent_list = None # List of all entities
self.clean_ent_list = []
self.rel_list = None # List of all relations
self.trpIds = [] # List of all triples in id format
self.node = []
self.seed_trpIds = []
self.new_trpIds = []
self.ent2id = None # Maps entity to its id (o2o)
self.rel2id = None # Maps relation to its id (o2o)
self.id2ent = None # Maps id to entity (o2o)
self.id2rel = None # Maps id to relation (o2o)
self.ent_freq = {} # Entity to its frequency
self.rel_freq = {} # Relation to its frequency
self.ent2name_seed = {}
self.rel2name_seed = {}