-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_utils.py
303 lines (290 loc) · 12.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from torch.utils.data import Dataset, DataLoader
import os
import json
import numpy as np
import torch
from functools import partial
import time
from transformers import AutoTokenizer
import random
import pickle
import copy
import tqdm
import logging
import tqdm
from multiprocessing import Pool
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR)
def to_cuda(batch, gpuid):
for n in batch:
if n != "data" and n != "invert_index":
batch[n] = batch[n].to(gpuid)
def collate_mp(batch, pad_token_id, is_test=False):
def bert_pad(X, max_len=-1):
if max_len < 0:
max_len = max(len(x) for x in X)
result = []
for x in X:
if len(x) < max_len:
x.extend([pad_token_id] * (max_len - len(x)))
result.append(x)
return torch.LongTensor(result)
if len(batch) == 0:
input_ids = bert_pad(batch[0]["input_ids"])
ranks = torch.FloatTensor(batch[0]["ranks"])
if "ctx_ids" in batch[0]:
ctx_ids = bert_pad(batch[0]["ctx_ids"])
result = {
"input_ids": input_ids,
"ranks": ranks,
"ctx_ids": ctx_ids
}
elif "invert_index" in batch[0]:
result = {
"input_ids": input_ids,
"ranks": ranks,
"invert_index": batch[0]["invert_index"]
}
else:
result = {
"input_ids": input_ids,
"ranks": ranks
}
return result
else:
joint_input_ids = []
joint_ranks = []
chuck_sizes = []
joint_ctx_ids = []
for b in batch:
joint_input_ids.extend(b["input_ids"])
joint_ranks.extend(b["ranks"])
chuck_sizes.append(len(b["input_ids"]))
if "ctx_ids" in b:
joint_ctx_ids.extend(b["ctx_ids"])
input_ids = bert_pad(joint_input_ids)
ranks = torch.FloatTensor(joint_ranks)
chuck_sizes = torch.LongTensor(chuck_sizes)
if len(joint_ctx_ids) > 0:
ctx_ids = bert_pad(joint_ctx_ids)
result = {
"input_ids": input_ids,
"ranks": ranks,
"chuck_sizes": chuck_sizes,
"ctx_ids": ctx_ids
}
elif "invert_index" in batch[0]:
result = {
"input_ids": input_ids,
"ranks": ranks,
"chuck_sizes": chuck_sizes,
"invert_index": [b["invert_index"] for b in batch]
}
else:
result = {
"input_ids": input_ids,
"ranks": ranks,
"chuck_sizes": chuck_sizes
}
return result
class ReRankingDataset(Dataset):
def __init__(self, fdir, model_type, maxlen=64, is_test=False, total_len=512, is_sorted=False, maxnum=-1, null_rank=101, task_type="", org_query=False, dedup=False, rerank_size=0):
""" data format: article, abstract, [(candidiate_i, score_i)] """
cache_dir = f"cache-{fdir}-{model_type}-nullrank-101-maxlen-512-tasktype-{task_type}.pkl"
if os.path.exists(cache_dir):
print(f"Loading data from {cache_dir}")
self.data = pickle.load(open(cache_dir, 'rb'))
print(f"Finished loading data from {cache_dir}")
self.cached = True
else:
self.data = json.load(open(fdir))
self.cached = False
self.tok = AutoTokenizer.from_pretrained(model_type, verbose=False)
self.index2key = sorted(list(self.data.keys()), key=lambda x:int(x.split('-')[-1]))
self.pad_token_id = self.tok.pad_token_id
self.cls_token_id = self.tok.cls_token_id
self.sep_token_id = self.tok.sep_token_id
if not is_sorted and not is_test:
for k in self.data:
self.data[k] = sorted(self.data[k], key=lambda x:x[1] if x[1] is not None else self.null_rank)
self.num = len(self.data)
self.maxlen = maxlen
self.is_test = is_test
self.total_len = total_len
self.sorted = is_sorted
self.maxnum = maxnum
self.null_rank = null_rank
self.task_type = task_type
self.org_query = org_query
reduced_len = []
self.invert_index = {}
self.reduced = False
if rerank_size > 0:
org_size = 0
for key in self.data:
if org_size == 0:
org_size = len(self.data[key])
di = {}
to_keep = []
gen_times = 0
#self.data[key] = self.data[key][:rerank_size]
for i in range(len(self.data[key])):
if self.data[key][i][0] not in di:
di[self.data[key][i][0]] = 0
to_keep.append(i)
if len(to_keep) == rerank_size:
gen_times = i + 1
break
self.data[key] = [self.data[key][i] for i in to_keep]
self.invert_index[key] = {new_id:old_id for new_id, old_id in enumerate(to_keep)}
reduced_len.append(gen_times)
mean_len = sum(reduced_len)/len(reduced_len)
std_len = (sum([((x - mean_len) ** 2) for x in reduced_len]) / len(reduced_len)) ** 0.5
print(f"Finish reducing rerank_size from {org_size} to {rerank_size}")
print("# of generations need to be performed per query:")
print(f"Average #: {mean_len}, STD: {std_len}")
self.reduced = True
elif dedup:
for key in self.data:
di = {}
to_keep = []
for i in range(len(self.data[key])):
if self.data[key][i][0] not in di:
di[self.data[key][i][0]] = 0
to_keep.append(i)
self.data[key] = [self.data[key][i] for i in to_keep]
self.invert_index[key] = {new_id:old_id for new_id, old_id in enumerate(to_keep)}
reduced_len.append(len(to_keep))
mean_len = sum(reduced_len)/len(reduced_len)
std_len = (sum([((x - mean_len) ** 2) for x in reduced_len]) / len(reduced_len)) ** 0.5
print("Finish deduplication - remaining # of examples per query:")
print(f"Average #: {mean_len}, STD: {std_len}")
self.reduced = True
def __len__(self):
return self.num
def bert_encode(self, x, max_len=64):
segs = x.split(" ? ")
q = segs[0]
e = ' ? '.join(segs[1:])
q_ids = self.tok.encode(q, add_special_tokens=False)
e_ids = self.tok.encode(e, add_special_tokens=False)
ids = [self.cls_token_id]
if max_len > 0:
ids.extend(q_ids[:max_len - len(ids) - 3])
ids.append(self.sep_token_id)
ids.extend(e_ids[:max_len - len(ids) - 3])
else:
ids.extend(q_ids[:self.total_len - len(ids) - 3])
ids.append(self.sep_token_id)
ids.extend(e_ids[:self.total_len - len(ids) - 3])
ids.append(self.sep_token_id)
return ids
def bert_encode_wtop1(self, x, t, c, max_len=64):
segs = x.split(" ? ")
q = segs[0]
e = ' ? '.join(segs[1:])
q_ids = self.tok.encode(q, add_special_tokens=False)
e_ids = self.tok.encode(e, add_special_tokens=False)
t_ids = self.tok.encode(t, add_special_tokens=False)
c_ids = self.tok.encode(c, add_special_tokens=False)
n_sep = 5
ids = [self.cls_token_id]
if max_len > 0:
ids.extend(q_ids[:max_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(e_ids[:max_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(t_ids[:max_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(c_ids[:max_len - len(ids) - n_sep])
else:
ids.extend(q_ids[:self.total_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(e_ids[:self.total_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(t_ids[:self.total_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(c_ids[:self.total_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
return ids
def bert_encode_contextual_wtop1(self, x, t, c, max_len=64):
segs = x.split(" ? ")
q = segs[0]
e = ' ? '.join(segs[1:])
q_ids = self.tok.encode(q, add_special_tokens=False)
e_ids = self.tok.encode(e, add_special_tokens=False)
t_ids = self.tok.encode(t, add_special_tokens=False)
c_ids = self.tok.encode(c, add_special_tokens=False)
n_sep = 5
max_len = max_len if max_len > 0 else self.total_len
ids = [self.cls_token_id]
ids.extend(q_ids[:max_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ids.extend(e_ids[:max_len - len(ids) - n_sep])
ids.append(self.sep_token_id)
ctx_ids = [self.cls_token_id]
ctx_ids.extend(t_ids[:max_len - len(ids) - n_sep])
ctx_ids.append(self.sep_token_id)
ctx_ids.extend(c_ids[:max_len - len(ids) - n_sep])
ctx_ids.append(self.sep_token_id)
return ids, ctx_ids
def bert_encode_title(self, x, ts, max_len=64):
segs = x.split(" ? ")
q = segs[0]
e = ' ? '.join(segs[1:])
q_ids = self.tok.encode(q, add_special_tokens=False) + [self.sep_token_id]
e_ids = self.tok.encode(e, add_special_tokens=False) + [self.sep_token_id]
ts_ids = [(self.tok.encode(t, add_special_tokens=False) + [self.sep_token_id]) for t in ts]
n_sep = 1
ids = [self.cls_token_id]
max_len = max_len if max_len > 0 else self.total_len
ids.extend(q_ids[:max_len - len(ids)])
ids.extend(e_ids[:max_len - len(ids)])
for t_ids in ts_ids:
ids.extend(t_ids[:max_len - len(ids)])
if max_len == len(ids):
break
return ids
def __getitem__(self, idx):
if self.cached:
item = self.data[idx]
item['input_ids'] = [x[:self.maxlen] for x in item['input_ids']]
if self.null_rank != 101:
item['ranks'] = [(x if x != 101 else self.null_rank) for x in item['ranks']]
return item
key = self.index2key[idx]
if self.task_type == "":
if not self.org_query:
input_ids = [self.bert_encode(x[0], self.maxlen) for x in self.data[key]]
else:
org_q = self.data[key][0][0].split(" ? ")[0]
input_ids = [self.bert_encode(org_q, self.maxlen)] + [self.bert_encode(x[0], self.maxlen) for x in self.data[key]]
elif self.task_type == "wtop1":
input_ids = [self.bert_encode_wtop1(x[0], x[2], x[3], self.maxlen) for x in self.data[key]]
elif self.task_type == "contextual_wtop1":
inputs = [self.bert_encode_contextual_wtop1(x[0], x[2], x[3], self.maxlen) for x in self.data[key]]
org_q = self.data[key][0][0].split(" ? ")[0]
input_ids = [self.bert_encode(org_q, self.maxlen)] + [x[0] for x in inputs]
ctx_ids = [x[1] for x in inputs]
elif self.task_type == "title":
input_ids = [self.bert_encode_title(x[0], x[2:], self.maxlen) for x in self.data[key]]
else:
raise ValueError("task_type not supported: %s" % self.task_type)
ranks = [(x[1] if x[1] is not None else self.null_rank) for x in self.data[key]]
if self.task_type == "contextual_wtop1":
result = {
"input_ids": input_ids,
"ctx_ids": ctx_ids,
"ranks": ranks
}
elif self.reduced:
result = {
"input_ids": input_ids,
"ranks": ranks,
"invert_index": self.invert_index[key]
}
else:
result = {
"input_ids": input_ids,
"ranks": ranks
}
return result