diff --git a/src/leidenalg/Optimiser.py b/src/leidenalg/Optimiser.py index b6c839e..409e5f5 100644 --- a/src/leidenalg/Optimiser.py +++ b/src/leidenalg/Optimiser.py @@ -4,7 +4,7 @@ from math import log, sqrt class Optimiser(object): - """ Class for doing community detection using the Leiden algorithm. + r""" Class for doing community detection using the Leiden algorithm. The Leiden algorithm [1] derives from the Louvain algorithm [2]. The Louvain algorithm has an elegant formulation. It consists of two phases: (1) move @@ -308,7 +308,7 @@ def optimise_partition(self, partition, n_iterations=2, is_membership_fixed=None return diff def optimise_partition_multiplex(self, partitions, layer_weights=None, n_iterations=2, is_membership_fixed=None): - """ Optimise the given partitions simultaneously. + r""" Optimise the given partitions simultaneously. Parameters ---------- diff --git a/src/leidenalg/VertexPartition.py b/src/leidenalg/VertexPartition.py index 50372cf..6be4dad 100644 --- a/src/leidenalg/VertexPartition.py +++ b/src/leidenalg/VertexPartition.py @@ -385,7 +385,7 @@ def weight_from_comm(self, v, comm): return _c_leiden._MutableVertexPartition_weight_from_comm(self._partition, v, comm) class ModularityVertexPartition(MutableVertexPartition): - """ Implements modularity. This quality function is well-defined only for positive edge weights. + r""" Implements modularity. This quality function is well-defined only for positive edge weights. Notes ----- @@ -758,7 +758,7 @@ def __deepcopy__(self, memo): return new_partition class RBConfigurationVertexPartition(LinearResolutionParameterVertexPartition): - """ Implements Reichardt and Bornholdt's Potts model with a configuration null model. + r""" Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.