-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSiameseModel.py
72 lines (57 loc) · 2.81 KB
/
SiameseModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
class FeatureExtractor(torch.nn.Module):
def __init__(self,n_layers,dim_input,dim_hidden,dim_output):
super(FeatureExtractor, self).__init__()
self.n_layers = n_layers
self.input_layer = torch.nn.Linear(dim_input,dim_hidden)
self.fcn = torch.nn.Linear(dim_hidden,dim_hidden)
self.output_layer = torch.nn.Linear(dim_hidden, dim_output)
self.input_attention = torch.nn.Linear(dim_input, dim_input)
# self.hidden_attention = torch.nn.Linear(dim_hidden, dim_hidden)
self.activation_function = torch.nn.ReLU()
self.input_norm = torch.nn.LayerNorm(dim_input)
self.hidden_norm = torch.nn.LayerNorm(dim_hidden)
def forward(self, x):
x = self.input_norm(x)
# att = self.input_attention(x)
# x = torch.multiply(x, torch.softmax(att,dim=-1))
x = self.input_layer(x)
x = self.hidden_norm(x)
# x = torch.nn.Dropout()(x)
x = self.activation_function(x)
for i in range(self.n_layers):
# att = self.hidden_attention(x)
x = self.fcn(x)
# x = torch.nn.LayerNorm(x.size()[-1])(x)
# x = torch.nn.Dropout()(x)
x = self.activation_function(x)
x = self.output_layer(x)
x = self.activation_function(x)
return x
class ContrastiveClassifier(torch.nn.Module):
def __init__(self,n_layers_feature,dim_input_feature,dim_hidden_feature,dim_output_feature,n_layers_cls,dim_hidden_cls,dim_output_cls):
super(ContrastiveClassifier, self).__init__()
self.n_layers = n_layers_cls
self.feature_extractor1 = FeatureExtractor(n_layers=n_layers_feature, dim_input=dim_input_feature, dim_hidden=dim_hidden_feature,dim_output=dim_output_feature)
self.feature_extractor2 = FeatureExtractor(n_layers=n_layers_feature, dim_input=dim_input_feature, dim_hidden=dim_hidden_feature,dim_output=dim_output_feature)
self.input_layer = torch.nn.Linear(2*dim_output_feature, dim_hidden_cls)
self.hidden_layer = torch.nn.Linear(dim_hidden_cls, dim_hidden_cls)
self.output_layer = torch.nn.Linear(dim_hidden_cls, dim_output_cls)
self.batchnorm = torch.nn.LayerNorm(dim_hidden_cls)
self.activation_function = torch.nn.ReLU()
def forward(self, x1, x2):
emb1 = self.feature_extractor1(x1)
emb2 = self.feature_extractor2(x2)
x = torch.cat((emb1,emb2),dim=-1)
x = self.input_layer(x)
x = self.batchnorm(x)
# x = torch.nn.Dropout()(x)
x = self.activation_function(x)
for i in range(self.n_layers):
x = self.hidden_layer(x)
# x = self.batchnorm(x)
# x = torch.nn.Dropout()(x)
x = self.activation_function(x)
x = self.output_layer(x)
x = torch.sigmoid(x)
return x