-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenerate.py
58 lines (48 loc) · 2.65 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import sys
mydir = os.path.dirname(__file__)
sys.path.append(mydir)
import torch
import utils
import importlib
from model.model import Module
# from model.db2sql import Module as DB2SQL
def get_parser():
parser = Module.get_default_parser(lr=5e-5, batch=20, epoch=50, model='sql2nl', seed=3)
parser.add_argument('--dataset', default='spider', choices=('spider', 'sparc', 'cosql'), help='dataset to use')
parser.add_argument('--warmup', default=0.1, help='bert warm up rate', type=float)
parser.add_argument('--max_query_len', default=50, help='max query length for generation', type=int)
parser.add_argument('--max_value_len', default=20, help='max value length for generation', type=int)
parser.add_argument('--dcache', default=os.path.join(mydir, 'cache', 'bert'), help='cache directory')
parser.add_argument('--num_gen', type=int, default=20000, help='how many examples to generate')
parser.add_argument('--beam_size', type=int, default=0, help='beam size')
parser.add_argument('--fparser', default='exp/nl2sql/default/best.pt', help='parser model to use for nl generation')
parser.add_argument('--ftrain', default='data/spider/train.json', help='train json files')
parser.add_argument('--db_split', default='eval', help='split to do augmentation on', choices=('train', 'eval'))
parser.add_argument('--tables', default='data/tables.json', help='tables json')
parser.add_argument('--db', default='data/database', help='SQLite database folder')
parser.add_argument('--aug', default='ans2sql')
parser.add_argument('--fout', default='gen/gen.json', help='generated output file')
parser.add_argument('--skip_consistency_check', action='store_true')
parser.add_argument('--skip_intermediate', action='store_true')
return parser
def main(args):
args.gpu = torch.cuda.is_available()
utils.manual_seed(args.seed)
assert args.resume
AugModel = importlib.import_module('model.{}'.format(args.aug)).Module
args.ftrain = os.path.abspath(args.ftrain)
args.tables = os.path.abspath(args.tables)
args.db = os.path.abspath(args.db)
print(args)
gen_m = Module.load_inst(args.resume, overwrite=dict(tables=args.tables, db=args.db, dcache=args.dcache, beam_size=args.beam_size, batch=args.batch, fparser=args.fparser))
fout = args.fout
if args.beam_size:
fout = fout.replace('.json', '.beam.json')
print('generating to {}'.format(fout))
fout = os.path.abspath(fout)
gen_m.run_gen_on_split(args.num_gen, AugModel, args.db_split, fout, args=args, save=not args.skip_intermediate)
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)