-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpreprocess_sql2nl_sparc.py
210 lines (181 loc) · 8.1 KB
/
preprocess_sql2nl_sparc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import re
import json
import tqdm
import utils
import torch
import random
import sqlite3
import converter
import argparse
import itertools
import embeddings as E
import preprocess_nl2sql_sparc as preprocess_nl2sql
from vocab import Vocab
from collections import defaultdict, Counter
from transformers import DistilBertTokenizer
from eval_scripts import evaluation
from preprocess_sql2nl import SQLDataset as Base, BERT_MODEL
from nltk.stem.porter import PorterStemmer
import editsql_preprocess
import editsql_postprocess
class SQLDataset(Base):
@classmethod
def build_contexts(cls, query_norm_toks, prev_query_toks, g_values, db, bert, max_lim=512):
columns = []
for table_id, (to, t) in enumerate(zip(db['table_names_original'] + ['NULL'], db['table_names'] + ['NULL'])):
# insert a NULL table at the end
columns += [{'oname': '*', 'name': '*', 'type': 'all', 'key': '{}.*'.format(to).replace('NULL.', '').lower(), 'table_name': t.lower()}]
keys = set(db['primary_keys'])
for a, b in db['foreign_keys']:
keys.add(a)
keys.add(b)
for i, ((tid, co), (_, c), ct) in enumerate(zip(db['column_names_original'], db['column_names'], db['column_types'])):
ct = ct if i not in keys else 'key'
if tid == table_id:
columns.append({
'oname': co, 'name': c, 'type': ct,
'key': '{}.{}'.format(to, co).lower(),
'table_name': t.lower(),
})
key2col = {col['key']: col for col in columns}
question_context = [bert.cls_token]
for t in prev_query_toks:
if t in key2col:
col = key2col[t]
question_context.extend(bert.tokenize('[ {} {} : {} ]'.format(col['type'], col['table_name'], col['name'])))
else:
question_context.extend(bert.tokenize(t))
question_context.append(bert.sep_token)
for t in query_norm_toks:
if t in key2col:
col = key2col[t]
question_context.extend(bert.tokenize('[ {} {} : {} ]'.format(col['type'], col['table_name'], col['name'])))
else:
question_context.extend(bert.tokenize(t))
question_context.append(bert.sep_token)
for v in g_values:
question_context.extend(bert.tokenize(' '.join(v)))
question_context.append(';')
if question_context[-1] == ';':
question_context[-1] = bert.sep_token
if len(question_context) > max_lim:
raise Exception('question context of {} > {} is too long!'.format(len(question_context), max_lim))
return question_context, columns
@classmethod
def make_example(cls, ex, bert, utt_voc, conv, train=False):
db_id = ex['db_id']
ex['query_toks'], ex['query_toks_no_value'] = preprocess_nl2sql.SQLDataset.tokenize_query(ex['query'])
invalid = False
try:
# normalize query
query_norm = conv.convert_tokens(ex['query_toks'], ex['query_toks_no_value'], db_id)
except Exception as e:
print('preprocessing error')
print(ex['query'])
raise
return None
if query_norm is None:
return None
query_norm_toks = query_norm.split()
query_recov = g_values = None
try:
query_recov = conv.recover(query_norm, db_id)
em, g_sql, r_sql = conv.match(ex['query'], query_recov, db_id)
if not em:
invalid = True
g_values = cls.align_values(ex['query_toks_no_value'], ex['query_toks'])
except ValueAlignmentException as e:
print(ex['query'])
print(repr(e))
invalid = True
except QueryBuildError as e:
print(ex['query'])
print(repr(e))
invalid = True
except Exception as e:
print(e)
invalid = True
raise
# make utterance
question_toks = cls.tokenize_question(ex['utterance'].split(), bert)
# print(bert.convert_tokens_to_string(question_toks))
if ex['prev'] is not None:
prev_query_toks, prev_query_toks_no_value = preprocess_nl2sql.SQLDataset.tokenize_query(ex['prev']['query'])
prev_query_norm = conv.convert_tokens(prev_query_toks, prev_query_toks_no_value, db_id)
if prev_query_norm is None:
prev_query_norm = 'none'
else:
prev_query_norm = 'none'
# encode tables
try:
question_context, columns = cls.build_contexts(query_norm_toks, prev_query_norm.split(), g_values, conv.database_schemas[db_id], bert)
except Exception as e:
print(e)
return None
# print(bert.convert_tokens_to_string(question_context))
new = dict(
id=ex['id'],
query_norm=query_norm,
prev_query_norm=prev_query_norm,
columns=columns,
db_id=db_id,
question=ex['utterance'],
g_question_toks=question_toks,
g_sql=g_sql,
query=ex['query'],
g_values=g_values,
question_context=question_context,
invalid=invalid,
cands_question=cls.make_column_cands(question_context),
)
if train and not invalid:
new['sup_question'] = cls.make_sup_question(question_toks, new['cands_question'], bert, utt_voc)
# print(new['sup_question']['column_toks'])
return new
@classmethod
def from_file(cls, root, dspider, dcache, debug=False):
train_database, dev_database = editsql_preprocess.read_db_split(dspider)
conv = converter.Converter(os.path.join(dspider, 'tables.json'))
splits = {}
for k in ['train', 'dev']:
with open(os.path.join(root, '{}.json'.format(k)), 'rb') as f:
splits[k] = []
for ex in json.load(f):
splits[k].append(ex)
if debug and len(splits[k]) > 100:
break
tokenizer = DistilBertTokenizer.from_pretrained(BERT_MODEL, cache_dir=dcache)
utt_voc = Vocab(['PAD', 'EOS', 'GO'])
# make contexts and populate vocab
for s, data in splits.items():
proc = []
for i, ex in enumerate(tqdm.tqdm(data, desc='preprocess {}'.format(s))):
for turn_i, turn in enumerate(ex['interaction']):
turn['id'] = '{}/{}:{}'.format(ex['database_id'], i, turn_i)
turn['db_id'] = ex['database_id']
turn['prev'] = ex['interaction'][turn_i-1] if turn_i > 0 else None
new = cls.make_example(turn, tokenizer, utt_voc, conv, train=s=='train')
if new is not None and (s != 'train' or not new['invalid']):
proc.append(new)
splits[s] = proc
# make candidate list using vocab
for s, data in splits.items():
for ex in data:
ex['cands_question'] = cls.make_cands(ex, utt_voc)
splits[s] = data
# make pointers for training data
for ex in splits['train']:
ex['pointer_question'] = cls.make_question_pointer(ex['sup_question'], ex['cands_question'], utt_voc)
# look up pretrained word embeddings
emb = E.ConcatEmbedding([E.GloveEmbedding(), E.KazumaCharEmbedding()], default='zero')
utt_emb = torch.tensor([emb.emb(w) for w in utt_voc._index2word])
ext = dict(utt_voc=utt_voc, utt_emb=utt_emb)
return splits, ext
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true')
parser.add_argument('--data', default='sparc')
args = parser.parse_args()
proc = SQLDataset.from_file(os.path.join('data', args.data), os.path.join('data', 'spider'), 'cache', debug=args.debug)
torch.save(proc, 'cache/data_sql2nl_sparc_sparc.debug.pt' if args.debug else 'cache/data_sql2nl_sparc_sparc.pt')