-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkuhn_munkras.py
127 lines (114 loc) · 4.77 KB
/
kuhn_munkras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import networkx as nx
import matplotlib.pyplot as plt
import sys
from collections import defaultdict
class KM:
def __init__(self, nodes_one, nodes_two, edges) -> None:
self.nodes_one = nodes_one # 二部图第一部分节点
self.nodes_two = nodes_two # 二部图第二部分节点
self.edges = edges # 所有边(带权重)
def optimal_match(self):
'''理解该算法建议手动模拟一下代码中的例子
'''
match = defaultdict(lambda: None) # 记录节点匹配情况
sum_weights = 0 # 最优匹配权重总和
node_neighbors = defaultdict(list) # 节点邻居映射
edge_weight = defaultdict(int) # 边权重映射
label_one = defaultdict(int) # 第一部分节点的可行顶标
label_two = defaultdict(int) # 第二部分节点的可行顶标
slack = defaultdict(lambda: sys.maxsize) # 记录第二部分节点能和第一部分节点匹配还需要多少权重
one_visited, two_visited = set(), set()
# 初始化
for (u, v, w) in self.edges:
node_neighbors[u].append(v)
node_neighbors[v].append(u)
edge_weight[(u, v)] = edge_weight[(v, u)] = w
for node_one in self.nodes_one:
max_w = 0
for node_one_neighbor in node_neighbors[node_one]:
max_w = max(max_w, edge_weight[(node_one, node_one_neighbor)])
label_one[node_one] = max_w
def dfs(u):
one_visited.add(u)
for v in node_neighbors[u]:
if v in two_visited:
continue
gap = label_one[u]+label_two[v] - edge_weight[(u, v)]
if gap == 0:
two_visited.add(v)
if match[v] == None or dfs(match[v]):
match[v] = u
return True #
else:
slack[v] = min(slack[v], gap)
return False
for u in self.nodes_one:
slack.clear()
while not dfs(u):
min_gap = sys.maxsize # 最小可以降低多少顶标值能够完成匹配
for node_two in self.nodes_two:
if node_two not in two_visited:
min_gap = min(min_gap, slack[node_two])
for node_one in self.nodes_one:
if node_one in one_visited:
label_one[node_one] -= min_gap
for node_two in self.nodes_two:
if node_two in two_visited:
label_two[node_two] += min_gap
else:
slack[node_two] -= min_gap
one_visited.clear()
two_visited.clear()
# 求最优匹配的权重和
for key, value in match.items():
sum_weights += edge_weight[(value, key)]
return match, sum_weights
def draw(G, nodes_one, nodes_two, color_edges):
nodes = list(G.nodes)
edges = list(G.edges)
num_node = len(nodes)
num_edge = len(edges)
node_color = ['b'] * num_node
edge_color = ['b'] * num_edge
for i in range(0, num_node):
if isinstance(nodes[i], type(nodes_one[0])):
node_color[i] = 'r'
for i in range(num_edge):
u, v = edges[i][0], edges[i][1]
# 无向图
if (u, v) in color_edges or (v, u) in color_edges:
edge_color[i] = 'r'
'''
自定义pos
'''
# 对matplotlib不太熟悉,布局有待改进
pos = dict()
size = max(len(nodes_one), len(nodes_two)) + 2
one_x, two_x = size//3, 2*size // 3
one_y, two_y = size-1, size-1
for node_one in nodes_one:
pos[node_one] = [one_x, one_y]
one_y -= 1
for node_two in nodes_two:
pos[node_two] = [two_x, two_y]
two_y -= 1
plt.title('KM Algorithm: Optimal Matching')
nx.draw(G, pos, with_labels=True, node_color=node_color, edge_color=edge_color)
edge_labels = nx.get_edge_attributes(G, 'weight')
# label_pos=0.8作用: 防止图中交叉边上权重值重叠
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, label_pos=0.8)
plt.savefig('kuhn_munkras.png', format='PNG')
plt.show()
def main():
nodes_one = [0, 1, 2]
nodes_two = ['a', 'b', 'c']
edges = [(0, 'a', 3), (0, 'c', 4), (1, 'a', 2), (1, 'b', 1), (1, 'c', 3), (2, 'c', 5)]
match, sum_weights = KM(nodes_one, nodes_two, edges).optimal_match()
match_edges = [(u, v) for u, v in match.items()]
print('{} | {}'.format(match_edges, sum_weights))
G = nx.Graph()
G.add_nodes_from(nodes_one+nodes_two)
G.add_weighted_edges_from(edges)
draw(G, nodes_one, nodes_two, match_edges)
if __name__ == '__main__':
main()