forked from mailong25/self-supervised-speech-recognition
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
221 lines (178 loc) · 8.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from wav2vec import EmbeddingDatasetWriter
from wav2vec import Prediction
import argparse
import os
from pydub import AudioSegment
import ntpath
from os.path import abspath
import time
from multiprocessing import Pool
import librosa
import soundfile as sf
import shutil
import string
from random import shuffle
import re
from shutil import copy2
from utils import normalize, absoluteFilePaths
def convert_to_16k(path):
in_path = path
out_path = os.path.dirname(path)
file_name = ntpath.basename(in_path)
y, s = librosa.load(in_path, sr=16000)
y_16k = librosa.resample(y, s, 16000)
path_to_write = os.path.join(out_path,file_name)
sf.write(path_to_write, y_16k, 16000, format='WAV', subtype='PCM_16')
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train_file", default=None, type=str,
required=True, help="Path to train file, eg. train.lst")
parser.add_argument("--test_file", default=None, type=str,
required=True, help="Path to test file, eg. test.lst")
parser.add_argument("--audio_path", default=None, type=str,
required=True, help="Path to wav files, eg. audio")
parser.add_argument("--wav2vec_file", default=None, required=True,
type=str,help="Path to wav2vec model, check in resources/wav2vec.pt")
parser.add_argument("--wav2letter", default=None, type=str,
required=True, help="Path to wav2letter library")
parser.add_argument("--am_file", default=None, type=str,
help="Path to base aucostic model. If this is not given --> Training from scratch")
parser.add_argument("--arch_file", default=None, type=str,
required=True, help="Path to archtecture file, check in resources/network.arch")
parser.add_argument("--token_file", default=None, type=str,
required=True, help="Path to token file, check in resources/tokens.txt")
parser.add_argument("--lexicon_file", default=None, type=str,
required=True, help="Path to lexicon file, check in resources/lexicon.txt")
parser.add_argument("--output_path", default=None, type=str,
required=True, help="Output path for storing feature and model")
parser.add_argument("--mode", default=None, type=str, required=True,
help="Either 'finetune' or 'scratch'"
"If scratch --> train AM from scratch"
"If finetune --> continue training using AM provided by arch_file")
parser.add_argument("--iter", default=50, type=int,
help="Number of interations. Set this number higher if training from scratch")
parser.add_argument("--lr", default=0.5, type=float,
help="Learning rate, set 1.0 for training from scratch and 0.5 for fine-tunning")
parser.add_argument("--lrcrit", default=0.004, type=float,
help="Learning rate crit, set 0.006 for training from scratch and 0.001 for fine-tunning ")
parser.add_argument("--momentum", default=0.5, type=float,help="SGD momentum")
parser.add_argument("--maxgradnorm", default=0.05, type=float,help="Max gradnorm")
parser.add_argument("--nthread", default=1, type=int,help="Number of jobs")
args = parser.parse_args()
if args.mode not in ['scratch','finetune']:
raise ValueError('Training mode must be either scratch or finetune')
if args.mode == 'finetune' and args.am_file == None:
raise ValueError('For finetune training, am_file must be given')
if args.mode == 'scratch':
args.lr = 1.0
args.lrcrit = 0.01
args.iter = 100
args.momentum = 0.8
args.maxgradnorm = 0.1
print("Converting to 16k !!!")
audio_names = absoluteFilePaths(args.audio_path)
pool = Pool(4)
pool.map(convert_to_16k,audio_names)
pool.terminate()
w2vec = Prediction(args.wav2vec_file)
#Extract wav2vec feature
featureWritter = EmbeddingDatasetWriter(input_root = args.audio_path,
output_root = os.path.join(args.output_path,'feature'),
loaded_model = w2vec,
extension="wav",use_feat=False)
featureWritter.write_features()
#Write train file
feature_path = os.path.join(args.output_path,'feature')
with open(args.train_file) as f:
data = f.read().split('\n')
data = [t for t in data if len(t) > 1]
data = [d.split('\t') for d in data]
for i in range(0,len(data)):
path = os.path.join(args.audio_path, data[i][0])
text = normalize(data[i][1])
audio = AudioSegment.from_wav(path)
path = os.path.join(feature_path,ntpath.basename(path))
path = os.path.abspath(path)
path = path.replace('.wav','.h5context')
leng = str(len(audio) / 1000.0)
idx = 'train' + str(i)
data[i] = '\t'.join([idx, path, leng, text])
train_feature_file = abspath(os.path.join(args.output_path, 'train.lst'))
with open(train_feature_file, 'w') as f:
f.write('\n'.join(data))
#Write test file
with open(args.test_file) as f:
data = f.read().split('\n')
data = [t for t in data if len(t) > 1]
data = [d.split('\t') for d in data]
for i in range(0,len(data)):
path = os.path.join(args.audio_path, data[i][0])
text = normalize(data[i][1])
audio = AudioSegment.from_wav(path)
path = os.path.join(feature_path,ntpath.basename(path))
path = os.path.abspath(path)
path = path.replace('.wav','.h5context')
leng = str(len(audio) / 1000.0)
idx = 'test' + str(i)
data[i] = '\t'.join([idx, path, leng, text])
test_feature_file = abspath(os.path.join(args.output_path, 'test.lst'))
with open(test_feature_file, 'w') as f:
f.write('\n'.join(data))
tokens = ntpath.basename(args.token_file)
tokendirs = os.path.dirname(abspath(args.token_file))
arch = ntpath.basename(args.arch_file)
archdirs = os.path.dirname(abspath(args.arch_file))
cmd = ['--runname=model']
cmd.append('--rundir=' + abspath(args.output_path))
cmd.append('--tokensdir=' + tokendirs)
cmd.append('--tokens=' + tokens)
cmd.append('--lexicon=' + args.lexicon_file)
cmd.append('--archdir=' + archdirs)
cmd.append('--arch=' + arch)
cmd.append('--train=' + train_feature_file)
cmd.append('--valid=' + test_feature_file)
cmd.append('--lr=' + str(args.lr))
cmd.append('--lrcrit=' + str(args.lrcrit))
cmd.append('--iter=' + str(args.iter))
cmd.append('--momentum=' + str(args.momentum))
cmd.append('--maxgradnorm=' + str(args.maxgradnorm))
cmd.append('--input=hdf5')
cmd.append('--criterion=asg')
cmd.append('--linseg=1')
cmd.append('--replabel=2')
cmd.append('--onorm=target')
cmd.append('--wnorm=true')
cmd.append('--surround=|')
cmd.append('--sqnorm=true')
cmd.append('--mfsc=false')
cmd.append('--wav2vec=true')
cmd.append('--nthread=1')
cmd.append('--batchsize=4')
cmd.append('--transdiag=5')
cmd.append('--melfloor=1.0')
cmd.append('--minloglevel=0')
cmd.append('--logtostderr=1')
cmd.append('--enable_distributed=false')
cfg_path = os.path.join(args.output_path, 'fork_vec.cfg')
with open(cfg_path,'w') as f:
f.write('\n'.join(cmd))
cmd = ['sudo']
cmd.append(os.path.join(args.wav2letter,'build/Train'))
if args.mode == 'finetune':
cmd.append('fork ' + abspath(args.am_file))
else:
cmd.append('train ')
cmd.append('--flagsfile=' + cfg_path)
cmd = ' '.join(cmd)
print(cmd)
time.sleep(5)
os.system(cmd)
path_to_model = os.path.join(args.output_path, 'model/001_model_' + test_feature_file.replace('/','#') + '.bin')
path_to_write = os.path.join(args.output_path, 'am.bin')
copy2(path_to_model,path_to_write)
os.system('sudo rm -rf ' + os.path.join(args.output_path,'model'))
shutil.rmtree(os.path.join(args.output_path,'feature'), ignore_errors=True)
os.remove(test_feature_file)
os.remove(train_feature_file)
os.remove(cfg_path)
main()