-
Notifications
You must be signed in to change notification settings - Fork 6
/
app.py
104 lines (83 loc) · 3.39 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import streamlit as st
from PyPDF2 import PdfReader
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
def get_pdf_text(pdf_docs):
"""
initialise a variable which
takes an empty string and subsequently apend
the pages of the pdf to this variable.
"""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size = 800,
chunk_overlap=200,
length_function = len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
# create embeddings before loading into a vector store/knowledge base
embeddings = OpenAIEmbeddings(openai_api_key=st.secrets["api_keys"]["OPEN_API_KEY"])
# we'll use FAISS as our vector store.
vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vector_store
def get_conversation_chain(vectorstore):
llm = ChatOpenAI(openai_api_key=st.secrets["api_keys"]["OPEN_API_KEY"],
temperature=0.25)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_user_input(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i%2 == 0:
user = st.chat_message(name="User", avatar="💃")
user.write(message.content)
else:
assistant = st.chat_message(name="J.A.A.F.A.R.", avatar="🤖")
assistant.write(message.content)
def main():
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon="🤓")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs 📚")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_user_input(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click `Process`", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing files ..."):
# get raw pdf text
raw_text = get_pdf_text(pdf_docs)
# segment raw pdf text into chunks
text_chunks = get_text_chunks(raw_text)
# load text chunks into a vector store
vectorstore= get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == "__main__":
main()