Skip to content

Latest commit

 

History

History
78 lines (59 loc) · 2.46 KB

README.md

File metadata and controls

78 lines (59 loc) · 2.46 KB

DGL Implementation of ARMA

This DGL example implements the GNN model proposed in the paper Graph Neural Networks with convolutional ARMA filters.

Contributor: xnuohz

Requirements

The codebase is implemented in Python 3.6. For version requirement of packages, see below.

dgl
numpy 1.19.5
networkx 2.5
scikit-learn 0.24.1
tqdm 4.56.0
torch 1.7.0

The graph datasets used in this example

Node Classification

The DGL's built-in Cora, Pubmed, Citeseer datasets. Dataset summary:

Dataset #Nodes #Edges #Feats #Classes #Train Nodes #Val Nodes #Test Nodes
Cora 2,708 10,556 1,433 7(single label) 140 500 1000
Citeseer 3,327 9,228 3,703 6(single label) 120 500 1000
Pubmed 19,717 88,651 500 3(single label) 60 500 1000

Usage

Dataset options
--dataset          str     The graph dataset name.             Default is 'Cora'.
GPU options
--gpu              int     GPU index.                          Default is -1, using CPU.
Model options
--epochs           int     Number of training epochs.          Default is 2000.
--early-stopping   int     Early stopping rounds.              Default is 100.
--lr               float   Adam optimizer learning rate.       Default is 0.01.
--lamb             float   L2 regularization coefficient.      Default is 0.0005.
--hid-dim          int     Hidden layer dimensionalities.      Default is 16.
--num-stacks       int     Number of K.                        Default is 2.
--num-layers       int     Number of T.                        Default is 1.
--dropout          float   Dropout applied at all layers.      Default is 0.75.
Examples

The following commands learn a neural network and predict on the test set. Train an ARMA model which follows the original hyperparameters on different datasets.

# Cora:
python citation.py --gpu 0

# Citeseer:
python citation.py --gpu 0 --dataset Citeseer --num-stacks 3

# Pubmed:
python citation.py --gpu 0 --dataset Pubmed --dropout 0.25 --num-stacks 1

Performance

Node Classification
Dataset Cora Citeseer Pubmed
Metrics(Table 1.Node classification accuracy) 83.4±0.6 72.5±0.4 78.9±0.3
Metrics(PyG) 82.3±0.5 70.9±1.1 78.3±0.8
Metrics(DGL) 80.9±0.6 71.6±0.8 75.0±4.2