Skip to content

Latest commit

 

History

History
75 lines (51 loc) · 2.31 KB

README.md

File metadata and controls

75 lines (51 loc) · 2.31 KB

DGL Implementation of CorrectAndSmooth

This DGL example implements the GNN model proposed in the paper Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. For the original implementation, see here.

Contributor: xnuohz

Requirements

The codebase is implemented in Python 3.7. For version requirement of packages, see below.

dgl 0.6.0.post1
torch 1.7.0
ogb 1.3.0

The graph datasets used in this example

Open Graph Benchmark(OGB). Dataset summary:

Dataset #Nodes #Edges #Node Feats Metric
ogbn-arxiv 169,343 1,166,243 128 Accuracy
ogbn-products 2,449,029 61,859,140 100 Accuracy

Usage

Training a Base predictor and using Correct&Smooth which follows the original hyperparameters on different datasets.

ogbn-arxiv
  • MLP + C&S
python main.py --dropout 0.5
python main.py --pretrain --correction-adj DA --smoothing-adj AD
  • Linear + C&S
python main.py --model linear --dropout 0.5 --epochs 1000
python main.py --model linear --pretrain --correction-alpha 0.8 --smoothing-alpha 0.6 --correction-adj AD
ogbn-products
  • Linear + C&S
python main.py --dataset ogbn-products --model linear --dropout 0.5 --epochs 1000 --lr 0.1
python main.py --dataset ogbn-products --model linear --pretrain --correction-alpha 0.6 --smoothing-alpha 0.9

Performance

ogbn-arxiv

MLP MLP + C&S Linear Linear + C&S
Results(Author) 55.58 68.72 51.06 70.24
Results(DGL) 56.12 68.63 52.49 71.69

ogbn-products

Linear Linear + C&S
Results(Author) 47.67 82.34
Results(DGL) 47.71 79.57

Speed

ogb-arxiv Time GPU Memory Params
Author, Linear + C&S 6.3 * 10 ^ -3 1,248M 5,160
DGL, Linear + C&S 5.6 * 10 ^ -3 1,252M 5,160